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Prescribed Performance
Backstepping and Sliding Mode
Control for Automated Platoons
With Internal Type-2 Fuzzy Logic
and Exponential Spacing Policy
This study presents a control strategy employing a hybrid backstepping and sliding mode
control (BSMC) approach for automated platoons. The control scheme integrates an expo-
nential spacing policy tailored to varying driving conditions and vehicle constraints. We
introduce an interval type-2 fuzzy logic system (IT2FLS) to approximate the unknown non-
linear driving resistance term. This technique yields interval outputs, incorporating uncer-
tain mean and standard deviation in the membership functions of inputs, thereby enhancing
the system’s adaptability. We include a prescribed performance control using an asymmet-
ric prescribed performance function to ensure string stability and confine spacing errors
within a desired range. This technique eliminates the need for complex Laplace transform
computations to check string stability. To validate the robustness of the proposed controller,
we conduct simulations under fault and fault-free conditions, demonstrating the efficacy of
the proposed approach. [DOI: 10.1115/1.4066315]
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1 Introduction
Intelligent transportation systems will solve numerous traffic and

energy inefficiencies in the coming years. Advanced expert and
optimal control algorithms and wireless communication technolo-
gies enable the potential revolution of smart cities through automated
vehicles (AVs) and modern road infrastructures. Automated pla-
tooning represents an intelligent technology in which AVs are
interconnected through vehicle-to-vehicle (V2V) wireless commu-
nication and maintain optimal inter-vehicle spacing and velocity
based on real-time traffic demands. This approach substantially alle-
viates traffic congestion, instability, fuel inefficiency, and road safety
[1–5].
The design of the control system for such an automated platoon

should achieve the objective of guaranteeing individual stability and
string stability (SS) criterion under particular information flow
topologies (IFTs) and desired spacing policies (SP). String stability
(SS) denotes the desired condition where spacing errors among
individual vehicles do not propagate downstream within the
platoon string [6]. IFTs denote how information can be transferred
among the AVs through V2V communication [7]. Some of these
IFTs are predecessor following (PF), bidirectional (BD), bidirec-
tional leader (BDL), predecessor leader-follower (PLF), two-

predecessor follower, and two-predecessor leader-follower. In the
PF topology, the follower vehicle receives information from
the leader and predecessor vehicles, whereas in the BD case, the
vehicle receives information from the predecessor and its follower.
The SP represents the desired inter-vehicle spacing during the fol-
lowing scenario. These include constant-distance gap policy
(CDGP) [8,9], constant-time gap policy (CTGP) [10], variable-time
headway policy [11], safety spacing policy (SSP) [12], and nonlin-
ear spacing policies [13,14]. The nonlinear SPs include quadratic
spacing policy (QSP), improved QSP, etc. Moreover, the vehicle
model or the node dynamics (ND) is utilized to develop the
control algorithm. The ND can be a second-order or third-order
model, and it can also be linear or nonlinear.
The feedback control laws, which rely on the abovementioned

IFTs and SP, denote the cooperative control algorithms employed
to stabilize the whole vehicle string. Many linear and nonlinear
control algorithms were proposed to accomplish the corresponding
control objectives, as in Refs. [15–26]. Another important thing to
mention is the approximation of the unknown nonlinear terms and
unknown exogenous disturbances. Practically, the vehicles are sub-
jected to unknown resistance forces, actuator faults, and communi-
cation delays. Hence, fault-tolerant controls and powerful
approximation techniques support the main controllers in achieving
asymptotic tracking while the vehicle is subjected to unknown resis-
tances and random actuator faults. Even though the development of
such controls upholds some realistic assumptions, current studies
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usually consider a few of the assumptions to simplify the burden
associated with stability proof and mathematical computation.
Peng [27] implemented an intelligent, robust backstepping

control (BC) for vehicular platoon control. In the paper, he pro-
posed an output recurrent cerebellar model articulation to mimic
the ideal BC to compensate for the unknown uncertainty and distur-
bance. The study used a CDGP and did not incorporate actuator
faults or achieve strong SS of the platoon. Chou et al. [28] proposed
the BC method to regulate the time gap of individual vehicles of a
homogeneous platoon. To prevent the explosion of terms, dynamic
surface control with damping was fuzed with the controller. In the
study, third-order nonlinear ND with CTGP was employed. A
mechanism for achieving the strong SS of the platoon was not
stated. To solve this problem, Zhu et al. [29] incorporated a pre-
scribed error constraint approach with BC to bind the spacing
error within the desired value range to prevent error propagation.
Adaptive laws were used to approximate uncertain vehicle parame-
ters. Kwon and Chwa [30] proposed an adaptive coupled sliding
mode control (SMC) for a BD communication scheme, and adap-
tive laws were used to estimate the unknown, uncertain
second-order ND. Zuo et al. [31] developed a distributed adaptive
integral SMC (ISMC) for a platoon with QSP. Feedback lineariza-
tion was applied to linearize the ND by assuming known dynamics
expression as in Ref. [32]. Yan et al. [33] presented an adaptive
neural SMC for a BD platoon by integrating velocity and input
saturation into the control design. The uncertain term was approxi-
mated by radial basis function neural network (RBF-NN). Guo et al.
[34] proposed a fault-tolerant ISMC with unknown and linear actu-
ator dead-zone quantization for the BD IFTs. The study used a
third-order ND with quantization and a modified constant-time
headway policy (MCTHP). Moreover, they implemented a
minimum parameter learning RBF-NN (MPL-RBF-NN) to approx-
imate the unknown external term. Such MPL-RBF-NN technique
minimizes the number of adaptive parameters to only one by
using the norm of the neural weight vector. Similar approaches
were also reported with a new QSP and improved QSP that
accounts for actuator fault in the spacing policy [35]. Guo et al.
[36] also proposed prescribed performance control (PPC) with
SMC for the PLF and the BDL IFTs considering actuator saturation.
To include the leader vehicle’s information and for simplicity, they
considered a CDGP so that it is convenient to define a lumped
spacing error term. By defining similar error-constraining functions
for all vehicles, SS of the platoon was achieved. A similar approach
has also been proposed in Ref. [37].
In previous studies, linearized vehicle models were accustomed

to easing the difficulty of finding the Laplace transform of the
spacing error terms for nonlinear vehicle models to guarantee the
SS of the platoon [38]. In some other studies, an SMC was also pro-
posed for nonlinear systems under the bidirectional IFT, in which
case it was possible to get the Laplace transform for the error
terms [39]. However, these assumptions ignore the physical

system’s complexity and most IFT options. Inter-vehicle spacing
highly depends on weather, road conditions, visibility, braking per-
formance, etc. In previous studies, the SP mainly do not address
road demands and achieve traffic stability. Moreover, the existing
estimation laws for unknown terms, such as adaptive laws, type-1
fuzzy systems, and neural approximation techniques, have some
drawbacks. In the adaptive estimation approach, an explicit adap-
tive law is required to approximate each unknown term, and this
would result in additional instability and computational burden.
Conversely, the type-1 fuzzy systems and neural networks
employed in control are mostly based upon an assumption of a
deterministic mean and standard deviations for the membership
functions (MFs). We have consolidated the abovementioned
studies in Table 1.
Building upon the insights from previous studies, this paper pre-

sents a prescribed performance backstepping and sliding mode
control (BSMC), and the key contributions are outlined as follows:

(1) We introduce an asymmetric prescribed time transformation
function to limit spacing errors between vehicles. This
approach ensures not only string stability but also constrains
the spacing error within predefined bounds and a specified
settling time.

(2) To address uncertainties in the input values and approximate
unknown nonlinear terms, we design an adaptive interval
type-2 fuzzy logic system (IT2FLS). This approach yields
interval outputs, incorporating uncertain mean and standard
deviation in the membership functions of inputs, thereby
enhancing the system’s adaptability.

(3) We propose an exponential spacing policy (ESP) to incorpo-
rate environmental factors and vehicle constraints through
adaptable safety parameters. Unlike CTGP and QSP, ESP
fosters a stable traffic flow by meticulously tuning these
parameters to the driving context.

(4) Our control strategy combines BC and SMC techniques. We
incorporate BC due to its seamless integration capabilities
with various control schemes and SMC to enhance system
adaptability and robustness, offering a chattering-free reach-
ing law. Furthermore, we introduce additive and multiplica-
tive fault types in our control design to ensure practical
relevance, compensating for real-world performance degra-
dation scenarios. This amalgamation of methodologies
offers enhanced stability, adaptability, and robustness in
automated vehicular systems control.

The remainder of the article is structured as follows: Sec. 2 pro-
vides an overview of the preliminaries and the problem formulation.
Section 3 explores the theory behind IT2FLS. Section 4 covers the
control system’s design and the platoon system’s stability analysis.
Section 5 offers a simulation example to demonstrate the effective-
ness of the proposed control strategy, while Sec. 6 concludes the
article with final remarks.

Table 1 Summary of existing research in the literature and this study

Ref. ND Method IFT SP Approximation SS

[12] Second-order nonlinear Coupled SMC PF SSP – Yes
[27] Third-order nonlinear BC PF CDGP Cerebellar NN No
[28] Third-order nonlinear BC PF CTGP – No
[29] Third-order nonlinear BC PF CTGP Adaptive Yes
[30] Second-order nonlinear Coupled SMC BD CDGP Adaptive Yes
[31] Third-order nonlinear Coupled SMC BD QSP RBF-NN Yes
[33] Second-order nonlinear Adaptive SMC BD CDGP RBF-NN Yes
[34] Third-order nonlinear Coupled SMC BD MCTHP MPL-RBF-NN Yes
[35] Third-order nonlinear Coupled SMC BD Improved QSP MPL-RBF-NN Yes
[36] Third-order nonlinear Coupled SMC BD Improved fault-QSP MPL-RBF-NN Yes
[37] Second-order nonlinear Coupled PPC-SMC BD Improved QSP MPL-RBF-NN Yes
[40] Third-order nonlinear BC PF CTGP Type-1 FLS Yes
This study Third-order nonlinear PPC-BSMC PF ESP IT2FLS Yes
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2 Preliminaries and Problem Formulation
2.1 Preliminaries

2.1.1 Notation. |·| denotes the absolute value of a number,
‖·‖ represents the Euclidean norm of a vector, ‖·‖∞ is also an
infinity norm, Rn is the space for the real numbers of n dimensions,
R+ represents positive real numbers, sup (·) denotes the least upper
bound from the set, min (·) represent a value to which the functional
value is less than or equal to the local minimum or absolute
minimum value, argmin Δ denotes the point or element of the
domain of a function to be minimized, sign represents the
sigmoid function to show the property of a real number of being
either positive, negative, or zero.
LEMMA 1 ([41]). Let Ω(x) be a Lipschitz-continuous function

defined on a compact setΔc. For an upper bound of the approxima-
tion error εmax, there exist a fuzzy logic system (FLS) approximator

θ̂Tζ(x) such that

sup
x∈Δc

θ̂Tζ(x) − Ω(x)
∥∥∥ ∥∥∥ ≤ εmax (1)

where x is the FLS input vector, and θ̂ = [y1, y2, . . . , yM]T ∈ RM is
the parameter vector. The basis function vector ζ(x) will be defined
in the next section. The optimal parameter vector θ∗ can be given as

θ∗ = argmin
θ∈Rn

sup
x∈Δc

θ̂Tζ(x) − Ω(x)
∥∥∥ ∥∥∥

[ ]
(2)

Thus, the function Ω(x) can be represented as

Ω(x) = θ∗Tζ(x) + ε(x) (3)

LEMMA 2 ([42]). Let V(t) ∈ [0, ∞), ∀ t ∈ R+, be a smooth pos-
itive definite function regarding the states. And suppose that

V̇(t) ≤ −ΥV(t) + Γ ∀ t ≥ t0 ≥ 0 (4)

For a finite value Υ > 0 and Γ > 0, we can imply that

V(t) ≤ e−Υ(t−t0)V(t0) +
∫t
t0

e−Υ(t−τ)Γ(τ) dτ (5)

2.2 Vehicle Dynamics Modeling. This study explores a sce-
nario involving a group of N automated vehicles connected via
PF IFT following a leader vehicle driven by a human, as shown
in Fig. 1. The PF communication scheme is the simplest, where a
vehicle receives information only from its immediate predecessor.
The rest of the IFTs require a complex information exchange strat-
egy requiring long-range sensing technology and smart
infrastructures.

The uncertain nonlinear longitudinal dynamics of vehicle i can be
expressed as

ṗi(t) = vi(t)

v̇i(t) = ai(t)

ȧi(t) = Λi(t) + Giui(t) + di(t)

(6)

where pi(t), vi(t), and ai(t) are the position, velocity, and accelera-
tion of vehicle i, respectively. ui(t) ∈ R1 is the control input to
vehicle i’s engine, Gi = 1/miτi is the coefficient of the control
input, mi is the vehicle mass, τi is the engine time lag, di(t) is an
unknown bounded exogenous disturbance where |di(t)| ≤ dmax ,i,
Λi(t) is an unknown nonlinear term given as

Λi(t) = −
1
τi

ai(t) +
1
2mi

ρ′Cd,iA f ,ivi(t)
2 +

dm,i
mi

[ ]

−
1
mi

ρ′Cd,iA f ,ivi(t)ai(t) (7)

where ρ′ is the air density, Cd,i is the aerodynamic drag coefficient,
Cr,i is the rolling resistance coefficient, Af ,i is the frontal cross-
sectional area of vehicle i, mi is the mass of vehicle i, dm,i is the
mechanical drag on vehicle i, and τi is the driving system lag
time of vehicle i. The detailed derivation of Eq. (7) can be found
in Appendix A. In practical scenarios, actuators experience failures
resulting from wear and aging of components. These failures lead to
response delays and introduce dead zones during control. Consider-
ing that the vehicle is subjected to unknown actuator faults, we
re-write the expression for ui(t). In this paper, a multiplicative
and additive fault was considered. Loss of actuator effectiveness
can be measured with ηi(t) ∈ (0, 1]. The actual control input ui(t)
in Eq. (6) can be written as

ui(t) = ηi(t)ûi(t) + u f ,i(t), t > t f (8)

where u f ,i(t) is the unknown additive fault, t f is the time at which
the actuator fails, ηi(t) = 0 shows the complete failure of the actua-
tor, and ηi(t) = 1 indicates full functionality of the actuator; there-
fore, we have 0 ≤ ηi,min ≤ ηi(t) ≤ ηi,max where ηi,min and ηi,max
are known constants. ûi(t) is the new control input to be designed.
Substituting Eq. (8) into Eq. (6), we can get

ṗi(t) = vi(t) (9)

v̇i(t) = ai(t) (10)

ȧi(t) = Ωi(t) + Giηi(t)ûi(t) (11)

where Ωi(t) = Λi(t) + Giu f ,i(t) + di(t) is the unknown nonlinear
term which cannot be obtained in reality, and will be approximated
by a fuzzy approximation system as in Eq. (3). This paper proposes
utilizing an IT2FLS to approximate the unknown term. The details
of this approach will be elaborated upon in Sec. 3.

Fig. 1 Connected and automated platoon
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2.3 Prescribed Tracking Performance. Define the spacing
error of vehicle i as

ei(t) = pi−1(t) − pi(t) − li−1 − φi(t) (12)

where li−1 is the preceding vehicle’s length, and φi(t) is the desired
inter-vehicle spacing. The proposed desired spacing is called the
ESP policy, which addresses pertinent factors essential for the auton-
omous driving system, encompassing acceleration limits, road con-
ditions, and environmental considerations. It is formulated as
follows:

φi(t) = do,i + ϑi
vi(t)2

2amax ,i
+ κ1,i 1 − exp −

vi(t)
κ2,i

( )( )
(13)

where do,i is the standstill spacing, amax ,i is the maximum vehicle
deceleration, ϑi is the safety coefficient based on road and weather
conditions, and κ1,i and κ2,i are the design parameters [14]. ψmin is
the minimum traffic density, ψmax is the maximum traffic density,
and ψ cr is the critical density where there is a transition of the stabi-
lity and instability occurs. Q(·) is the traffic flowrate.

ψmin ≤ ψcr ≤ ψmax

Q(ψmin) = Q(ψmax) = 0

∂Q
∂ρ

∣∣∣
ψ=ψcr

= 0

(14)

The traffic flowrate Q(ψ(vi(t))) can be computed as

Q ψ(v(t))
( )

=
v(t)

do + ϑ
v(t)2

2amax
+ κ1 1 − exp

−v(t)
κ2

( )( ) (15)

AsQ(ψ(v(t))) is continuous in an interval [ψmin, ψmax] and differ-
entiable over an open interval (ψmin, ψmax), and Q(ψmin) = Q(ψmax)
(i.e., Eq. (14) holds), based on Rolle’s theorem (see Appendix B),
there exists at least one point ψ cr ∈ (ψmin, ψmax) such that
∂Q(ψ = ψcr)/∂ψ = 0. For string stable operation, the parameters
κ1 and κ2 should satisfy the inequality:

ln
ϑamax

ϑκ22

( )
≥
2τamax

ϑκ2
− 1 (16)

where τ is the time lag of the driving system.
On the other hand, a CTGP consistently leads to an unstable traffic

flow at all traffic densities as ∂Q/∂ψ = −do/v(t) is negative. We can
prove the same for the human-like spacing policy named QSP [14].
Moreover, the paper aims to bind the spacing error in a prescribed

error range using a fixed-time prescribed transformation perfor-
mance function so that the following inequality holds:

−ρs,iδmin ,i < ei(t) < ρs,iδmax (17)

where ρs,i is the minimum steady-state error near zero, and δmin ,i
and δmax are the minimum and maximum value of the asymmetric
error constraint constants, respectively. Hence, the error ei(t)
would converge to an asymmetric error bound region near zero:
Oei := (−ρs,iδmin ,i, ρs,iδmax).

2.4 Control Objectives. This paper aims to develop an adap-
tive backstepping and sliding mode platoon control strategy capable
of handling actuator faults, unknown external forces, and distur-
bances while meeting the following stringent requirements:

(1) Individual vehicle stability [10]: Each follower vehicle tracks
the leader’s trajectory with bounded spacing errors in fixed
time.

(2) A prescribed performance for the tracking error is achieved
by the vehicles in the platoon, ensuring that the tracking
error is strictly steered into a predefined region bounded by
a fixed-time prescribed transformation performance function.

(3) SS of the automated platoon is guaranteed under either of the
following conditions:

DEFINITION 1 (SS [10]). The tracking errors ei(t) of the vehicles
with dynamics in (6) are said to be string stable for any emax ,i;
there exists ν > 0 such that

ei(0)‖ ‖∞ < ν ⇒ sup ei(t)‖ ‖∞ < emax ,i for i ∈ N

DEFINITION 2 (Strong SS [30,43]). The tracking error of each
vehicle in the platoon system is said to be string stable if
|e1(t)| ≥ |e2(t)| · · · ≥ |eN−1(t)| ≥ |eN (t)|. This also means that the
spacing error should not propagate along the tail of the vehicle
string.

3 Interval Type-2 Fuzzy Logic System
A fuzzy logic system consists of rules where knowledge-based

terms, also named antecedents, are used to define the inputs as
MFs to reach arguments, also known as consequents. As the knowl-
edge to construct the rules is usually uncertain, the membership
functions in the antecedent and consequent parts must also be
uncertain. Type-1 fuzzy systems are those whose MFs are type-1
fuzzy sets (T1FS) in which we have exact mean and standard
deviation values. IT2FLS is a fuzzy system that uses one or more
interval type-2 fuzzy sets (IT2FS) in the antecedent or consequence
part of its rule base. The difference between the type-1 and the
type-2 fuzzy systems is the introduction of uncertainties in their
MF. The output of IT2FLS is an interval rather than a crisp value,
as in type-1 FLS. Therefore, type reduction (TR) methods must
be employed to reduce the IT2FS into T1FS [44–46]. Figure 2(a)
shows the general framework of IT2FLS. The specific procedure
of each layer is discussed as follows.

3.1 Input Layer. In this layer, we have n number of
inputs. Consider the input to the fuzzy system x = [xk]T =
[x1, x2, . . . , xn]T (for k = 1, 2, . . . , n).

3.2 Fuzzification/Membership Layer. Consider a Gaussian
membership function with a fixed mean value and an uncertain stan-
dard deviation given as follows:

μÃsk
k
= exp −

1
2

xk − m̂sk
k

σskk

( )2
[ ]

(18)

Fig. 2 Interval type-2 fuzzy logic system: (a) general framework
of IT2FLS and (b) t-norm operation for two-input case
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where μÃsk
k
is sthk MF for the kth input, m̂sk

k is the mean/center of the

sthk MF for kth input, and σskk is the standard deviation of the sthk MF
for kth input. We consider hk = h number of MFs and
sk = 1, 2, . . . , h. The output of each MF can be represented by an
interval [μ

Ã
sk
k
, μÃsk

k
] to represent the lower and upper MF represented

as

μ
Ã
sk
k
= exp −

1
2

xk − m̂sk
k

σskk

( )2
[ ]

μÃsk
k
= exp −

1
2

xk − m̂sk
k

σskk

( )2
[ ] (19)

where μ
Ã
sk
k
and μÃsk

k
are the lower and upper membership degrees for

the inputs.

3.3 Rule-Base Layer. The interval type-2 fuzzy rule base con-
tains a collection of IF-THEN rules. In this layer, we have a total
number of M =

∏n
k hk = hn fuzzy rules. Based on the Mamdani

fuzzy inference system, the jth fuzzy rule Rj of the fuzzy system
is expressed as

Rj : IF x1 is Ã
j
1 and : · · · and xn is Ã

j
n THEN y f is B

j

where Rj(for j = 1, 2, . . . , M) are the fuzzy rules, Ã
j
k is antecedent

IT2FS of kth input, Bj is consequent/output IT2FS, and y f is the
crisp output of the IT2FLS.

3.4 Inference Engine. This layer performs a combination of
M fuzzy rules, maps the input’s IT2FS into output interval type-2
sets using t-norm operation, and performs the intersection of the
antecedent FS. The uncertainty in the primary membership function
forms a shaded area called the footprint of uncertainty. Figure 2(b)
illustrates the t-norm operation for a two-input case, each having
one MF.
Using a product t-norm operator, we compute the upper and

lower firing strength of the jth rule, i.e., F j = [ f j, f
j
].

f j =
∏n
k=1

μ
Ã

j
k
(xk), f

j
=
∏n
k=1

μ
Ã

j
k
(xk) (20)

where f j and f
j
are the left-most and right-most points of Fj,

respectively. Moreover, the index j corresponds to the multiplica-
tion of the indexes of the antecedent sets.

3.5 Type-Reduction Layer. In this layer, we generate an
interval T1FS. To reduce the IT2FS to T1FS, we used the closed-
form Nie-Tan TR method [47].
Normalizing the firing strengths will give a fuzzy basis vector

ζ(x) = [ζTl (x), ζ
T
r (x)]

T . The left and right basis terms are defined as

ζl(x) =
f j∑M

j=1
f j
, ζr(x) =

f
j

∑M
j=1

f
j

(21)

Based on the Nie-Tan TR method, we have

ζ(x) =
f j + f

j

∑M
j=1

f j + f
j

( ) (22)

3.6 Defuzzification Layer. Let y j ∈ R be a free parameter
representing all points that maximize the MF of the output, i.e.,
μBj

n
and put into the set θ̂ ∈ RM . Hence, the expression for the

approximated term Ω̂(x|θ̂) will be given as

y f = Ω̂(x|θ̂) = θ̂Tζ(x) (23)

where θ̂ = [ y1, y2, · · · , yM]T is the parametric vector.

4 Controller Design and Stability Analysis
4.1 Controller Design. In this section, we design a prescribed

performance hybrid BSMC. We now integrate a prescribed perfor-
mance control with the main controller to constrain the tracking
error defined in Eq. (12) to achieve a desired prescribed error
range as in Eq. (17). The framework for the proposed control is
illustrated in Fig. 3. Inspired by Refs. [48,49], we choose a transfor-
mation performance function as

ρi(t) =

t4s w(t)

(1 − ρs,i)(ts − t)4 + ρs,it4s w(t)
, 0 ≤ t < ts

1
ρs,i

, t ≥ ts

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(24)

Fig. 3 Proposed control framework
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where ts denotes the preset finite settling time, 0 ≤ ρs,i ≤ 1 is the
desired minimum steady-state error, w(t) represent a strictly increas-
ing and smooth function, and w(0) = 1.
LEMMA 3 ([50]). The transformation performance function ρi(t)

be defined as in (24) and hence the following three properties hold:

(1) For t ∈ [0, ts), the function ρi(t) with ρi(0) = 1 is a strictly
increasing function and the final value reaches 1/ρs,i at
t = ts and remains the constant for t ∈ [ts, ∞].

(2) ρ̇i and ρ̈i are continuously differentiable and bounded
∀t ≥ 0; ρ(3) is continuous and bounded everywhere.

(3) The term δ̂i = ρ−1i ρ̇i have continuous derivatives and bounded

functions, and ¨̂δ is also continuous and bounded everywhere.

The proposed control strategy must ensure that each vehicle’s
spacing error converges and steers into a predetermined threshold
within a specified settling time and speed. Hence, we define a trans-
formed error term as

ξi(t) = ρi(t)ei(t), i = 1, 2, . . . , N (25)

z1,i(t) = λiξi(t), z2,i(t) = ėi(t) − αi(t) (26)

with

λi(t) =
1

(δmax ,i − ξi(t))(δmin ,i + ξi(t))

where z1,i(t) is the transformed position tracking error, z2,i(t) is the
second tracking error which will be defined later, and αi(t) is the
virtual control input which will be designed later.
For an asymmetric error constraint, it is noticeable that z1,i(t) is

applicable in the compact set Oξ : = { − δmin ,i < ξ1,i(t) < δmax ,i}
and for any −δmin ,i < ξ1,i(0) = e1,i(0) < δmax ,i, if z1,i(t) is bounded
for all t ≥ 0, it will inherently be assured that ξi(t) ∈ Oξ for all
t ≥ 0. For all the vehicles (i = 1, 2, . . . , N), e(t) = ρ−1(t)ξ(t) and
bounded ξ(t), we therefore can achieve e(t) to be bounded in the pre-
scribed asymmetric boundary as

−(1 − ρs)
ts − t

ts

( )4

w−1(t)δmin − ρsδmin ≤ e(t)<

(1 − ρs,i)
ts − t

ts

( )4

w−1(t)δmax + ρsδmax, 0 ≤ t < ts

−ρsδmin < e(t) < ρsδmax, t ≥ ts

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(27)

Remark 1. In the proposed control approach, an asymmetric
bound can be defined for a more general case where δmin ≠ δmax.
Moreover, we only need a rough estimation of the initial error
to design δmin and δmax to satisfy −δmin ,i < e1,i(0) < δmax ,i
(i = 1, 2, . . . , N), unlike some control techniques that demand a
precise initial value. If we define larger upper and lower bounds,
we can control the error by defining the desired steady-state error
value ρs. ▪
Thus, the time derivative of ξi(t) can be obtained as

ξ̇i(t) = ρ̇i(t)ei(t) + ρi(t)ėi(t)

= ρ̇i(t)ei(t) + ρi(t) z2,i(t) + αi(t)
( ) (28)

Computing the time derivative of z1,i(t) and substituting the
expression of ξ̇i(t) into it yields

ż1,i(t) = ϱiξ̇i(t)

= ϱiρi(t) ρ
−1
i ρ̇i(t)ei(t) + z2,i(t) + αi(t)

( ) (29)

where

ϱi =
δmax ,iδmin ,i + ξ2i

(δmax ,i − ξi(t))
2(δmin ,i + ξi(t))

2

Construct the candidate Lyapunov function as

V1,i(t) =
1
2
z21,i(t) (30)

The time derivative of V1,i(t) gives

V̇1,i(t) = z1,i(t)ϱiρi(t) ρ
−1
i (t)ρ̇i(t)ei(t) + z2,i(t) + αi(t)

( )
(31)

Design the virtual control input as

αi(ei, δ̂i, t) = −
c1,iλi(t)ei(t)

ϱi
− ρ−1i (t)ρ̇i(t)ei(t) (32)

where c1,i is a positive design constant. Substituting (32) into (31)
yields

V̇1,i(t) = −c1,iλi(t)ρi(t)ei(t)z1,i(t) + ϱiρi(t)z1,i(t)z2,i(t)

= −c1,iz21,i(t) + ϱiρi(t)z1,i(t)z2,i(t)
(33)

For perfect tracking, z2,i(t) should be 0, so that we will have
V̇1,i(t) ≤ 0. We define the second tracking error z2,i(t) as

z2,i(t) = vi−1(t) − vi(t) −
ϑi

amax ,i
vi(t)ai(t)

−
κ1,i
κ2,i

exp −
vi(t)
κ2,i

( )
ai(t) − αi(·)

(34)

The derivative of z2,i(t) in (34) with respect to time gives

ż2,i(t) = ai−1(t) − ai(t) − ωia
2
i (t) − Ψiȧi(t) − α̇i(·) (35)

where

ωi =
ϑi

amax ,i
−
κ1,i
κ22,i

exp −
vi(t)
κ2,i

( )

Ψi =
ϑi

amax ,i
vi(t) +

κ1,i
κ2,i

exp −
vi(t)
κ2,i

( )
> 0

Now, let us introduce SMC control to the backstepping control
design. Define a sliding surface σ̃i(t) as

σ̃i(t) = z2,i(t) + c2,iz1,i(t) (36)

where c2,i is a positive design constant. The derivative of Eq. (36)
with respect to time yields

˙̃σi(t) = ż2,i(t) + c2,iż1,i(t) (37)

Plugging Eq. (32) into Eq. (29) gives the expression for ż1,i(t) as

ż1,i(t) = −c1,iz1,i(t) + ϱiρi(t)z2,i(t) (38)

Substituting Eqs. (35) and (38) into Eq. (37) will give

˙̃σi(t) = ai−1(t) − ai(t) − ωia
2
i (t) − Ψiȧi(t) − α̇i(·)

+ c2,i −c1,iz1,i(t) + ϱiρi(t)z2,i(t)
( ) (39)

The derivative term of the virtual control α̇i(ei, δ̂i, t) can be com-
puted as

α̇i(·) = ei(t)
˙̂δi − ėi(t)δ̂i + c1,iei(t)ξ̇i(t)

δmin + ξi(t)

ξ2i (t) + δminδmax

− c1,iėi(t)
(δmin + ξi(t))(δmax − ξi(t))

ξ2i (t) + δminδmax

− c1,iei(t)ξ̇i(t)
δmax − ξi(t)

ξ2i (t) + δminδmax

+ 2c1,iei(t)ξi(t)ξ̇i(t)
(δmin + ξi(t))(δmax − ξi(t))

(ξ2i (t) + δminδmax)2

(40)
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with

δ̂i =
ρ̇i(t)
ρi(t)

=
(1 − ρs,i)(ts − t)3 (ts − t)ẇ(t) + 4w(t)[ ]
w(t) (1 − ρs,i)(ts − t)4 + ρs,it4s w(t)

[ ] , t < ts

0, t ≥ ts

⎧⎨
⎩

(41)

˙̂δi =
ρ̈i(t)
ρi(t)

−
ρ̇i(t)

2

ρ2i (t)
=

ḃq − bq̇

q2
, t < ts

0, t ≥ ts

⎧⎪⎨
⎪⎩ (42)

And

b = (1 − ρs,i)(ts − t)3[(ts − t)ẇ(t) + 4w(t)]

ḃ = −3(1 − ρs,i)(ts − t)2[(ts − t)ẇ(t) + 4w(t)]

+ (1 − ρs,i)(ts − t)3[(ts − t)ẅ(t) + 3ẇ(t)]

q = (1 − ρs,i)(ts − t)4w(t) + ρs,it
4
s w

2(t)

q̇ = (1 − ρs,i)(ts − t)4ẇ(t) − 4(1 − ρs,i)(ts − t)3w(t) + 2ρs,it
4
s ẇ(t)w(t)

Referring (3), Eq. (11) can be re-written as

ȧi(t) = θ∗Ti ζi(x) + εi(t) + Giηi(t)ûi(t) (43)

Substituting Eq. (43) into Eq. (39), one can obtain

˙̃σi(t) = ai−1(t) − ai(t) − ωia
2
i (t) − Ψi θ

∗T
i ζi(x) + εi(t)

(
+Giηi(t)ûi(t)

)
− α̇i(·) + c2,i −c1,iz1,i(t) + ϱiρiz2,i(t)

( ) (44)

Based on the inequality defined in Sec. 2, we have the following
inequality as in Ref. [51], i.e.,

ηi(t)ûi(t) ≥ ηmin ,iûi(t) (45)

Multiplying (39) with σ̃i(t) gives

σ̃i(t) ˙̃σi(t) = σ̃i(t) ai−1(t) − ai(t) − ωia
2
i (t) − α̇i(·)

(
−Ψiθ

∗T
i ζi(x)

)
− Ψiσ̃i(t)εi(t) − Giσ̃i(t)ηi(t)ûi(t)

+ σ̃i(t)c2,i −c1,iz1,i + ϱiρiz2,i
( )

≤ σ̃i(t) ai−1(t) − ai(t) − ωia
2
i (t) − α̇i(·)

(
−Ψiθ

∗T
i ζi(x)

)
+ Ψi|σ̃i(t)|εmax ,i − Giσ̃i(t)ηmin ,iûi(t)

+ σ̃i(t)c2,i −c1,iz1,i + ϱiρiz2,i
( )

(46)

Consider the arc-tangent-based compound reaching law pro-
posed in Ref. [52] as

˙̃σi(t) = −β1,iarctan β2,i|σ̃i(t)|
( )

sign σ̃i(t)( ) − β3,iσ̃i(t) (47)

where β1,i, β2,i, and β3,i are positive design constants, sign(·)
denotes the signum or sign function. Figure 4 compares the pro-
posed reaching law and sliding surface with other most common
ones. The convergence speed for the corresponding reaching laws
from σ̃(0) = 1 can be seen in Fig. 4(a).
We design the control input ûi(t) as

ûi(t) = (Ψiηmin ,iGi)
−1 ϱiρiz1,i(t) + ai−1(t) − ai(t)ωia

2
i (t)

(
+ Ψiθ̂

T
i ζi(x) − α̇i(·) + c2,i( − c1,iz1,i + ϱiρiz2,i)

+β1,iarctan β2,i|σ̃i(t)|
( )

sign σ̃i(t)( ) + β3,iσ̃i(t)
) (48)

The adaptive law for the parameter vector θ̂i is given as

˙̂θi = −γθ,iΨiσ̃i(t)ζi(x) − ϕθ,iθ̂i (49)

where γθ,i and ϕθ,i are positive design constants.

4.2 Stability Analysis
THEOREM 1. A plant dynamics defined in (9)–(11) with an actua-

tor fault as in (8) and designed PPC-based BSMC (48) and the
adaptive law of the IT2FLS (49) with the earlier predefined assump-
tions can be stabilized as the error ei(t) guaranteed to be ultimately
bounded in the prescribed small error range near zero as defined in
(27).
Proof. Design the following Lyapunov candidate function as

V2,i(t) = V1,i(t) +
1
2
σ̃2i (t) +

1
2γθ,i

θ̃
T
i θ̃i (50)

where θ̃i = θ̂i − θ∗i denotes a parameter vector approximation error.
Taking the derivative of Eq. (50) with respect to time gives

V̇2,i(t) = V̇1,i(t) + σ̃i(t) ˙̃σi(t) +
1
γθ,i

θ̃
T
i
˙̃θi (51)

For a constant θ∗i , we have θ̇
∗
i = 0. Differentiating the approxi-

mating error gives

˙̃θi =
˙̂θi − θ̇

∗
i =

˙̂θi (52)

Plugging Eqs. (44), (52), and (39) into (51) yields

V̇2,i(t) = −c1,iz21,i + ϱiρiz1,i(t)z2,i(t) + σ̃i(t) ai−1(t) − ai(t)(
−ωia

2
i (t) − α̇i(·) − Ψiθ

∗T
i ζi(x)

)
+Ψi|σ̃i(t)|εmax ,i

− Giσ̃i(t)ηmin ,iûi(t) + σ̃i(t)c2,i −c1,iz1,i(t)
(

+ ϱiρiz2,i(t)
)
+

1
γθ,i

θ̃
T
i
˙̂θi (53)

We have z2,i(t) = σ̃i(t) − c2,iz1,i(t) from Eq. (36). Thus, we get

V̇2,i(t) = −c1,iz21,i(t) − c2,iϱiρiz
2
1,i(t) + σ̃i ϱiρiz1,i(t)

(
+ ai−1(t) − ai(t) − ωia

2
i (t) − α̇i(·) − Ψiθ

∗T
i ζi(x)

)
+Ψi|σ̃i(t)|εmax ,i − Giσ̃i(t)ηmin ,iûi(t)

+ σ̃i(t)c2,i −c1,iz1,i(t) + ϱiρiz2,i(t)
( )

+
1
γθ,i

θ̃
T
i
˙̂θi (54)

Fig. 4 Comparison of commonly used reaching laws (a) and the
corresponding sliding surfaces (b) ( β1 = 10, β2 = 10, β3 = 10,
α= 0.5)
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Plugging the designed control term in Eq. (48) into Eq. (54) and
rearranging yields

V̇2,i(t) = − c1,iz
2
1,i(t) − c2,iϱiρiz

2
1,i(t) − β3,iσ̃

2
i (t)

+ Ψiσ̃i(t)θ̃
T
i ζi(x) +

1
γθ,i

θ̃
T
i
˙̂θi

− β1,iarctan(β2,i|σ̃i(t)|)|σ̃i(t)| +Ψi|σ̃i(t)|εmax ,i

(55)

Inserting the adaptive law (49) into (55) and appropriately choos-
ing β1,i ≥ εmax ,i yields

V̇2,i(t) ≤ −c1,iz21,i(t) − c2,iϱiρiz
2
1,i(t) − β3,iσ̃

2
i (t) −

ϕθ,i

γθ,i
θ̃
T
i θ̂i (56)

The following inequality holds:

−
ϕθ,i

γθ,i
θ̃iθ̂i ≤ −

ϕθ,i

2γθ,i
θ̃
T
i θ̃i +

ϕθ,i

2γθ,i
θ∗Ti θ∗i

≤ −
ϕθ,i

2γθ,i
‖θ̃i‖2 +

ϕθ,i

2γθ,i
‖θ∗i ‖2

(57)

Replacing the inequality (57) into (56) and rearranging gives

V̇2,i(t) ≤ −(c1,i + c2,iϱiρi(t))z
2
1,i(t) − β3,iσ̃

2
i (t) −

ϕθ,i

2γθ,i
‖θ̃i‖2

+
ϕθ,i

2γθ,i
‖θ∗i ‖2 (58)

Therefore, one can get

V̇2,i(t) ≤ −ΥiV2,i(t) + Γi (59)

where

V2,i(t) =
1
2
z21,i(t) +

1
2
σ̃2i (t) +

1
2γθ,i

θ̃
T
i θ̃i

Υi = : min {2(c1,i + c2,iϱiρi(t)), 2β3,i, ϕθ,i}

Γi =
ϕθ,i

2γθ,i
‖θ∗i ‖2

Appropriately choosing the design parameters c1,i, c2,i, β1,i, β2,i,
β3,i, ϕθ,i, we have V2,i(t) ∈ L∞ or uniformly ultimately bounded.
Therefore, according to Lemma 2, we have

0 ≤ V2,i(t) ≤ V2,i(0) −
Γi

Υi

( )
e−Υi t +

Γi

Υi
(60)

≤ V2,i(0) +
Γi

Υi
(61)

Hence, the system tracking error be ‖z1,i(t)‖ ≤
��������
2Γi/Υi

√
. This

means that ei(t) ∈ L∞ is ultimately bounded and could converge
to a prescribed asymmetric error bound, which is a small neigh-
borhood of zero Oei : = { − ρs,iδmin ,i < ei(t) < ρs,iδmax} within a
predefined settling time ts at a prescribed converging rate
(ts − t)/ts
( )4

w−1(t). As a result, the sliding surface σ̃i(t) in
Eq. (36) will be ultimately bounded and can converge to zero due
to the proposed reaching law in Eq. (47). This proves that the
entire platoon system is string stable and that individual vehicles
have stability. This completes the proof. ▪
Remark 2. The involvement of the fuzzy approximation system
causes the difficulty of proving the asymptotic convergence of the
tracking error to zero. Additionally, achieving improved transient
performance in the L2-norm is challenging with the fuzzy system.
However, this problem was addressed in Ref. [53] to improve the
transient performance of the overall system and achieve asymptotic
stability.
To establish strong string stability, we must carefully define

the transient performance parameters δmax ,i and δmin ,i (as referenced
in the prescribed error constraint). We also set ρs,1 > ρs,2 ≥ · · ·
≥ ρs,N−1 > ρs,N ≥ 0, ensuring the condition eN(t) ≤ eN−1(t) ≤ · · · ≤
e2(t) ≤ e1(t) is met. This approach guarantees

πi(t) =
|ei+1(t)|
|ei(t)| ≤ 1

Hence, this prevents the propagation of transient spacing errors
across the vehicle platoon. Consequently, the platoon maintains sta-
bility as the errors do not amplify.

5 Demonstrative Example
To demonstrate the robustness of the proposed algorithm, a

simulation study was performed in MATLAB/Simulink for four
AVs in the platoon with homogeneous features following one
human-driven vehicle. The initial positions of the vehicles are
p(0) = [100, 90, 80, 70, 60]Tm, and the initial velocity and acceler-
ation of all vehicles are 0. The velocity profile for the lead vehicle in
m/s is given as

v0(t) =

2t, 0 ≤ t < 10
20, 10 ≤ t < 25

−1.5t + 57.5, 25 ≤ t < 30
12.5, 30 ≤ t < 50

⎧⎪⎪⎨
⎪⎪⎩ (62)

Fig. 5 Control performance under a no-fault condition
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The disturbance is di(t) = 0.4cos(0.1t) + 0.7 sin (0.01t)m/s3.
The vehicle parameters mi=1450kg, τi=0.2s, ρ′=1.184kg/m3,
Cd,i=0.34, dm,i=150N, and Af ,i=2.3m2. The parameters for the
spacing policy are li−1=5m, do,i=5m, ϑi=0.4, amax=5m/s2,
κ1,i=2.5, and κ2,i=2. The parameters for the controller are
wi(t)=et , ts=5s, δmax ,i=1.5, δmin ,i=1, ρs,1=0.1, ρs,2=0.08,
ρs,3=0.05, ρs,4=0.01, c1,i=1, c2,i=1, β1,i=100, β2,i=5, β3,i=10,
ϕθ,i=1.5, and γθ,i=1.2×106. For the IT2FLS, five Gaussian MFs
with uncertain standard deviation and fixed mean values were
designed. The inputs to the IT2FLS are the vehicle’s velocity and
acceleration. Thus, x= [x1, x2]T = [vi(t), ai(t)]T . Considering the
range of these values, i.e., velocity (0–25m/s) and acceleration
(−3.0 to 3.0m/s2), we formulate the Gaussian membership func-
tions as in Eq. (19) for the n=2 inputs with σs11 ∈ [σs11 , σ

s1
1 ] and σ

s2
2 ∈

[σs22 , σ
s2
2 ] as uncertain standard deviations of input 1 and 2, respec-

tively. We considered an uncertainty of ±1m/s and ±0.2m/s2

in the velocity and acceleration values, respectively. We designed
the means as m̂s1

1 = [0, 7.5, 15, 22.5, 30]T and m̂s2
2 = [−3, −1.5,

0, 1.5, 3]T and the uncertain standard deviations are σs11 = 3 ± 1
and σs22 = 0.5 ± 0.2.

5.1 Simulation Without Fault Condition. We have shown
the proposed control scheme under a no-fault condition as in
Fig. 5. According to the proposed spacing policy, all the vehicles
have achieved string stable conditions from the plot of ei(t).
During the first 5 s, it is noticeable that the velocity difference
Δvi(t) and acceleration difference Δai(t) values will propagate to
achieve the preset steady-state error under the proposed exponential
spacing policy and the tracking error will converge to zero as the
vehicle keeps a constant speed. The bottom right plot shows that
the IT2FLS could approximate the unknown nonlinear terms with
minimal error. Figure 6 illustrates the comparison of approximation
errors of IT2FLS and RBF-NN. For RBF-NN, the adaptive law for
the weights is similar as in Eq. (49) with the ζT given as

ζs = exp −
‖x − m̂s

k‖2
2 σsk
( )2

( )
, k = 1, 2 and s = 1, 2, . . . , h

where

m̂s
k =

m̂s
1

m̂s
2

[ ]
=

0 7.5 15 22.5 30
−3 −1.5 0 1.5 3

[ ]

and

σs
k =

σs1
σs2

[ ]
=

3 3 3 3 3
0.5 0.5 0.5 0.5 0.5

[ ]

From Fig. 6(a), we can observe that the IT2FLS achieved less
approximation error (≤ 0.2) than RBF-NN as in Fig. 6(b) in
which the error surpasses 0.4.

5.2 Simulation With Actuator Fault Condition. Next, we
performed a simulation to see the effect of an actuator fault on
the robustness of the proposed control strategy. The actuator effi-
ciency is given by a relation as ηi(t) = 0.75 + 0.25 exp ( − 0.3t)
and the additive fault is u f ,i(t) = −150(1 − exp ( − 0.1t)). We
set ηmin ,i = 0.75 and we modify the reaching law parameters
β1,i = 200, β2,i = 5, and β3,i = 60. Figure 7 shows the state of the
vehicles and the approximation performances under the multiplica-
tive and additive fault conditions. Moreover, we have added white
noise and the disturbance di(t) equivalent to the one given earlier.
The proposed controller ensured string stability even in the pres-

ence of faults and disturbances. It demonstrated comparable track-
ing performance to that in fault-free conditions. Apart from such
tracking performance, the approximation of the unknown terms
Ωi has shown a slight deviation in the first 10 s. The controller
regains the performance after 10 s as the approximation error

Fig. 6 Comparison of the approximation errors: (a) approxima-
tion error of IT2FLS and (b) approximation error of RBF-NN

Fig. 7 Control performance under a multiplicative and additive fault condition
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approaches almost zero. For the first 5 s, the vehicles will exert
higher effort as we move to the tail of the platoon string. This per-
turbation stabilizes over time, ensuring a stable formation. Sudden
variations in the lead vehicle’s speed impact the sliding surface
profile of the first vehicle, resulting in minor disturbances persisting
in the others due to white noise. Additionally, the introduced reach-
ing law successfully eliminated chattering in the signal.

6 Conclusion
In this paper, we designed a backstepping and sliding mode

control for an automated platoon experiencing a multiplicative and
additive fault. We proposed a prescribed time performance function
to bind the position error in a specified margin with a preset speed to
achieve string stability. Moreover, we proposed an ESP that consid-
ers road and environmental factors to achieve stable operation and
vehicular constraints. We proposed an IT2FLS to approximate the
unknown nonlinear terms. Finally, the simulation result demon-
strated the robustness and performance of the proposed control
approach. Besides the discussed practical and positive implications
of the control strategy, we can have a few practical challenges
while implementing the algorithm. These practical challenges
are computational complexity, tuning and calibration, scalability,
and integration with existing systems. Implementing IT2FLS
and BSMC can be computationally intensive, requiring power-
ful onboard processing units to perform real-time calculations.
Besides, the system’s performance heavily depends on accurately
tuning fuzzy logic membership functions and control parameters,
which can be challenging and time-consuming. Ensuring consistent
performance across many vehicles in a platoon might be difficult,
especially under varying traffic conditions and external disturbances.
Adapting the proposed strategy to work seamlessly with existing
vehicle control systems and communication protocols can pose sig-
nificant integration challenges.Moreover, some futurework could be
extended. Exploring scenarios involving intermittent sensor delays,
communication disruptions, and nonlinear actuator dead zones could
be considered. Employing advanced learning algorithms for intelli-
gent parameter tuning is another potential area. Addressing chal-
lenges related to vehicle cut-ins in mixed-traffic settings also
presents an interesting problem for investigation.
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Appendix A: Vehicle Model Derivation
The summation of all the forces along the longitudinal direction

is given by

miai(t) = Ft,i − Fa,i − dm,i

= Ft,i −
1
2
ρCd,iA f ,iv

2
i (t) − dm,i

(A1)

wheremi is the mass of vehicle i, ai is vehicle acceleration, Ft,i is the
engine traction force of vehicle i, Fa,i is the aerodynamic drag force
on vehicle i, ρ is the air density, Cd,i is the coefficient of aerody-
namic drag, Af ,i is the frontal cross-sectional area of vehicle i, vi
is the velocity of vehicle i, and dm,i is the mechanical drag on
vehicle i.

Dividing Eq. (A1) by mi, the acceleration is given as

ai(t) =
1
mi

Ft,i −
1
2
ρCd,iA f ,iv

2
i (t) − dm,i

( )
(A2)

The engine dynamics equation can be expressed as

Ḟt,i(t) =
1
τi

−Ft,i + ui(t)
( )

(A3)

where τi is the engine/brake lag time of vehicle i and ui ∈ R1 is the
control input to the ith vehicle engine system (ui > 0 represents
throttle input and ui < 0 represents braking input).
Differentiating Eq. (A2) yields

ȧi(t) =
1
mi

Ḟt,i −
1
mi

ρCd,iA f ,ivi(t)ai(t)

( )
(A4)

And substituting (A3) into (A4) will give

ȧi(t) =
1
mi

−
Ft,i

τi
+
ui
τi
−

1
mi

ρCd,iA f ,ivi(t)ai(t)

( )
(A5)

Having the relation of Ft,i from Eq. (A2), we can have

ȧi(t) = −
1
τi

ai(t) +
1
2mi

ρCd,iA f ,ivi(t)
2 +

dm,i
mi

[ ]

−
1
mi

ρ′Cd,iA f ,ivi(t)ai(t)

(A6)

Appendix B: Rolle’s Theorem
Let F be a continuous function over the closed interval [a, b] and

differentiable over the open interval (a, b) such that F (a) = f (b).
There then exists at least one ι ∈ (a, b) such that F′(c) = 0.
Proof. Let ϱ = F (a) = F (b). We consider three cases:

• F (x) = ϱ ∀x ∈ (a, b).
• There exists x ∈ (a, b) such that F (x) > ϱ.
• There exists x ∈ (a, b) such that F (x) < ϱ.

Case 1. If F (x) = ϱ for all x ∈ (a, b), then F′(x) = 0 for all
x ∈ (a, b).

Case 2. Since F is a continuous function over the closed,
bounded interval [a, b], according to the extreme value
theorem, it has an absolute maximum. Also, since there is
a point x ∈ (a, b) such that F (x) > ϱ, the maximum is
greater than ϱ. Hence, the maximum value cannot be found
at the beginning or end. Consequently, it must be within
the ι ∈ (a, b) range. Because F has a maximum at an interior
point ι, and F is differentiable at ι. Thus, based on Fermat’s
theorem, F′(ι) = 0.

Case 3. The case when there exists a point x ∈ (a, b) such that
F (x) < ϱ is analogous to case 2, with maximum replaced
by minimum. ▪
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