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a b s t r a c t

A thermal–electrochemical model of lithium-ion batteries is presented and a Luenberger observer is
derived for State-of-Charge (SoC) estimation by recovering the lithium concentration in the electrodes.
This first-principles based model is a coupled system of partial and ordinary differential equations,
which is a reduced version of the Doyle–Fuller–Newman model. More precisely, the subsystem of Partial
Differential Equations (PDEs) is the Single Particle Model (SPM) while the Ordinary Differential Equation
(ODE) is a model for the average temperature in the battery. The observer is designed following the PDE
backstepping method. Since some coefficients in the coupled ODE–PDE system are time-varying, this
results in the time dependency of some coefficients in the kernel function system of the backstepping
transformation and it is non-trivial to showwell-posedness of the latter system. Adding thermal dynamics
to the SPM serves a two-fold purpose: improving the accuracy of SoC estimation and keeping track
of the average temperature which is a critical variable for safety management in lithium-ion batteries.
Effectiveness of the estimation scheme is validated via numerical simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Due to its high power and energy storage density, its lack of
memory effect and low self discharge, lithium-ion technology is
a common choice among the rechargeable battery family (Chu &
Majumdar, 2012). Besides its wide employment in portable elec-
tronics, lithium-ion batteries are now being adopted in electrified
transportation (Stewart, Christensen, Chaturvedi, & Kojic, 2015)
such as electric vehicles and hybrid electric vehicles. Lithium-ion
technology is being considered for grid energy storage as well.

The key indicator for the amount of electrical energy available in
batteries is the SoC which, simply put, is the ratio of instantaneous
remaining battery charge to its maximum capacity (Chaturvedi,
Klein, Christensen, Ahmed, & Kojic, 2010). Thus, in order to predict
the available power and energy in the battery during operation,
online estimation of the SoC serves as an important factor for
regulating both charging and discharging. Besides, it is generally
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required that the SoC remains within appropriate bounds all the
time during the battery operation for safety reasons. Hence, a
reliable and accurate estimation of the SoC is required for proper
battery management.

1.2. Lithium-ion battery models

Accuracy of the SoC estimation depends highly on the quality
of the selected model. Thus, one is encouraged to compare the dif-
ferent models available for describing the battery dynamics. Mod-
els for lithium-ion batteries can be categorized into two classes.
The first class consists of empirical models, in which the most
frequently used ones are Equivalent Circuit Models (ECMs) (Chi-
asson & Vairamohan, 2005; Plett, 2004). ECMs use electric circuit
elements such as voltage sources, resistances and RC networks to
approximate the dynamics of the battery. Currently, most battery
management systems employ ECMs for various tasks: power and
energy estimation, cell balancing, thermal management, state-of-
health estimation and charge/discharge control. The second class
of models are based on first principles (Ramadesigan, Northrop,
De, Santhanagopalan, Braatz, & Subramanian, 2012). These electro-
chemical models account for the main underlying physics in the
battery, more precisely, they offer an explicit description of the
battery dynamics in terms of the main electrochemical parame-
ters and variables. The need for accurate SoC estimation as well
as visibility of important electrochemical states and parameters,
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specially in highpower andhigh energy applications,motivates the
study of estimation based on electrochemical models.

The widely studied electrochemical Doyle–Fuller–Newman
(DFN) model has been shown to accurately describe the main phe-
nomena in lithium-ion batteries (Chaturvedi et al., 2010; Doyle,
Fuller, & Newman, 1993). However, the complexity of the model is
too high for online SoC estimation (Klein, Chaturvedi, Christensen,
Ahmed, Findeisen, & Kojic, 2013). Among the various approxima-
tions to theDFNmodel, the SPM (Guo, Sikha, &White, 2011; Haran,
Popov, & White, 1998) is commonly used to derive online SoC
estimation algorithms (Moura, Chaturvedi, & Krstic, 2014). In the
SPM, diffusion of lithium ions in each electrode is simplified as dif-
fusion in a single spherical particle and electrolyte concentration is
assumed to be constant. Still, the SPM has several limitations, for
example, being accurate only at low currents (Chaturvedi et al.,
2010). Another limitation is that the SPM is restricted to the cases
with small variation in internal temperature, which comes from
the fact that SPM ignores the dependence of the battery parameters
on temperature. In fact, lithium-ion batteries meet issues such
as an increase in internal resistance and decrease of capacity, as
functions of battery internal average temperature (Guo et al.,
2011; Thomas, Newman, & Darling, 2002).

1.3. Estimation algorithms

Extensive efforts have been devoted to developing SoC estima-
tion algorithms, for example, Extended Kalman Filters (EKFs) for
ECMs (Plett, 2004) and for the SPM (Santhanagopalan & White,
2006). Estimation algorithms have also been derived for reduced
electrochemical models with temperature dynamics, e.g., a linear
observer derived to satisfy the conservation of lithium ions (Klein
et al., 2013) and a linear observer using pole placement (Tanim,
Rahn, & Wang, 2015). These estimation algorithms, together with
others based on the unscented Kalman filter or particle filters, rely
on some discretization of the diffusion phenomena.

Discretization generally implies a trade-off between high ac-
curacy of the approximation, i.e., a large number of states, and a
small number of tuning gains in the observer, i.e. a small number
of states. The backstepping approach can be employed to design
boundary observers for PDEs in which the discretization is not
required. The readers can refer to Smyshlyaev & Krstic (2003) for
a preliminary example of boundary observer design for diffusion
PDEs via backstepping. Thismethodhas beenused for the stabiliza-
tion of various unstable PDE systems, see the tutorial book (Krstic
& Smyshlyaev, 2008), in which backstepping boundary controllers
and observers are designed for someunstable parabolic, hyperbolic
PDEs andother types of PDEs. It has also been applied for stabilizing
some coupled PDE–ODE systems (Tang & Xie, 2011a,2011b).

1.4. Contribution

The main contribution of this paper is the derivation of a
linear observer for SoC estimation from a simplified thermal–
electrochemical model of lithium-ion batteries, i.e., a coupled
ODE–PDE model composed by the SPM and a model for the
averaged internal temperature (Guo et al., 2011; Tang, Wang,
Sahinoglu, Wada, Hara, & Krstic, 2015). Adding thermal dynamics
to SPM serves a two-fold purpose: improving the accuracy of SoC
estimation and keeping track of the average temperature which is
a critical variable for safety management in lithium-ion batteries.

The observer is designed following the PDE backstepping
method. It is worth noting that backstepping observers have not
been introduced to the problem of battery SoC estimation until
very recently (Moura et al., 2014), andby thismeans the discretiza-
tion of the diffusion PDEs in the model is avoided. We consider the
result presented in this paper as an additional step in the efforts to

design estimation and control algorithms for lithium-ion batteries
from electrochemical models without relying on the discretization
of the PDEs in these models. The main technical challenges in
our design consist of proving the well-posedness of the kernel
function system for the backstepping transformation. The fact that
some coefficients in the thermal–electrochemical model system
are time-varying results in a kernel function system with time-
varying coefficients, for which the well-posedness is non-trivial
to derive. This paper is a continuation of a previous result for SoC
estimation from a thermal–electrochemical model of lithium-ion
batteries in Tang et al. (2015).

1.5. Organization

The rest of this paper is organized as follows. In Section 2,
a temperature-compensated SPM model is presented; and the
corresponding SoC estimation problem is formulated in Section 3.
In Section 4, a linear observer is developed for estimation of the
lithium concentration in the electrodes through boundary state
measurements via the backstepping method. The observer error
system is proved to be exponentially stable with an arbitrarily
designated decay rate, for which the well-posedness is derived by
making use of the abstract evolution equation theory. It is worth
noting that solving the kernel function system for the backstepping
transformation is not trivial because of its dependence on the
temperature (Izadi & Dubljevic, 2015; Smyshlyaev & Krstic, 2005).
Under some more relaxed assumptions and simplifications than
those in Tang et al. (2015), the existence and regularity of the so-
lution to the system are proved in this section. The SoC estimation
accuracy is verified by the numerical simulation results presented
in Section 5. Finally, some concluding remarks and possible future
research topics are given in Section 6.

2. SPM-T model

In this section, the working mechanism of lithium-ion batteries
is briefly introduced through an overview of the DFNmodel. Then,
the single particle model with temperature dynamics (Guo et al.,
2011; Tang et al., 2015), named SPM-T model, is presented for
the purpose of SoC estimation, which can be viewed either as a
simplification of the DFN model or as temperature-compensated
SPM.

2.1. Working principles of lithium-ion batteries

A lithium-ion battery cell consists of three main regions: nega-
tive electrode, separator and positive electrode; all of them char-
acterized by a porous structure. Each electrode includes active
materials, conductive fillers, a current collector and a binder. The
porous structure of the electrodes provides a large surface area and
small distances between lithium ions and active material surfaces
for reactions to occur. The separator is placed between the negative
and positive electrodes to forbid the flow of electrons between two
electrodes while allowing the movement of lithium ions dissolved
in the electrolyte. The active materials, intercalated in the lattices
of the corresponding electrode, are insertion compounds, i.e. these
are host structures in which lithium can be reversibly inserted or
extracted. Electrolyte fills all remaining parts of the battery.

The DFN model is derived based on the porous structure all
through the lithium-ion battery (Chaturvedi et al., 2010; Thomas
et al., 2002). In the DFN model, each electrode is viewed as super-
position of active materials, inert filler and electrolyte; justified by
the porous configuration. As depicted in Fig. 1, all intercalation par-
ticles are assumed to be spheres with a uniform, averaged radius,
and the battery is formulated as a pseudo two-dimensional model.
The first dimension represents the path along the spatial direction
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Fig. 1. DFN schematic.

x from the anode, through the separator, to the cathode; and the
second dimension is a radial direction rs used to represent the
intercalation and diffusion of lithium ions in the active materials
(see Table 1).

Lithium ions move from the negative electrode to the positive
electrode during discharging and in the opposite direction during
charging. Lithium concentration in the solid phase, i.e. concentra-
tion of lithium ions in the activematerials, follows the Fick’s law of
diffusion:
∂c±

s

∂t
(t, x, rs) =

1
r2s

∂

∂rs

[
D±

s (T (t))r
2
s
∂c±

s

∂rs
(t, x, rs)

]
,

t > 0, x ∈
(
0±, L±

)
, rs ∈

(
0, R±

s

)
, (1)

∂c±
s

∂rs
(t, x, 0) = 0, t > 0, x ∈

(
0±, L±

)
, (2)

∂c±
s

∂rs
(t, x, R±

s ) = −
1

D±
s (T (t))

j±(t, x), t > 0, x ∈
(
0±, L±

)
, (3)

c±

s (0, x, rs) = c±

s0(x, rs), x ∈
[
0±, L±

]
, rs ∈

[
0, R±

s

]
, (4)

where the temporal variable is t , the spatial variables are x and rs.
The states of the PDE model (1)–(4) are c±

s (t, x, rs) ∈ R; the solid
phase lithiumconcentration. Themolar fluxes j±(t, x) are related to
the reaction overpotential η±(t, x) by the Butler–Volmer equation

j±(t, x) =
i±0 (t, x)

F

[
e

αaF
RT (t) η

±(t,x)
− e−

αc F
RT (t) η

±(t,x)
]
.

The reaction overpotentials η±(t, x) are computed from

η±(t, x) = φ±

s (t, x) − φ±

e (t, x) − U±(c±

ss (t, x), T (t))
− FR±

f (T (t))j
±(t, x).

Lithium concentration in the liquid phase ce(t, x), i.e. concentration
of lithium ions in the electrolyte, satisfies the diffusion equation

∂ce
∂t

(t, x) =
∂

∂x

[
De

∂ce
∂x

(t, x) +
1 − t0c
εeF

ie(t, x)
]

. (5)

Equations for solid electric potentialφs(t, x) and electrolyte electric
potential φe(t, x) are

∂φs

∂x
(t, x) =

ie(t, x) − I(t)
σ

, (6)

∂φe

∂x
(t, x) = −

ie(t, x)
κ

+
2RT (t)

F
(1 − t0c )

(
1 +

d ln fc/a
d ln ce

(t, x)
)

∂ ln ce
∂x

(t, x),

(7)

Table 1
Nomenclature.

Variables

cs Lithium concentration in the solid phase
css Lithium concentration at the surface of the particle
ce Constant lithium concentration in the electrolyte
c̄s Volume averaged lithium concentration in the solid phase
j Molar flux of lithium at the surface of the particle
φs Electric potential in the solid phase
φe Electric potential in the electrolyte
η Reaction overpotential
U Open-circuit potential
i0 Exchange current density
ie Electrolyte current density normalized by cross-sectional area
T Internal average temperature
Tamb Ambient temperature
I External current density normalized by cross-sectional area
V Terminal voltage
q̄s Volume averaged flux

Parameters

L Length
Ds Diffusion coefficient of lithium in the solid phase
De Diffusion coefficient of lithium in the electrolyte
cmax
s Maximum lithium concentration in the solid phase
Rs Radius of the particle
αa Anodic transfer coefficient
αc Cathodic transfer coefficient
reff Effective reaction rate in the solid phase
Rf Film resistance of the solid-electrolyte interphase
Rc Contact resistance between the electrode and current collector
εs Volume fraction of the active material
εe Volume fraction of the electrolyte
as Interfacial surface area
F Faraday’s constant
R Universal gas constant
NLi,s Total number of lithium ions in the solid phase
σ Electronic conductivity in the solid phase
κ Ionic conductivity in the electrolyte
t0c Transference number of the ions w.r.t. the solvent velocity
fc/a Mean molar activity coefficient in the electrolyte
ρavg Average density
cP Heat capacity
hcell Heat transfer coefficient
E Activation energy coefficient

Super- and subscripts

+ Positive electrode
− Negative electrode
sep Separator
s Solid phase
e Electrolyte

where I(t) is the external current density normalized by cross-
sectional area. Charge conservation in the electrodes provides a
relation between electrolyte current densities i±e (x, t) and molar
fluxes j±(t, x):

∂ i+e
∂x

(t, x) = −a+

s Fj
+(t, x),

∂ i−e
∂x

(t, x) = a−

s Fj
−(t, x),

with boundary conditions i−e (t, 0
−) = i+e (t, L

+) = 0 and
i−e (t, L

−) = i+e (t, 0
+) = I(t). In the separator, ie(t, x) = I(t). Output

voltage is the difference between the two solid electric potentials
computed as

V (t) = φs(t, L+) − φs(t, 0−).

The readers should refer to Chaturvedi et al. (2010) for a complete
description of the DFN model and for the boundary conditions
for Eqs. (5)–(7). Note that we are using the convention: positive
current for discharging and negative current for charging.
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2.2. The SPM-T model

The DFN model accurately describes many aspects of the
lithium-ion cells working mechanism; however, the complexity of
the model is too high for online SoC estimation. For this reason,
we present a simplified model which is the single particle model
with temperature dynamics, i.e., the SPM-T model. The SPM-T
model (Guo et al., 2011; Tang et al., 2015) is derived by making
the following assumptions and simplifications:

• concentration of lithium ions in the electrolyte ce(t, x) is
uniform in both time and space,

• molar fluxes j±(t, x) are uniform in the x-direction,
• concentration of lithium ions in the active materials cs(t, x)

is uniform in the x-direction.

Moreover, each electrode is modeled as a single spherical par-
ticle in this simplification; representative of all particles in the
electrode. Compared with the SPM-T model presented in Guo et
al. (2011), here we choose not to take into account the electrolyte
resistance Rcell, i.e., we set Rcell = 0 (Klein et al., 2013).

In the coupled SPM-T model, the SPM subsystem is

∂c±
s

∂t
(t, rs) =

1
r2s

∂

∂rs

[
D±

s (T (t))r
2
s
∂c±

s

∂rs
(t, rs)

]
,

t > 0, rs ∈ (0, R±

s ), (8)
∂c±

s

∂rs
(t, 0) = 0, t > 0, (9)

∂c±
s

∂rs
(t, R±

s ) = −
1

D±
s (T (t))

j±(t), t > 0, (10)

c±

s (0, rs) = c±

s,0(rs), rs ∈ [0, R±

s ]. (11)

The states of the system (8)–(11) are c±
s (t, rs) ∈ R, with the tem-

poral variable t and the spatial variables rs. The relation between
molar fluxes j±(t) and current I(t) becomes linear:

j+(t) = −
I(t)

a+
s FL+

, j−(t) =
I(t)

a−
s FL−

.

By assuming the same value to the anodic and cathodic transfer
coefficients, i.e., α ≜ αa = αc , a simple relation between reaction
overpotentials and molar fluxes can be found as

η±(t) =
RT (t)
αF

sinh−1
(

F
2i±0 (t)

j±(t)
)

,

where

i±0 (t) = r±

eff(T (t))
[
c±

ss (t)
]αc[ce,0 (c±,max

s − c±

ss (t)
)]αa

, (12)

with c±
ss (t) ≜ c±

s (t, R±
s ). The parameter ce,0 in Eq. (12) denotes the

electrolyte concentration at equilibrium. Solid electric potentials
are computed from

φ±

s (t) = η±(t) + U±(c±

ss (t), T (t)) + FR±

f (T (t))j
±(t).

Output voltage is now the difference between solid electric poten-
tials in the positive electrode and negative electrode:

V (t) = φ+

s (t) − φ−

s (t)

= −
RT (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)
a+L+

)
+ sinh−1

(
1

2i−0 (t)
I(t)
a−L−

)]
−

(
R+

f (T (t))
a+L+

+
R−

f (T (t))
a−L−

)
I(t)

+ U+(c+

ss (t), T (t)) − U−(c−

ss (t), T (t)). (13)

Parameters D±
s (T (t)), r

±

eff(T (t)) and R±

f (T (t)) are functions with an
Arrhenius-like dependence (Klein et al., 2013) on the battery cell
internal average temperature T (t), i.e.,

D±

s (T (t)) = D±

s (T (0))e
ED±

s
T (t)−T (0)
T (t)T (0) , (14)

r±

eff(T (t)) = r±

eff(T (0))e
Er±eff

T (t)−T (0)
T (t)T (0)

, (15)

R±

f (T (t)) = R±

f (T (0))e
ER±f

T (t)−T (0)
T (t)T (0)

, (16)

where ED±
s
, Er±eff , ER±

f
, are activation energy coefficients. Internal

average temperature satisfies the following ODE (Thomas et al.,
2002, Section 12.3.7)

ρavgcP
dT
dt

(t) = hcell (Tamb(t) − T (t)) − I(t)V (t)

+ I(t)
{
U+(c̄+

s (t), T (t)) − U−(c̄−

s (t), T (t))

− T (t)
[

∂U+(c̄+
s (t), T (t))
∂T

−
∂U−(c̄−

s (t), T (t))
∂T

]}
+ Rc I(t)2, t > 0, (17)

T (0) = Tamb(0), (18)

where c̄±
s (t) are the average concentrations defined as

c̄±

s (t) =
3

(R±
s )3

∫ R±
s

0
r2s c

±

s (t, rs)drs.

The system states are the solid phase lithium ion concentrations
c±
s (t, rs) ∈ R in the PDE (8)–(11) and the internal average temper-
ature T (t) in the ODE (17)–(18).

3. Problem formulation

3.1. Estimation objective

Our objective is to estimate the battery SoC, defined as the nor-
malized averaged lithium concentration in the negative electrode,
i.e.,

SoC(t) =
3

(R−
s )3

∫ R−
s

0
r2s

c−
s (t, rs)
c−
s,max

drs =
c̄−
s (t)

c−
s,max

, (19)

from measurements of the input current I(t) and the output volt-
age V (t). For this purpose, boundary observers can be constructed
to estimate the concentrations of lithium ions in the electrodes
c−
s (t, rs) by using the boundary values, i.e., the corresponding sur-
face concentrations c−

ss (t). Note however that in (13), boundary
values c−

ss (t) are not directly available from measurement of V (t).
Instead, they appear in V (t) with a nonlinear fashion, i.e., the
nonlinearities within the exchange current densities i−0 (t) and
within the subtraction between the nonlinear Open-Circuit Poten-
tial (OCP) functions U−(t, c−

ss (t)). Therefore, in order to overcome
the lack of boundary value measurements required by the bound-
ary observers, an inversion of the output function V (t) with respect
to the boundary values is needed.

To ease inversion of the output voltage, the lithium concentra-
tion dynamics in one of the electrodes will be simplified. Inversion
will then be done with respect to the surface concentration of the
electrode with unsimplified lithium concentration dynamics. The
leading terms in the output voltage are the OCP functions and we
are assuming that the OCP functions are invertible with respect
to the surface concentration in the corresponding unsimplified
electrode. In this paper, we will simplify the lithium concentration
dynamics in the negative electrode and invert the output function
with respect to the surface concentration in the positive electrode,
and a boundary observer will then be derived for estimation of
lithium ion concentration in the positive electrode.
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Remark 1. The decision of simplifying the negative electrode dy-
namics instead of the positive one is made based on the sensitivity
of OCPs to surface concentrations. For some common lithium ion
active materials, ∂U+

/∂c+ss is larger that ∂U+
/∂c−ss in magnitude, thus

making it easier to recover c+
ss from the voltage measurement V (t).

One can easily prove that the total amount of lithium ions in
solid phase NLi,s is conserved (Klein et al., 2013), i.e.,

dNLi,s

dt
= 0, (20)

where

NLi,s = ε+L+c̄+

s (t) + ε−L−c̄−

s (t).

Since we assume NLi,s is a known quantity, i.e. a parameter in the
model, then we can also compute the battery SoC in the negative
electrode from the averaged lithium concentration in the positive
electrode, i.e.

SoC(t) =
NLi,s − ε+L+c̄+

s (t)
ε−L−c−

s,max
. (21)

3.2. Output function inversion

The goal of the output function inversion is to write V (t) as a
function of only of c+

ss (t) and I(t).

3.2.1. Write V (t) as a function of c±
ss (t), c̄

±
s (t) and I(t)

The first step is to simplify the internal average temperature
dynamics to derive an expression for T (t) only in terms of time
and current, i.e., a time-varying function Ť (t) ≜ Ť (t, I(t), Tamb(t))
independent of the concentrations c±

s (t), c±
ss (t). We start by substi-

tuting the output voltage equation (13) into the original average
temperature equation (17):

ρavgcP
dT
dt

(t) = hcell (Tamb(t) − T (t))

+ I(t)
RT (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)
a+L+

)
+ sinh−1

(
1

2i−0 (t)
I(t)
a−L−

)]
+

(
R+

f (T (t))
a+L+

+
R−

f (T (t))
a−L−

− Rc

)
I(t)2

− I(t)
[
U+(c+

ss (t), T (t)) − U−(c−

ss (t), T (t))
]

+ I(t)
{
U+(c̄+

s (t), T (t)) − U−(c̄−

s (t), T (t))

− T (t)
[

∂U+(c̄+
s (t), T (t))
∂T

−
∂U−(c̄−

s (t), T (t))
∂T

]}
. (22)

We assume that the functionsU±(·, T (t)) and i±0 (·) are independent
of concentrations but possibly time-varying, and we replace their
dependence on temperature T (t) with dependence on the ambient
temperature Tamb(t). For this purpose, denote

Ǔ±

1 (t) ≜ U±(c±

ss (t), Tamb(t)),

Ǔ±

2 (t) ≜ U±(c̄±

s (t), Tamb(t)),

ǐ0
±

(t) ≜ i±0 (Tamb(t)),

where subscript 1 in Ǔ is used to denote the approximation of
U±(·, T (t)) when they are evaluated at the surface concentration
and subscript 2 when they are evaluated at the averaged con-
centration. Similarly, for the temperature dependent parameters
R±

f (T (t)) and r±

eff(T (t)), we also replace dependence on T (t) with
Tamb(t), i.e.,

ˇreff
±(t) ≜ r±

eff(Tamb(t)),

Řf
±

(t) ≜ R±

f (Tamb(t)).

Thus, we can rewrite Eq. (22) as

ρavgcP
dŤ
dt

(t) = χ (t)Ť (t) + ω(t), (23)

where

χ (t) = − hcell +
R
αF

I(t)
[
sinh−1

(
1

2ǐ0
+

(t)

I(t)
a+L+

)

+ sinh−1

(
1

2ǐ0
−

(t)

I(t)
a−L−

)]

− I(t)

[
∂Ǔ+

2

∂T
(t) −

∂Ǔ−

2

∂T
(t)

]
,

ω(t) = hcellTamb(t) +

(
Ř+

f (t)
a+L+

+
Ř−

f (t)
a−L−

− Rc

)
I(t)2

− I(t)
[
Ǔ+

1 (t) − Ǔ−

1 (t)
]

+ I(t)
[
Ǔ+

2 (t) − Ǔ−

2 (t)
]
,

then, it holds that

Ť (t) = Ť (0)e
1

ρavgcP

∫ t
0 χ (τ )dτ

+
1

ρavgcP

∫ t

0
e

1
ρavgcP

∫ t−τ
0 χ (σ )dσ

ω(τ )dτ . (24)

Substituting (24) into (13) yields the following simplified output
function:

V (t) = −
RŤ (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)
a+L+

)
+ sinh−1

(
1

2i−0 (t)
I(t)
a−L−

)]
−

(
R+

f (Ť (t))
a+L+

+
R−

f (Ť (t))
a−L−

)
I(t)

+ U+(c+

ss (t), Ť (t)) − U−(c−

ss (t), Ť (t)),
≜h1(t, c±

ss (t), c̄
±

s (t), I(t)). (25)

3.2.2. Write V (t) as a function of c+
ss (t) and I(t)

In order to further simplify the output function, we are to
establish relations between c+

ss (t) and the other concentrations
c−
ss (t), c̄+

s (t), c̄−
s (t). Consider the following approximate polyno-

mial solution profiles of the electrode diffusion dynamics (Subra-
manian, Diwakar, & Tapriyal, 2005)1:

c̄±

s (t) = c±

ss (t) −
8R±

s

35
q̄±

s (t) +
R±
s

35D±
s (Ť (t))

j±(t), (26)

where the volume averaged fluxes q̄±
s (t) satisfy

d
dt

q̄±

s (t) = −
30D±

s (Ť (t))
(R±

s )2
q̄±

s (t) −
45

2(R±
s )2

j±(t).

Moreover, from the conservation (20) of lithium ions in solid phase
NLi,s, we can write the relation

c̄−

s (t) = αc̄+

s (t) + β, (27)

1 Note that (26) is obtained by assuming the following polynomial solution
profile

c±

s (t, r) =
39
4

c±

ss (t) − 3q̄±

s (t)R
±

s −
35
4

c̄±

s (t)

+
(
−35c±

ss (t) + 10q̄±

s (t)R
±

s + 35c̄±

s (t)
) (r±

s )2

(R±
s )2

+

(
105
4

c±

ss (t) − 7q̄±

s (t)R
±

s −
105
4

c̄±

s (t)
)

r4s
(R±

s )4
.



S.-X. Tang et al. / Automatica 83 (2017) 206–219 211

whereα = −
ε+L+
ε−L− andβ =

NLi,s
ε−L− . It then immediately follows from

(26) and (27) that

c̄−

s (t) = α

(
c+

ss (t) −
8R+

s

35
q̄+

s (t) +
R+
s

35D+
s (Ť (t))

j+(t)
)

+ β, (28)

and

c−

ss (t) = c̄−

s (t) +
8R−

s

35
q̄−

s (t) −
R−
s

35D−
s (Ť (t))

j−(t)

= α

(
c+

ss (t) −
8R+

s

35
q̄+

s (t) +
R+
s

35D+
s (Ť (t))

j+(t)
)

+ β

+
8R−

s

35
q̄−

s (t) −
R−
s

35D−
s (Ť (t))

j−(t). (29)

Therefore, from (25), (26), (28) and (29), we obtain a further sim-
plified version of the output function:

V (t) = h2(t, c+

ss (t), I(t)). (30)

3.2.3. Inversion of the function h2
As long as the function (30) is a one-to-one correspondence

w.r.t. c+
ss (t), uniformly in I(t), one could invert it to derive the

boundary concentration in the positive electrode as

c+

ss (t) = h0(t, V (t), I(t)).

3.3. Normalization and state transformation

Weperform normalization and state transformation to simplify
the system and thus also the structure of to-be-designed observer.
Let r = rs/R+

s for normalization and proceed the state transfor-
mation c(t, r) = rsc+

s (t, rs), then the PDE subsystem (8)–(11) is
transformed into2

∂c
∂t

(t, r) =
D+
s (Ť (t))
(R+

s )2
∂2c
∂r2

(t, r), t > 0, r ∈ (0, 1), (31)

c(t, 0) = 0, t > 0, (32)
∂c
∂r

(t, 1) − c(t, 1) =
R+
s

D+
s (Ť (t))

I(t)
a+FL+

≜ I1(t), t > 0, (33)

c(0, r) = c0(r) = R+

s rc
+

s (0, R+

s r), r ∈ [0, 1]. (34)

Our objective now is to design an observer for this normalized and
transformed PDE system.

4. Backstepping state observer

With the inversion of the output function in Section 3.2, the
boundary concentration in the positive electrode is then available
for observer design. Again, we assume that the internal averaged
temperature is a time-varying and concentration-independent
functionwhich can be computed from the simplified Eq. (24). Thus,
the function D+

s (Ť (t)) will be treated as known. Moreover, assume
that I(t),U±(·, Ť (t)) and V (t) are piecewise (real) analytic. In what
follows, we only consider the proof piecewisely so that both I(t)
and V (t) are analytic in each separate time interval. Then, from
(24) and with the assumption that ∂U±

/∂T are also analytic in each
corresponding time interval, we can prove by induction that the
nth order derivative of Ť (t) is differentiable for any nonnegative
integer n. Further, we can derive that Ť (t) is analytic in each time

2 The normalization transformation t̄ = D+
s (Ť (t))/(R

+
s )

2t employed in Moura et
al. (2014) is not used in this paper. The reason is that T (t) is not knownapriori in this
case, needing to be measured or derived at each time step. Thus, the corresponding
inverse transformation cannot be trivially obtained.

interval. Without loss of generality, consider t ∈ [0, tmax] where
tmax is an appropriate finite time for the regularities to hold.

A Luenberger-type observer for the normalized and trans-
formed PDE system (31)–(34) can be designed:

∂ ĉ
∂t

(t, r) =
D+
s (Ť (t))
(R+

s )2
∂2ĉ
∂r2

(t, r) + p1(t, r)(c(t, 1) − ĉ(t, 1)),

t > 0, r ∈ (0, 1), (35)

ĉ(t, 0) = 0, t > 0, (36)
∂ ĉ
∂r

(t, 1) − ĉ(t, 1) = I1(t) + p10(t)(c(t, 1) − ĉ(t, 1)), t > 0, (37)

ĉ(0, r) = ĉ0(r), r ∈ [0, 1], (38)

which is a copy of the plant together with output error injection
terms. Here, ĉ0(r) denotes the initial condition of the observer, and
the boundary state error injection gains p1(t, r) and p10(t) are to
be determined to guarantee the stability of the estimation error
system

∂ c̃
∂t

(t, r) =
D+
s (Ť (t))
(R+

s )2
∂2c̃
∂r2

(t, r) − p1(t, r)c̃(t, 1),

t > 0, r ∈ (0, 1), (39)

c̃(t, 0) = 0, (40)
∂ c̃
∂r

(t, 1) − c̃(t, 1) = −p10(t)c̃(t, 1), (41)

c̃(0, r) = c0(r) − ĉ0(r) ≜ c̃0(r), (42)

with c̃(t, r) ≜ c(t, r) − ĉ(t, r). In order to find the output injection
gains, the PDE backstepping method (Krstic & Smyshlyaev, 2008)
is employed. We would like to find an invertible transformation

c̃(t, r) = w̃(t, r) −

∫ 1

r
p(t, r, ι)w̃(t, ι)dι (43)

so that w̃ satisfies the following exponentially stable target sys-
tem:

∂w̃

∂t
(t, r) =

D+
s (Ť (t))
(R+

s )2
∂2w̃

∂r2
(t, r) + λw̃(t, r), (44)

w̃(t, 0) = 0, (45)
∂w̃

∂r
(t, 1) = −

1
2
w̃(t, 1), (46)

w̃(0, r) = w̃0(r), (47)

where w̃0(r) denotes the initial condition to be determined for
the target system, and λ < mint≥0{D−

s (Ť (t))}/(4(R
+
s )

2) is a free
parameter to be chosen, which determines the convergence rate of
the observer state in (39)–(42) to the system state in (31)–(34). The
following lemma states the exponential stability of the w̃-system
(44)–(47).

Lemma 2. Let t ∈ [0, tmax]. If

λ <
1

4(R−
s )2

min
t≥0

{D+

s (Ť (t))}, (48)

then for any initial data w̃0(·) ∈ L2(0, 1), the w̃-system (44)–(47)
admits a (mild) solution w̃(t, ·) ∈ L2(0, 1) and is exponentially stable
at w̃ ≡ 0. Moreover, if the boundary compatibility condition is
satisfied, the solution is classical.

Proof. Consider the state space H = L2(0, 1). For every t ∈

[0, tmax], define a linear operator A(t) : Dom(A(t)) ⊂ H → H
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as follows:

A(t)ϕ =
D+
s (Ť (t))
(R+

s )2
ϕ′′

+ λϕ, ∀ϕ ∈ Dom(A(t)),

Dom(A(t)) =

{
ϕ ∈ H2(0, 1); ϕ(0) = 0, ϕ′ (1) = −

1
2
ϕ (1)

}
.

Then, the system (44)–(47) can be written into the following ab-
stract equation:

d
dt

w̃(t, ·) = A(t)w̃(t, ·), 0 ≤ t ≤ tmax, (49)

w̃(0, ·) = w̃0(·). (50)

Note that Dom(A(t)) is dense in H and independent of t , and it
can be proved that A(t) is for each t the infinitesimal genera-
tor of an exponential stable semigroup. Indeed, all the assump-
tions (P1)–(P3) in Pazy (1983, Section 5.6) are satisfied. Thus,
from Pazy (1983, Section 5.6, Theorem 6.1), there exists a unique
evolution system corresponding to (49)–(50) and (44)–(47) as
well. Furthermore, by considering the Lyapunov function V (t) =

1
2∥w̃(t, ·)∥2

L2(0,1)
, we get

V̇ (t) =

∫ 1

0
w̃(t, r)

[
D+
s (Ť (t))
(R+

s )2
∂2w̃

∂r2
(t, r) + λw̃(t, r)

]
dr

=
D+
s (Ť (t))
(R+

s )2

[
−

1
2
w̃2(t, 1) − ∥w̃r (t, ·)∥2

L2(0,1)

]
+ λ∥w̃(t, ·)∥2

L2(0,1)

≤ − 2

(
D+
s (Ť (t))
4(R+

s )2
− λ

)
V (t), (51)

where (44) is used in the first line, (45), (46) and integration by
parts are applied in the second line, and the Poincaré Inequal-
ity (Krstic & Smyshlyaev, 2008, Lemma 2.1)

∥w̃(t, ·)∥2
L2(0,1) ≤ 4∥w̃r (t, ·)∥2

L2(0,1)

is employed in the last line. As a result, from (48), exponential
stability of the w̃-system (44)–(47) is proved. □

For notation simplicity wewill denote the L2(0, 1)-norm by ∥·∥

in the sequel.
Differentiating the transformation (43) with respect to t gives

c̃t (t, r) =
D+
s (Ť (t))
(R+

s )2

[
∂2w̃

∂r2
(t, r) + p(t, r, r)w̃r (t, r)

+

(
pι(t, r, 1) +

1
2
p(t, r, 1)

)
w̃(t, 1)

]
+

[
λ −

D+
s (Ť (t))
(R+

s )2
pι(t, r, r)

]
w̃(t, r)

−

∫ 1

r

[
pt (t, r, ι) + λp(t, r, ι)

+
D+
s (Ť (t))
(R+

s )2
pιι(t, r, ι)

]
w̃(t, ι)dι, (52)

where (44), (46) and integration by parts have been used in the
calculation. Differentiating (43) with respect to r gives

c̃r (t, r) = w̃r (t, r) + p(t, r, r)w̃(t, r)

−

∫ 1

r
pr (t, r, ι)w̃(t, ι)dι, (53)

c̃rr (t, r) = w̃rr (t, r) + p(t, r, r)w̃r (t, r)

+

(
d
dr

p(t, r, r) + pr (t, r, r)
)

w̃(t, r)

−

∫ 1

r
prr (t, r, ι)w̃(t, ι)dι. (54)

From (39)–(42), (43), (45)–(47) and (52)–(54), we derive that the
kernel function p(t, r, ι) needs to satisfy the following PDE system:

pt (t, r, ι) =
D+
s (Ť (t))
(R+

s )2
[(prr (t, r, ι) − pιι(t, r, ι)] − λp(t, r, ι), (55)

p(t, 0, ι) = 0, (56)

p(t, r, r) =
(R+

s )
2

2D+
s (Ť (t))

λr, (57)

p(0, r, ι) = p0(r, ι), (58)

for which the domain is T = {(t, r, ι); 0 ≤ t ≤ tmax, 0 ≤ ι ≤ r ≤

1}. Here, p0(r, ι) denotes the initial condition for the kernel system
and satisfies∫ 1

r
p0(r, ι)w̃(t, ι)dι = c0(r) − ĉ0(r) − w̃0(r). (59)

Moreover, the observer gains need to be chosen as

p1(t, r) = −
D+
s (Ť (t))
(R+

s )2

(
pι(t, r, 1) +

1
2
p(t, r, 1)

)
, (60)

p10(t) =
3
2

−
(R+

s )
2

2D+
s (Ť (t))

λ. (61)

Inmore detail, first, plugging (43), (52) and (54) into (39) gives (55),
(60) and the boundary condition

d
dr

p(t, r, r) =
(R+

s )
2

2D+
s (Ť (t))

λ. (62)

Second, plugging (40) and (45) into (43) gives (56). Third, (57) is
derived from (62) and (56). Then, (61) is derived from (41), (43),
(46), (53) and (57). Finally, (59) is derived by plugging (42) and (47)
into (43).

4.1. Well-posedness of the kernel function p(r, ι, t)

Lemma 3. The initial data p0(·, ·) is an analytic function in T =

{(r, ι); 0 ≤ ι ≤ r ≤ 1}, and the system (55)–(58) admits an analytic
solution p(t, ·, ·) in T .

Proof. We first transform the system (55)–(58) into an equivalent
integral equation. Let ξ = r+ι, η = r−ι and q(t, ξ , η) = p(t, r, ι),
then we have from (55)–(58) that q satisfies the following PDE:

qt (t, ξ , η) = 4
D+
s (Ť (t))
(R+

s )2
qξη(t, ξ , η) − λq(t, ξ , η), (63)

q(t, ξ ,−ξ ) = 0, (64)

q(t, ξ , 0) =
(R+

s )
2

4D+
s (Ť (t))

λξ, (65)

with the initial condition

q(0, ξ , η) = p
(
0,

ξ + η

2
,
ξ − η

2

)
.
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Eq. (63) can be rewritten as

qξη(t, ξ , η) =
(R+

s )
2

4D+
s (Ť (t))

(qt (t, ξ , η) + λq(t, ξ , η)) . (66)

Integrating (66) with respect to η from 0 to η and using boundary
condition (65), we have

qξ (t, ξ , η) =
(R+

s )
2

4D+
s (Ť (t))

λ +
(R+

s )
2

4D+
s (Ť (t))

×

∫ η

0
(qt (t, ξ , β) + λq(t, ξ , β)) dβ. (67)

Integrating (67) with respect to ξ from −η to ξ gives the following
integro-differential equation (IDE):

q(t, ξ ,η) =
(R+

s )
2

4D+
s (Ť (t))

λ(ξ + η) +
(R+

s )
2

4D+
s (Ť (t))

×

∫ ξ

−η

∫ η

0
(qt (t, α, β) + λq(t, α, β)) dβdα, (68)

where (64) is used.
Second, we apply the method of successive approximation. Let

C =
(R+

s )
2

4D+
s (Ť (0))e

ED+
s

/Ť (0)
, f (t) = e

ED+
s

/Ť (t)
,

then from (14), we look for a solution of (68) in the form of

q(t, ξ , η) =

∞∑
n=0

qn(t, ξ , η),

where

q0(t, ξ , η) = λC(ξ + η)f (t), (69)

and

qn+1(t, ξ , η)

= Cf (t)
∫ ξ

−η

∫ η

0

[
qnt (t, α, β) + λqn(t, α, β)

]
dβdα. (70)

Recall that Ť (t) is analytic, and since it is physically impossible
for the temperature to reach zero Kelvin, i.e., Ť (t) ̸= 0, then it
is reasonable to assume that 1

Ť (t)
is an analytic function in t ∈

[0, tmax], and thus there exists a constant Cf such that for every
nonnegative integer k, the following bound holds:⏐⏐f (k)(t)⏐⏐ :=

⏐⏐⏐⏐ dkdtk
f (t)

⏐⏐⏐⏐ ≤ Ck+1
f k!. (71)

Since the composition of analytic functions is analytic, then
q0(t, ξ , η) is an analytic function in t ∈ [0, tmax] and it can be
derived from (69) and (71) that

|∂ i
tq

0(t, ξ , η)| ≤ λCC i+1
f i!(ξ + η), ∀i ∈ N,

with respect to (ξ, η), uniformly for t ∈ [0, tmax].
Inwhat followswe are to prove by induction that for any integer

n ≥ 0 the following estimate holds:⏐⏐∂m
t qn(t, ξ , η)

⏐⏐ ≤ λCn+1Cm+n+1
f (Cf + λ)n

×
(m + 2n)!

2nn!
ξ nηn(ξ + η)
n!(n + 1)!

. (72)

Assume that (72) holds for an integer n ≥ 0, then, for any integer
m ≥ 0, we derive from (70) that⏐⏐∂m

t qn+1(t, ξ , η)
⏐⏐

=

⏐⏐⏐⏐∂m
t

[
Cf (t)

∫ ξ

−η

∫ η

0

[
qnt (t, α, β) + λqn(t, α, β)

]
dβdα

]⏐⏐⏐⏐
= C

⏐⏐⏐⏐ m∑
i=0

[(
m
i

)
∂m−i
t f (t)

×

∫ ξ

−η

∫ η

0

[
∂ i+1
t qn(t, α, β) + λ∂ i

tq
n(t, α, β)

]
dβdα

] ⏐⏐⏐⏐.
Through further calculation, we obtain the following estimates⏐⏐∂m

t qn+1(t, ξ , η)
⏐⏐

≤ C
m∑
i=0

{(
m
i

)
Cm+n+2
f (m − i)!

× λCn+1
[
Cf +

λ

i + 2n + 1

]
(Cf + λ)n

×
(i + 2n + 1)!

2nn!

}
ξ n+1ηn+1(ξ + η)
(n + 1)!(n + 2)!

≤ λCn+2Cm+n+2
f (Cf + λ)n+1

×

m∑
i=0

[(
m
i

)
(m − i)!

(i + 2n + 1)!
2nn!

]
ξ n+1ηn+1(ξ + η)
(n + 1)!(n + 2)!

= λCn+2Cm+n+2
f (Cf + λ)n+1

×
(m + 2(n + 1))!
2n+1(n + 1)!

ξ n+1ηn+1(ξ + η)
(n + 1)!(n + 2)!

,

where the following equalities have been used:∫ ξ

−η

∫ η

0

αnβn(α + β)
n!(n + 1)!

dβdα =
ξ n+1ηn+1(ξ + η)
(n + 1)!(n + 2)!

,

m∑
i=0

(
m
i

)
(m − i)!(i + j)! =

(m + j + 1)!
j + 1

.

By induction, (72) holds for any integer n ≥ 0.
Finally, the existence of q(t, ξ , η) and p(t, r, ι) can be proved.

Fixing m = 0 in (72) gives⏐⏐qn(t, ξ , η)
⏐⏐ ≤ λCn+1Cn+1

f (Cf + λ)n
(2n)!
2nn!

ξ nηn(ξ + η)
n!(n + 1)!

.

Then we can show that the series
∑

∞

n=0q
n(t, ξ , η) converges abso-

lutely and uniformly. Indeed, the following bound holds:

|q(t, ξ , η)| ≤

∞∑
n=0

⏐⏐qn(t, ξ , η)
⏐⏐

≤

∞∑
n=0

λCn+1Cn+1
f (Cf + λ)n

(2n)!
2nn!

ξ nηn(ξ + η)
n!(n + 1)!

= λCCf (ξ + η)
∞∑
n=0

φ1(ξ, η; n),

where

φ1(ξ, η; n) = [CCf (Cf + λ)ξη]
n (2n)!
2nn!

1
n! · (n + 1)!

.

Since

lim
n→∞

φ1(ξ, η; n + 1)
φ1(ξ, η; n)

= lim
n→∞

[CCf (Cf + λ)ξη]
(2n + 1)

(n + 1)(n + 2)
= 0 < 1,
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then from the ratio criterion, the series
∑

∞

n=0φ1(ξ, η; n) is conver-
gent. Consequently, the existence of q(t, ξ , η) and p(t, r, ι) is es-
tablished, which are analytic in T . Moreover, the following bound
holds for p(t, r, ι)

|p(t, r, ι)| ≤ 2λCCf r
∞∑
n=0

φ2(r, ι; n),

where

φ2(r, ι; n) = φ1(ξ, η; n). □

4.2. Invertibility of the transformation (43)

Indeed, the continuity of the kernel p(t, r, ι) in (43) guarantees
the existence of an inverse transformation. We write the inverse
transformation as

w̃(t, r) = c̃(t, r) +

∫ 1

r
ρ(t, r, ι)c̃(t, ι)dι, (73)

then we could derive from (43) and (73) that the kernel ρ(t, r, ι)
needs to satisfy

ρ(t, r, ι) = p(t, r, ι) +

∫ ι

r
p(t, r, σ )ρ(t, σ , ι)dσ . (74)

In order to solve Eq. (74), a similar (successive approximation)
procedure as in Section 4.1 can be followed, see also, Krstic and
Smyshlyaev (2008, Section 4.4). A similarwell-posedness result for
its inverse can also be obtained and this derivation is omitted here.

Note also that the initial condition w̃0(r) for the target w̃-system
(44)–(47) is determined by ĉ0(r) and ρ0(r, ι) = ρ(0, r, ι). Indeed,
from (42) and (73), w̃0(r) can be calculated as

w̃0(r) = c0(r) − ĉ0(r) +

∫ 1

r
ρ0(r, ι)[c0(ι) − ĉ0(ι)]dι.

4.3. Exponential convergence of the observer

Some assumptions and simplifications have been made to ease
the analysis. For completeness and clarity we summarize these
assumptions and simplifications before stating our main result.

(A1) To derive an output inversion function, i.e., to recover c+
ss (t)

from the voltage measurement, we have assumed that T (t) is a
time-varying function independent of concentrations. We have
used the notation Ť (t) and compute its value from Eq. (23). For
this assumption to hold, some underlying simplifications and
assumptions have been made:

(i) Parameters R±

f (T (t)) and r±

eff(T (t)) are approximated by
Ř±

f (t) ≜ R±

f (Tamb(t)) and ř±

eff(t) ≜ r±

eff(Tamb(t)).
(ii) Functions U±(·, T (t)) are assumed to be independent of

concentrations, and their dependence on T (t) has been
replaced with dependence on Tamb(t). We have used the
notation Ǔ±

1 (t) ≜ U±(c±
ss (t), Tamb(t)) and Ǔ±

2 (t) ≜
U±(c̄±

s (t), Tamb(t)).

(A2) To derive an output inversion function, diffusion of lithium
in the negative electrode has been simplified. This is done by as-
suming a polynomial solution profile for the diffusion dynamics
in the negative electrode.

(A3) For observer design, we have used Ť (t) to replace T (t).
(A4) For observer design, functions I(t), U±(·, T (t)), V (t) and

∂U±
/∂T(·, T (t)) are assumed to be piecewise analytic.

Now, ourmain result can be presented. Consider an appropriate
time interval [0, tmax] for the assumed regularities in (A4) to hold.
With the well-posedness of the kernel function in the transforma-
tion (43) together with the invertibility of the transformation, the
following main theorem holds.

Theorem 4. Let t ∈ [0, tmax]. Under the simplifications and assump-
tions (A1)–(A4), if

λ <
1

4(R+
s )2

min
t≥0

{D+

s (Ť (t))},

then for any initial value ĉ(0, ·) ∈ L2(0, 1), the observer error c̃-
system (39)–(42) is exponentially stable at c̃ ≡ 0 in the L2 norm,
which means the designed observer (35)–(38) is exponentially con-
vergent to the system (31)–(34).

Proof. It follows directly from (51) that

∥w̃(t, ·)∥ ≤ ∥w̃(0, ·)∥e
−

(
D+
s (Ť (t))
4(R+s )2

−λ

)
t
. (75)

From the state transformations (43) and (73), the equivalence of
the states c̃(t, r) and w̃(t, r) is established, i.e., there exist positive
constantsM1,M2 such that

M1∥w̃(t, ·)∥ ≤ ∥c̃(t, ·)∥ ≤ M2∥w̃(t, ·)∥. (76)

Then, the proof is completed with (75) and (76). □

Remark 5. Theorem 4 is rigidly proved under the assumption that
the averaged internal temperature is independent of the lithium
ion concentrations in the electrodes; computed from the linear
ODE (23). Here, we would like to clarify that these assumptions
are posed solely for the theoretical derivations. Indeed, in the
next section we are to present some simulation results showing
that the original unsimplified equation for the averaged internal
temperature (17) can be used in the implementation of the esti-
mation algorithm, which depends on lithium ion concentrations in
the electrodes, and still achieve convergence of the SoC estimate.
Since only estimates of lithium ion concentration are available
to compute the internal averaged temperature, we are actually
computing an open-loop estimate calculated from (17) and use the
notation T̂ (t), i.e.,

ρavgcP
dT̂ (t)
dt

(t)

= hcell

(
Tamb(t) − T̂ (t)

)
+ I(t)

RT̂ (t)
αF

[
sinh−1

(
1

2 ˆi+0 (t)

I(t)
a+L+

)

+ sinh−1

(
1

2 ˆi−0 (t)

I(t)
a−L−

)]

+

(
R+

f (T̂ (t))
a+L+

+
R−

f (T̂ (t))
a−L−

− Rc

)
I(t)2

− I(t)
[
U+(ĉ+

ss (t), T̂ (t)) − U−(ĉ−

ss (t), T̂ (t))
]

+ I(t)
{
U+( ˆ̄c

+

s (t), T̂ (t)) − U−( ˆ̄c
−

s (t), T̂ (t))

− T̂ (t)

[
∂U+( ˆ̄c

+

s (t), T̂ (t))
∂T

−
∂U−

∂T
( ˆ̄c

−

s (t), T̂ (t))

]}
, (77)

where ˆi±0 (t) are computed from (12) with concentration values
replaced by their estimates.
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In the original state variables and unnormalized coordinates,
the observer for lithium-ion concentration in the positive electrode
reads

∂ ĉ+
s

∂t
(t, rs) =

D+
s (T̂ (t))
r2s

∂

∂rs

[
r2s

∂ ĉ+
s

∂rs
(t, rs)

]
+ p̄1(t, rs)(c+

ss (t) − ĉ+

ss (t)), (78)
∂ ĉ+

s

∂t
(t, 0) =0, (79)

∂ ĉ+
s

∂r
(t, Rs) =

I(t)

D+
s (T̂ (t))a+FL+

+ p̄10(t)(c+

ss (t) − ĉ+

ss (t)), (80)

with

p̄1(t, rs) =
p1(t, rs

Rs
)

rs
, p̄10(t) =

p10(t)
Rs

. (81)

The SoC estimation can then be derived from (19) and (21), with
c+
s (t, rs) replaced by their estimated values ĉ+

s (t, rs). Additionally,
estimates ĉ−

s (t, rs) and ĉ−
ss (t, rs) on the negative electrode can be

computed from (28)–(29), with the estimates ĉ+
ss (t, rs) and ĉ+

ss (t, rs)
on the positive electrode obtained from (78)–(81) and the open-
loop estimate T̂ (t) from (77).

5. Simulation results

The ambient temperature is assumed to be constant; Tamb =

298 [K] = 24.85 [
◦C]. Simulations are performed with parame-

ters of a LiCoO2–LiC6 cell. Parameters and OCP functions U± are
borrowed from Mao, Tiedemann, and Newman (2014) and the
references within. Note that the OCP functions depend on the
internal average temperature and here a linear approximation is
employed:

U±(c±

ss (t), T ) =U±(c±

ss (t), Tamb)

+
∂U±(c±

ss (t), Tamb)
∂T

(T − Tamb).

The magnitude of input current is described in terms of the cell
C-rate (per unit area), which is computed from

C-rate = F
min

{
ε+
s L

+c+,max
s , ε−

s L
−c−,max

s

}
3600[s]

.

5.1. Simulation tests

Simulation tests are performed to evaluate the effectiveness
of the proposed observer with two different current profiles: a
square profile (constant charge, discharge and rest) and a current
profile obtained from the Urban Dynamometer Driving Sched-
ule (UDDS). For each current profile two cases of measurements
are considered: voltage measurements generated from the SPM-T
model and voltage measurements generated from the DFN model
serving as true data. To generate voltage measurements, lithium
concentration in the negative electrode is initialized at 80% of the
maximum value and lithium concentration in the positive elec-
trode is initialized at 50% of the maximum value. For the observer,
lithium concentration in the negative electrode is initialized at 50%
of the maximum value and the one in the positive electrode is
initialized at 67% of the maximum value. The tuning parameter λ

in the observer is set as −1 for all tests.3

3 Ideally, the convergence rate of the designed observer can be made arbi-
trarily high by choosing a small enough λ, i.e., a large enough |λ|. However,
since accurate/direct measurement of boundary concentration is not available and
approximations required in output inversion unavoidably introduce error in the

Fig. 2. Current profile.

5.1.1. Simulation with square current profile
Figs. 2–5 correspond to the first set of simulation tests, which

use a square current profile shown in Fig. 2. The current consists
of repeated cycles of: 36 min of 1 C-rate constant discharging
followed by 54 min of resting, i.e., zero input, then 36 min of
1 C-rate constant charging ending with 54 min of zero input.
Only the first 250 min of the simulation results are shown in the
figures. True and estimated SoC are shown in Fig. 3 using (a) SPM-T
measurements and (b) DFNmeasurements. The initial errors in SoC
estimation are due to intentionally chosen, incorrect initialization
of lithium concentrations. Convergence of output voltage coincides
with convergence of SoC, and this is shown in Fig. 4. The estimate
of internal average temperature is shown in Fig. 5 using voltage
measurements from the (a) SPM-T model and (b) DFN model;
compared against the true average temperature of the respective
models. Note that, since the internal average temperature is mon-
itored in an open-loop fashion, one needs to correctly initialize its
value. This condition is satisfied at thermal equilibrium, i.e., the
internal average temperature of the battery coincides with the
ambient temperature.

5.1.2. Simulation with UDDS current profile
Figs. 6–9 correspond to simulation tests using a current input

derived from a set of UDDS data and scaled to a current density
profile within the range of ±4 C-rate of the battery. This current
profile, shown in Fig. 6, is representative of current demands in
automotive applications. SoC estimation is shown in Fig. 7with the
initial errors coming from incorrect initialization. As seen in Fig. 8,
convergence of the output voltage coincides with convergence of
the SoC as well. Finally, Fig. 9 compares the open-loop estimates
of internal average temperature with the true internal average
temperature from the (a) SPM-T model and (b) DFN model.

Fig. 10 shows (a) the difference in output voltage values be-
tween SPM-Tmodel and SPMand (b) the difference in temperature
values from SPM-T model and DFN model for constant discharge
currents. One can see that the difference in output voltage values
from SPM-T model and SPM accentuates at high currents rate
(a) while temperature values from SPM-T model and DFN model
remain relatively close for currents as high as 4 C-rate (b).

5.2. Numerical implementations

Numerical implementations of the SPM-T and the DFN models
follow the equations presented in Sections 2.1 and 2.2, respec-
tively. A finite volumemethod is used for the spatial discretization

(calculated) boundary measurement, there exists a design trade-off between high
convergence rate of the observer and effective attenuation of the approximation
error/measurement noise. In particular, choosing large values for |λ| makes the
systemmore sensitive tomeasurement noise and results in larger estimation errors.
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Fig. 3. True and estimated SoC. (a). Observer with SPM-T measurements. (b).
Observer with DFN measurements.

Fig. 4. True and estimated voltage. (a). Observer with SPM-T measurements. (b).
Observer with DFN measurements.

of PDEs in themodels, and then the Euler-backwardmethod is used
for the temporal discretization of the resulting system of ODEs. The
observer is implemented using the same discretization procedure.
Note that in the numerical implementation of the observer, lithium

Fig. 5. True and estimated internal average temperature. (a). Observer with SPM-T
measurements. (b). Observer with DFN measurements.

Fig. 6. Current profile.

concentration in the negative electrode is approximated by the
polynomial profile presented in Subramanian et al. (2005), as
described briefly in Section 3.2.

For the numerical implementation of the kernel function
p(t, r, ι) and the computation of the observer gain, a trapezoidal
approximation of the IDE (68) is used to obtain an ODE, which
is then discretized in time with the Euler-backward method. As
mentioned in Section 4, time normalization t ′ = D+

s (T (t))/(R
+
s )

2t
by the temperature-dependent function is not preferable; here
the normalization is performed by a constant instead, i.e., t ′ =

D+
s (Tamb)/(R+

s )
2t .

6. Conclusions and future work

This paper discusses the problem of SoC estimation for the
lithium-ion batteries based on a thermal–electrochemical model.
In this regard, an infinite-dimensional Luenberger observer is pro-
posed. For the transformation between the observer error system
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Fig. 7. True and estimated SoC. (a). Observer with SPM-T measurements. (b).
Observer with DFN measurements.

Fig. 8. True and estimated voltage. (a). Observer with SPM-T measurements. (b).
Observer with DFN measurements.

and the exponentially stable target system, well-posedness of the
time-varying PDE backstepping kernel functions are rigorously
proved. Then, exponential stability of the observer error system is
established, which proves effectiveness of the designed observer.

Fig. 9. True and estimated interval average temperature. (a). Observer with SPM-T
measurements. (b). Observer with DFN measurements.

Fig. 10. SPM-T model validation. (a) Output voltage error between SPM and DFN,
and between SPM-T and DFN. (b) Internal averaged temperature computed from
the DFN model and from the SPM-T model.

We consider this result as an additional step in the effort to design
estimation (and control) algorithms for lithium-ion batteries from
electrochemical models, without relying on the discretization of
the PDEs in these models.
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The observer requires only one design/tuning parameter as
comparedwith the possibly large number of tuning parameters re-
quired in estimation methods based on finite dimensional battery
models, e.g., EKF. Compared with estimation based on the infinite
dimensional SPM alone, it takes into account the temperature de-
pendence of model parameters and catches the battery responses
better than SPM, especially at high C-rates. Simultaneously, the
internal average temperature can be monitored in an open-loop
fashion.

Some simplifications are made in this paper, and their re-
laxation could be considered as a future research direction. An-
other possible extension is to retain the concentration dynamics
in the negative electrode and design one observer for each elec-
trode (Moura, Bribiesca Argomedo, Federico, Klein, Mirtabatabaei,
& Krstic, 2016). One could also consider multiple active materials
in the electrodes (Camacho-Solorio, Klein, Mirtabatabaei, Krstic, &
Moura, 2016) or addmodels for degradations (e.g., capacity fade) to
the battery model (Ramadesigan, Boovaragavan, Arabandi, Chen,
Tsukamoto, Braatz, & Subramanian, 2009). Observer design for the
battery internal, core and surface (Lin, Perez, Mohan, Siegel, Ste-
fanopoulou, Ding, & Castanier, 2014), or even the distributed (Kim,
Mohan, Siegel, Stefanopoulou, & Ding, 2013) temperature is a
subject worth investigating as well.
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