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Abstract— This paper presents a novel distributed encir-
clement control for first-order multi-agent systems that specif-
ically considers the issue of communication delay. Unlike pre-
vious studies, this research analyzes its impact. One key aspect
of our approach is the utilization of two distributed estimators
affected by communication delay to accurately estimate the
location of the geometric center of targets and to estimate
the maximum distance of targets to the estimated geometric
center of targets. The relative desired position of agents is
achievable by employing the estimated maximum distance
of targets to the estimated geometric center of targets. The
employment of the estimated profile of targets and the relative
desired position of agents allows for improved tracking and
coordination among the agents, enhancing the effectiveness of
the engaged encirclement control. To assess the stability of
the closed-loop system, we employ the Lyapunov technique
for analysis. Finally, we conduct simulations to evaluate the
effectiveness of our proposed methodology.

Index Terms— Multi-Agent Systems, Encirclement control,
Delay, Stability Analysis.

I. INTRODUCTION

A multi-agent system (MAS) refers to a collection of
distinct agents capable of pursuing specific goals through
local interactions. The concept of MAS finds its roots in
various biological and social phenomena, such as birds
migrating in formation, ants cooperating in colonies, and fish
arranging themselves to avoid harm [1].

The consensus control remains a fundamental approach,
where agents strive to reach an agreement on a common
value [2]–[4]. Following consensus, the formation control has
gained significant attention, focusing on agents maintaining
a specific shape or arrangement while performing their
assigned tasks [5]–[8].

Encirclement involves a group of agents working together
to surround a target entity, be it a moving or stationary
object. Successful encirclement necessitates effective coop-
eration and coordination among the agents [9]. Encirclement
controls for MAS are typically designed to ensure that the
target object remains surrounded by the agents at all times
[10]. One such control is the leader approach, where a leader
guides the swarm of agents around the target, and each agent
adjusts its position relative to the leader [11].

The design and implementation of encirclement control
for MAS pose several challenges. First, the control must
be able to handle dynamic environments where the target
object is moving [12]. Second, the control must be able to
handle communication constraints among agents [13], such

1Milad Hasanzadeh and Shu-Xia Tang (corresponding author) are with
the Department of Mechanical Engineering, Texas Tech University, Texas,
USA m.hasanzadeh@ttu.edu, shuxia.tang@ttu.edu.

as limited range communication or communication delays.
Third, the control must be distributed, meaning that each
agent should be able to execute the control autonomously,
without central coordination [14].

The encirclement control is categorized into two types:
static encirclement [9] and dynamic encirclement [12]. Dy-
namic encirclement is based on a principle: a predetermined
number of actual targets exist, and the agents’ goal is to track
and surround these targets. Once the agents have successfully
encircled the targets, the next step is to initiate a rotational
movement around the targets. In order to establish the
dynamic encirclement control, a key prerequisite is the use of
two estimators by each agent, with all agents equipped with
the same pair of estimators. The first estimator facilitates
the agents in estimating the geometric center of the targets.
Simultaneously, the second estimator enables the agents to
approximate the maximum distance between the farthest
target and the estimated geometric center of targets. The idea
of designing dynamic encirclement control will be used here.

The problem of communication delay arises when there is
a lag or delay in the exchange of information among agents
due to finite bandwidth or network congestion. Communi-
cation delay can significantly affect the performance of the
control, leading to slower convergence or even instability
[15], [16].

Previous studies on encirclement in the existing literature
have overlooked the consideration of communication delay.
In general, communication delay could vary during the
process but in all various applications, a constant upper
bound could be considered as the maximum value of commu-
nication delay. in this work, in terms of analyzing the effect
of communication delay, a constant value will be considered
in distributed parts of the encirclement control and the effect
of that on the closed-loop system will be analyzed.

• To the author’s best knowledge, it is the first time that
an encirclement control in presence of communication
delay has been designed for MASs.

• Compared with [12] which the dynamic encirclement
has been studied without consideration of delay issue,
this paper considers communication delay in dis-
tributed estimators among all agents. Also, the rotation
method around targets is more appropriate and we do
not need to concern the agents location during rotation.

• Compared with [16] which communication delay in
consensus control has been studied, this paper con-
siders the maximum constant communication delay in
dynamic encirclement control.

The subsequent sections of this paper are structured as
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follows: Section II delves into problem formulation and
dynamics. The dynamic behavior of distributed estimators
is detailed in Section III. In Section IV, the encirclement
control is presented. Section V investigates a simulation
example, and finally, Section VI concludes the paper and
outlines avenues for future research in this domain.

II. PROBLEM STATEMENT

In this paper, agents and targets are working in pairs. The
exact position of each target is accessible by the agent with
identical index and the number of targets and agents are both
n. Let Ψ = {1, 2, ..., n} be the set of indexes. All agents are
in a distributed network that they are communicating with
each other and their communication topology is described by
an undirected simple graph G(Ψ, E). Note that G(Ψ, E) is
connected and static during all process. Note that the position
of the target i is detectable and only detected by agent i ∈ Ψ.
In a connected graph, the shortest path between two nodes
i and j is represented by the symbol dis(i, j) and is called
the distance. In this paper, d̆ is defined as

d̆ = max
i,j∈Ψ,i̸=j

{dis(i, j)}. (1)

A. Target Profile

The position of target i ∈ Ψ is yi(t) = [yi1(t), yi2(t)]
T ∈

ℜ2. Regarding the dynamic of targets, the following Assump-
tions hold.

Assumption 1: Suppose that ∀i ∈ Ψ, yi(t) is contin-
uously differentiable and the velocity of targets is bounded
as

∥ẏi(t)∥ ⩽ β, ∀t > 0, (2)

where β is a positive constant.
Assumption 2: Suppose that targets will not collide with

each other, that is ∀i, j, i ̸= j ∈ Ψ,

yj(t) ̸= yi(t),∀t > 0. (3)
The geometric center of targets is defined as

ygc(t) =
1

n

n∑
k=1

yk(t). (4)

The maximum distance of targets to the geometric center
of targets is defined as

ymd(t) = max
i∈Ψ

{||yi(t)− ygc(t)||} . (5)

Assumption 3: Postulate that all targets’ positions are
within a certain circular neighborhood of ygc(t) with a c
radius, that is,

sup
t>0

ymd(t) ⩽ c, (6)

where c is a positive constant.

B. Agents Dynamic

Consider that all the agents have first-order dynamics as

ẋi(t) = ui(t), i ∈ Ψ, (7)

in which xi(t) = [xi1(t), xi2(t)]
T ∈ ℜ2 indicates the

position of agent i for t ⩾ 0. ui(t) = [ui1(t), ui2(t)]
T ∈ ℜ2

represents the input control of agent i. Note the Cartesian
coordinate transformation into polar coordinate, x 7→ (ρ, θ)
as

ρi(t) =
√
x2
i1(t) + x2

i2(t), (8)

θi(t) = arctan

(
xi2(t)

xi1(t)

)
, (9)

where ρi(t) ∈ ℜ is the polar radius, θi(t) ∈ ℜ is the polar
angle of agent i. Using transformation (8)-(9), the system
(7), for i ∈ Ψ, will be represented in polar coordinate as

ρ̇i(t) = ui1(t) cos(θi(t)) + ui2(t) sin(θi(t)), (10)

θ̇i(t) = ρ−1
i (t)(ui2(t) cos(θi(t))− ui1(t) sin(θi(t))). (11)

Definition 1: Let νi(t) ∈ C1[0,∞) be an arbitrarily
chosen function standing for a desired encirclement rotation
profile of agents. For any agent i ∈ Ψ, an input control
ui(t) ∈ C[0,∞) is a dynamic encirclement control for the
system (7) if the following equations hold:

lim
t→∞

ρi(t) = ξiy
md(t) + ∥ygc(t)∥, (12)

lim
t→∞

θi(t) = νi(t), (13)

where ξi > 1 is a positive design parameter.
Equation (12) and (13) in Definition 1, by taking into

consideration of matched initial condition, are equivalent to
the following respectively

lim
t→∞

(ρi(t)− ∥ygc(t)∥) = ξiy
md(t), (14)

lim
t→∞

ωi(t) = ν̇i(t) := µi(t), (15)

where ωi(t) = θ̇i(t) ∈ ℜ is the polar velocity and µi(t) is
the desired angular velocity of agent i which will be chosen
by designer.

Assumption 4: Assume that the first derivative of desired
angular velocity µi(t) along time is bounded that have

|µ̇i(t)| ⩽ µ̄,∀i ∈ Ψ, t > 0, (16)

where µ̄ ∈ ℜ is a positive constant.
Remark 1: The equation (14) guarantees that all agents

will approach to a unique circular neighborhood of geometric
center of targets and form the encirclement. The equation
(15) guarantees that the angular velocity of agents will be
equal to a time-varing function during the rotation.

III. ESTIMATION OF TARGETS’ POSITION

To define the encirclement control, the utilization of two
distributed estimators is necessary.
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A. Geometric Center of Targets Estimator

In the initial stage of defining the encirclement control,
each agent requires an estimator to estimate the geometric
center of the targets. To fulfill this requirement, each agent
must possess its own distributed geometric center estimator.
Note that ŷgc

i (t) = [ŷgc
i1(t), ŷ

gc
i2(t)]

T ∈ ℜ2 is the estimated
geometric center of targets by agent i. The dynamic of
geometric center estimator of agent i is proposed as

ŷgc
i (t) = δi(t) + yi(t), (17a)

δ̇i(t) =


α

∑
j∈Ni

ŷgc
j (t−d)−ŷgc

i (t−d)

∥ŷgc
j (t−d)−ŷgc

i (t−d)∥ ,

if ŷgc
j (t) ̸= ŷgc

i (t), ∀t > 0,

0 if ŷgc
j (t) = ŷgc

i (t), ∃t > 0,

(17b)

in which δi(t) = [δi1(t), δi2(t)]
T is the intermediate state

of estimator and δi(t) = 0, ∀i ∈ Ψ, and ∀t ∈ [−d, 0).
α > 0 is a design parameter. d is a positive constant that
represent the maximum of communication delay between
agents. ŷgc

i (t) = yi(t), ∀i ∈ Ψ, and ∀t ∈ [−d, 0).
aij is the relevant element of adjacency matrix of network
topology.

The average of estimated geometric center of targets by
agents is defined as

ŷagc(t) :=
1

n

n∑
i=1

ŷgc
i (t). (18)

Theorem 1: Consider the geometric center estimator dy-
namic in equation (17), set α to 1. The estimator (17) is
delay-independently asymptotically convergent to the av-
erage of estimated geometric center of targets by agents,
ŷagc(t) as

lim
t→∞

ŷgc
i (t) = ŷagc(t), i ∈ Ψ (19)

The proof is omitted here because of page limitation.
Remark 2: Based on Theorem 1, the estimator dynamics

(17) is asymptotically convergent. It yields that after some
time, we have lim

t→∞
δ̇i(t) = 0. Which also yields that

lim
t→∞

1
n

n∑
k=1

δk(t) = 0.

Corollary 1: Based on estimated geometric center of tar-
gets definition in (17a) and the average of estimated geomet-
ric center of targets, ŷagc(t), we have

ŷagc(t) =
1

n

n∑
k=1

ŷgc
k (t) =

1

n

n∑
k=1

δk(t) + ygc(t)

Taking into consideration of Theorem 1, one can conclude
that the estimated geometric center of targets by agent i is
convergent to the exact geometric center of targets where as

lim
t→∞

ŷgc
i (t) = lim

t→∞

1

n

n∑
k=1

δk(t) + ygc(t) = ygc(t) i ∈ Ψ,

where Remark 2 has been used.

B. Maximum Distance of Targets Estimator

In the subsequent step, an estimator is required to estimate
the maximum distance between the estimated geometric cen-
ter to the targets. To accomplish this, each agent must possess
its own maximum distance estimator. Define ŷmd

i (t) ∈ ℜ
as the estimated maximum distance between targets to their
estimated geometric center by agent i. For each agent i, the
estimator design for the maximum distance between targets
to their estimated geometric center is

˙̂y1i (t) = −κsign
(
ŷ1i (t− d)− max

j∈Ni∪{i}
{hj(t− d)}

)
,

(20a)

˙̂y2i (t) = −κsign
(
ŷ2i (t− d)− max

j∈Ni∪{i}
{ŷ1j (t− d)}

)
,

(20b)
...

˙̂yd̆−1
i (t) = −κsign

(
ŷd̆−1
i (t− d)− max

j∈Ni∪{i}
{ŷd̆−2

j (t− d)}
)
,

(20c)

˙̂ymd
i (t) = −κsign

(
ŷmd
i (t− d)− max

j∈Ni∪{i}
{ŷd̆−1

j (t− d)}
)
,

(20d)

where d̆ is from (1), and ŷĵi (t) ∈ ℜ, ∀ĵ ∈ {1, 2, ..., d̆− 1}
are intermediate states of the estimator i. Also κ is a positive
control gain to be determined; and ŷĵi (t) = 0 for ∀t ∈
[−d, 0). d > 0 is the positive constant maximum of commu-
nication delay between agents network. Define

hi(t) = ∥yi(t)− ŷgc
i (t)∥. (21)

Remark 3: Based on Theorem 1, hi(t) in equation (21),
we have

lim
t→∞

hi(t) = ∥yi(t)−
1

n

n∑
k=1

yk(t)∥. (22)

The maximum distance of targets corresponding to agent i
and its neighbors, to the estimated geometric center is defined
as

hmax
i (t) = max

j∈Ni∪{i}
{∥yj(t)−

1

n

n∑
k=1

ygc
k(t)∥}. (23)

Theorem 2: Consider the geometric center estimator dy-
namic in equation (20), and set κ to 1. The estimator (20) is
delay-independently asymptotically convergent to maximum
distance of all targets to their estimated geometric center.

lim
t→∞

ŷmd
i (t) = hmax

i (t), i ∈ Ψ. (24)
The proof is omitted here because of page limitation.

IV. ENCIRCLEMENT CONTROL

By utilizing the estimated data provided by the estimators,
we can derive the relative position of targets, facilitating the
establishment of a control to track the distance between each
target and its estimated geometric center.
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A. Relative Desired Position

The goal of this part is to let the relative desired position
converge to ξiŷ

md
i (t), where we choose the coefficient ξi > 1

to guarantee collision avoidance among the agents. Because
ŷmd
i (t) is a distance variable, we first design the relative

desired position of the agent x̃i(t) that we want our system
to track in polar coordinate and then transform it to Cartesian
coordinate through (25)

x̃i(t) = [ρ̃i(t) cos(θ̃i(t)), ρ̃i(t) sin(θ̃i(t))]
T . (25)

In terms of designing x̃i(t) out of the estimated maxi-
mum distance of targets to their geometric center ŷmd

i (t),
first consider ρ̃i(t) ∈ ℜ[0,∞) and θ̃i(t) ∈ ℜ as desired
relative polar radius and desired relative polar angle to be
designed, respectively where we have ρ̃i(t) and θ̃i(t) have
the following dynamic

˙̃ρi(t) =− γ1sign(ρ̃i(t)− ξiŷ
md
i (t)), (26a)

˙̃
θi(t) =ω̃i(t), (26b)
˙̃ωi(t) =− γ2sign(ω̃i(t)− µi(t)), (26c)

where γ1 and γ2 are positive design parameters and ξi > 1 is
the proportional distance of agents from targets. The initial
conditions will depend on the systems initial condition and
will be chosen arbitrary. µi(t) ∈ ℜ is desired angular velocity
of each agent ∀i ∈ Ψ. ∀i ∈ Ψ, ξi will be defined as

ξi+1 =ξi + v, (27)

where v is positive design parameter. The choice of the
parameter v in the encirclement control ensures a guaranteed
distance between agents as they perform the encirclement.
As part of the control, agents will rotate around the targets
on circles with varying radius. This configuration allows
for coordinated movement and maintains the desired spatial
arrangement throughout the encirclement process.

Theorem 3: Consider the desired polar coordinate control
(26) then by designing γ1 > 2βξn and γ2 > µ̄, the system
(26) along together are asymptotically convergent to the
desired position where ρ̃i(t) is convergent to ξi times bigger
than estimated maximum distance of all targets to their
estimated geometric center and ω̃i(t) is convergent to desired
angular velocity µi(t), chosen by designer. And ∀i ∈ Ψ, we
have

lim
t→∞

ρ̃i(t) = ξiŷ
md
i (t), (28)

lim
t→∞

ω̃i(t) = µi(t). (29)
The proof is omitted here because of page limitation.

The desired relative agent position x̃i(t) ∈ ℜ2 with respect
to the geometric center in Cartesian coordinate is transformed
by (25).

B. Main control

The following control is proposed for dynamic encir-
clement for the system (7) along with (17), (26), and (25),

ui(t) =− γ3sign(xi(t)− x̂i(t)), (30a)
x̂i(t) =ŷgc

i (t) + x̃i(t), (30b)

where γ3 > 0 is a design parameter. x̂i(t) ∈ ℜ2 is the
desired relative location of agents with respect to relative
desired position and geometric center of targets. The initial
conditions will be chosen arbitrary. Based on transformation
(8)-(9), it is easy to map the ui(t) to (uρ

i (t), u
θ
i (t)) in (10)-

(11) as

uρ
i (t) =− γ3{sign(ρi(t) cos(θi(t))− ρ̃i(t) cos(θ̃i(t))

− ŷgc
i1(t)) cos(θi(t)) + sign(ρi(t) sin(θi(t))

− ρ̃i(t) sin(θ̃i(t))− ŷgc
i2(t)) sin(θi(t))},

uθ
i (t) =− γ3(ρi(t) cos

2(θi(t))(1 + tan2(θi(t))))
−1

× {sign(ρi(t) sin(θi(t))− ρ̃i(t) sin(θ̃i(t))

− ŷgc
i2(t)) cos(θi(t))− sign(ρi(t) cos(θi(t))

− ρ̃i(t) cos(θ̃i(t))− ŷgc
i1(t)) sin(θi(t))}.

Theorem 4: Consider the proposed control in (30) then
by designing γ3 > β + 2βkn + 2cµ̄kn, the system (7) is
asymptotically convergent to desired location of agents. And
we have

lim
t→∞

xi(t) = x̂i(t), i ∈ Ψ, (31)

which satisfies the dynamic encirclement control.
The proof is omitted here because of page limitation.

By taking into consideration of (7) along with (17), (26),
(25), and (26), the model that represents the whole closed-
loop system is

ẋi(t) =− γ3sign(xi(t)− ŷgc
i (t)− x̃i(t)). (32)

Fig. 1 is representing a block diagram of closed-loop system.

Fig. 1. Closed-Loop Block Diagram of Agent i

V. SIMULATION EXAMPLE

In this section, we propose a numerical example to indicate
the effectiveness of the theoretical results. Suppose we have
5 targets then we consider equal number of agents as 5. The
communication topology among 5 agents is illustrated in Fig.
2.
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Fig. 2. Communication topology between agents

The dynamic of targets are inspired based on limit-cycle-
based design of formation control [17] as{

ẏ11(t) = −y12(t)− y11(t)(y
2
11(t) + y2

12(t)− 0.2),

ẏ12(t) = y11(t)− y12(t)(y
2
11(t) + y2

12(t)− 0.2),{
ẏ21(t) = −(y22(t)− 2)− y21(t)((y22(t)− 2)2 + y2

21(t)− 0.2),

ẏ22(t) = y21(t)− (y22(t)− 2)((y22(t)− 2)2 + y2
21(t)− 0.2),{

ẏ31(t) = −y32(t)− (y31(t)− 2)(y2
32(t) + (y31(t)− 2)2 − 0.2),

ẏ32(t) = (y31(t)− 2)− y32(t)(y
2
32(t) + (y31(t)− 2)2 − 0.2),{

ẏ41(t) = −(y42(t) + 2)− y41(t)((y42(t) + 2)2 + y2
41(t)− 0.2),

ẏ42(t) = y41(t)− (y42(t) + 2)((y42(t) + 2)2 + y2
41(t)− 0.2),{

ẏ51(t) = −y52(t)− (y51(t) + 2)((y51(t) + 2)2 + y2
52(t)− 0.2),

ẏ52(t) = (y51(t) + 2)− y52(t)((y51(t) + 2)2 + y2
52(t)− 0.2),

where Assumptions 1, and 3 hold with β = 0.5 and c = 0.6.
For any initial condition, the movement of targets will be
on a limit cycle after some time. Here, the initial condition
of targets are chosen as (−2,−2), (2, 3), (3,−2), (0,−4),
(−3, 2) to make sure no collision happens. Based on Fig.
3, the movement of targets will be on a limit-cycle and all
targets rotate as well as keeping a desired distance from each
other.

Fig. 3. The trajectories of targets’ movement evolution

The initial conditions of the agents are (0, 0), (0, 0),
(0, 0), (0, 0), (0, 0). The design parameters of estimation
section has been chosen as α = 1, κ = 1, for all i, ĵ
and the communication delay is d = 0.1s. Note that the
communication delay [18], which refers to the delay in data

Fig. 4. The trajectories of agents’ and targets’ movement evolution.
Communication delay is (d = 0.1s)

Fig. 5. The trajectories of agents’ and targets’ movement evolution where
the vertical axis is time. Communication delay is (d = 0.1s)

transmission from the transmitter to the receiver, is typically
no greater than 0.01s. However, we consider here a larger
delay over the actual range to assess the methodology’s
effectiveness.

The angular velocity µi(t) = 1, and we choose ξ1 = 2 ,
v = 1 arbitrary.The control design parameters γ1, γ2, and γ3
have been selected as 6.5, 1.5, and 14, respectively, based
on the Theorems 3 and 4 and the stability analysis of this
Theorems are omitted in this paper but the acceptable range
for this parameters are in the stability analysis. These choices
ensure the stability of the closed-loop system, confirming the
establishment of the control.

Fig. 4 demonstrates how the agents have established a
surrounding configuration in the two-dimensional plane. Fig.
5 provides a time-based visualization of the encirclement,
where the vertical axis represents time. Fig. 6 demonstrates
the convergence of the error signal for the desired polar
radius to zero as time approaches infinity. Notably, the agents
maintain a safe distance from one another throughout the
rotation, ensuring there are no collisions between them. Fig.
7 illustrates the convergence of the error signal for the
system to zero as time approaches infinity. The chattering
phenomenon caused by control (30a) is clearly obvious in
Fig. 5 and Fig. 6. Besides, Fig. 8 depicts the control input
effort of all agents and demonstrates that the required input
control has a bounded amplitude.
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Fig. 6. The discrepancy between the measured relative desired polar radius
and ξi times the estimated maximum distance of targets to the geometric
center (ρ̃i(t) = ρ̄i(t)− ξiŷ

md
i (t))

Fig. 7. The discrepancy between the xi(t) and the relative desired location
(x̃i(t) = xi(t)− x̂i(t))

Fig. 8. The control input effort of agents

VI. CONCLUSION AND FUTURE WORKS

This paper presented a novel distributed encirclement
control for MASs that effectively tackles the challenge of
communication delay. Extensive analysis showed that the
proposed system can achieve its objective even under the
influence of maximum constant communication delay. This
represented a significant advancement compared to prior
works, as it is the first time a control for dynamic en-
circlement with consideration of communication delay has
been investigated. Simulation examples demonstrate that the
primary control successfully achieved dynamic encirclement.

The impact of the chattering phenomena caused by the
sign function is apparent in all the results. Resolving chat-
tering phenomena will be the future work. Considering
the definition of delay, further investigations could explore
the impact of time-varying delay. Additionally, this study
focused on first-order systems as the model, but it would
be valuable to consider higher-order models of systems.
The stability of the closed-loop system, based on simulation
results, could be subject to more extensive analysis.
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