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Abstract: Local asymptotic stability analysis is conducted for an initial-boundary-value problem of a
Korteweg–de Vries equation posed on a finite interval [0, 2π√7/3]. The equation comes with a Dirichlet
boundary condition at the left end-point and both the Dirichlet and Neumann homogeneous boundary
conditions at the right end-point. It is known that the associated linearized equation around the origin is
not asymptotically stable. In this paper, the nonlinear Korteweg–de Vries equation is proved to be locally
asymptotically stable around the origin through the center manifold method. In particular, the existence of
a two-dimensional local center manifold is presented, which is locally exponentially attractive. Analyzing
the Korteweg–de Vries equation restricted on the local center manifold, we obtain a polynomial decay rate
of the solution.
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1 Introduction
The Korteweg–de Vries (KdV) equation

yt + yx + yyx + yxxx = 0

was first derived by Boussinesq in [2, (283 bis)] and by Korteweg and de Vries in [14], for describing the
propagation of small amplitude long water waves in a uniform channel. This equation is now commonly
used tomodel unidirectional propagation of small amplitude long waves in nonlinear dispersive systems. An
excellent reference to help understand both physical motivation and deduction of the KdV equation is the
book by Whitham [22].
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Rosier studied in [20] the following nonlinear Neumann boundary control problem for the KdV equation
with homogeneous Dirichlet boundary conditions, posed on a finite spatial interval:

{{{
{{{
{

yt + yx + yyx + yxxx = 0, t ∈ (0,∞), x ∈ (0, L),
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0,∞),
y(0, x) = y0(x), x ∈ (0, L),

(1.1)

where L > 0, the state is y(t, ⋅) : [0, L] → ℝ, and u(t) ∈ ℝ denotes the controller. The equation comes with
one boundary condition at the left end-point and two boundary conditions at the right end-point. Rosier
first considered the first-order power series expansion of (y, u) around the origin, which gives the following
corresponding linearized control system:

{{{
{{{
{

yt + yx + yxxx = 0, t ∈ (0,∞), x ∈ (0, L),
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0,∞),
y(0, x) = y0(x), x ∈ (0, L).

(1.2)

By means of multiplier technique and the Hilbert uniqueness method (HUM) [15], Rosier proved that (1.2) is
exactly controllable if and only if the length of the spatial domain is not critical, i.e., L ∉ N, whereN denotes
the following set of critical lengths:

N := {2π√ j
2 + l2 + jl

3 ; j, l ∈ ℕ∗}. (1.3)

Then, by employing the Banach fixed point theorem, he derived that the nonlinear KdV control system (1.1)
is locally exactly controllable around 0 provided that L ∉ N. In the cases with critical lengths L ∈ N, Rosier
demonstrated in [20] that there exists a finite dimensional subspace M of L2(0, L) which is unreachable
for the linear system (1.2) when starting from the origin. In [8], Coron and Crépeau treated a critical case
of L = 2kπ (i.e., taking j = l = k in N), where k is a positive integer such that (see [7, Theorem 8.1 and Re-
mark 8.2])

(j2 + l2 + jl = 3k2 and j, l ∈ ℕ∗) ⇒ j = l = k. (1.4)

Here, the uncontrollable subspaceM for the linear system (1.2) is one-dimensional. However, through a third-
order power series expansion of the solution, they showed that the nonlinear term yyx always allows to “go”
in small time into the two directions missed by the linearized control system (1.2), and then, using a fixed
point theorem, they deduced the small-time local exact controllability around the origin of the nonlinear
control system (1.1). In [4], Cerpa studied the critical case of L ∈ N�, where

N� :={2π√ j
2 + l2 + jl

3 ; j, l ∈ℕ∗ satisfying j > l and j2 + jl + l2 ̸= m2 +mn + n2 for all m, n ∈ℕ∗ \{j}}. (1.5)

In this case, the uncontrollable subspace M for the linear system (1.2) is of dimension 2, and Cerpa used a
second-order expansion of the solution to the nonlinear control system (1.1) to prove the local exact con-
trollability in large time around the origin of the nonlinear control system (1.1) (the local controllability in
small time for this length L is still an open problem). Furthermore, Cerpa and Crépeau considered in [5] the
cases when the dimension ofM for the linear system (1.2) is higher than 2. They implemented a second-order
expansion of the solution to (1.1) for the critical lengths L ̸= 2kπ for any k ∈ ℕ∗, and implemented an expan-
sion to the third order if L = 2kπ for some k ∈ ℕ∗. They showed that the nonlinear term yyx always allows
to “go” into all the directions missed by the linearized control system (1.2) and then proved the local exact
controllability in large time around the origin of the nonlinear control system (1.1).

Consider the casewhen there is no control, i.e., u = 0, in (1.1),whichgives the following initial-boundary-
value KdV problem posed on a finite interval [0, L]:

{{{
{{{
{

yt + yx + yxxx + yyx = 0, t ∈ (0,∞), x ∈ (0, L),
y(t, 0) = y(t, L) = 0, yx(t, L) = 0, t ∈ (0,∞),
y(0, x) = y0(x), x ∈ (0, L),

(1.6)
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where the boundary conditions are homogeneous. For the Lyapunov function

E(t) = 1
2 ‖y(t, ⋅)‖

2
L2(0,L) =

1
2

L

∫
0

y2(t, x)dx, (1.7)

we have

Ė(t) = −
L

∫
0

y(yx + yyx + yxxx)dx =
L

∫
0

yxyxxdx = −
1
2 y

2
x(t, 0) ≤ 0. (1.8)

Thus, 0 ∈ L2(0, L) is stable (see (P1) below for the definition of stable) for the KdV equation (1.6). Moreover, it
has beenproved in [18] that, if L ∉ N, then0 is exponentially stable for the corresponding linearized equation
around the origin:

{{{
{{{
{

yt + yx + yxxx = 0, t ∈ (0,∞), x ∈ (0, L),
y(t, 0) = y(t, L) = 0, yx(t, L) = 0, t ∈ (0,∞),
y(0, x) = y0(x), x ∈ (0, L),

(1.9)

which gives the local asymptotic stability around the origin for the nonlinear equation (1.6). However, when
L ∈ N, Rosier pointed out in [20] that equation (1.9) is not asymptotically stable. Inspired by the fact that the
nonlinear term yyx introduces the local exact controllability around the origin into the KdV control system
(1.1) with L ∈ N, we would like to discuss whether the nonlinear term yyx could introduce local asymptotic
stability around the origin for (1.6).

This paper is devoted to investigating the local asymptotic stability of 0 ∈ L2(0, L) for (1.6) with the
critical length

L = 2π√7/3,

corresponding to j = 1 and l = 2 in (1.3). Let us recall that this local asymptotic stability means that the fol-
lowing two properties are satisfied.
(P1) Stability: for every ε > 0, there exists η = η(ε) > 0 such that ‖y0‖L2(0,L) < η implies

‖y(t, ⋅)‖L2(0,L) < ε for all t ≥ 0.

(P2) (Local) attractivity: there exists ε0 > 0 such that ‖y0‖L2(0,L) < ε0 implies

lim
t→+∞

‖y(t, ⋅)‖L2(0,L) = 0.

As mentioned above, the stability property (P1) is implied by (1.8). Our main concern is thus the local
attractivity property (P2). We prove the following theorem, where the precise definition of a solution to (1.6)
is given in Definition 2.7, and the precise definition of the finite dimensional vector spaceM ⊂ L2(0, L)when
L = 2π√7/3 is given in (2.8).

Theorem 1.1. Consider the KdV equation (1.6) with L = 2π√7/3. There exist δ > 0, K > 0, ω > 0 and a map
g : M → M⊥, where M⊥ ⊂ L2(0, L) is the orthogonal of M for the L2-scalar product, satisfying

g ∈ C3(M;M⊥), (1.10)
g(0) = 0, g�(0) = 0, (1.11)

such that, with
G := {m + g(m); m ∈ M} ⊂ L2(0, L), (1.12)

the following three properties hold for every solution y to (1.6) with ‖y0‖L2(0,L) < δ:
(i) Local exponential attractivity of G:

d(y(t, ⋅), G) ≤ Ke−ωtd(y0, G) for all t > 0, (1.13)

where d(χ, G) denotes the distance between χ ∈ L2(0, L) and G:

d(χ, G) := inf{‖χ − ψ‖L2(0,L); ψ ∈ G}.
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(ii) Local invariance of G: If y0 ∈ G, then y(t, ⋅) ∈ G for all t ≥ 0.
(iii) If y0 ∈ G, then there exists C > 0 such that

‖y(t, ⋅)‖L2(0,L) ≤
C‖y0‖L2(0,L)

√1 + t‖y0‖2L2(0,L)
for all t ≥ 0. (1.14)

In particular, 0 ∈ L2(0, L) is locally asymptotically stable in the sense of the L2(0, L)-norm for (1.6).

Remark 1.2. It can be derived from [9, Theorem 1 and comments] that, for every L > 0, there are nonzero
stationary solutions with the period of L to the following ordinary differential equation (ODE):

{{{
{{{
{

f � + ff � + f ��� = 0 in [0, L],
f(0) = f(L) = 0,
f �(L) = 0.

That is, besides the origin, there also exist other steady states of the nonlinear KdV equation (1.6). Therefore,
0 ∈ L2(0, L) is not globally asymptotically stable for (1.6): Property (P2) does not hold for arbitrary ε0 > 0.

Our proof of Theorem 1.1 relies on the center manifold approach. This center manifold is G in Theorem 1.1.
Center manifold theory plays an important role in studying dynamic properties of nonlinear systems near
“critical situations”. The center manifold theorem was first proved for finite dimensional systems by Pliss
[19] and Kelley [12], and the readers could refer to [13, 17] for more details of this theory. Analogous results
are also established for infinite dimensional systems, such as partial differential equations (PDEs) [1, 3] and
functional differential equations [10]. The center manifold method usually leads to a dimension reduction of
the original problems. Then, in order to derive stability properties (asymptotic stability or unstability) of the
full nonlinear equations, one only needs to analyze the reduced equation (restricted on the center manifold).
When dealing with the infinite dimensional problems, this method can be extremely efficient if the center
manifold is finite dimensional. Following the results on existence, smoothness and attractivity of a center
manifold for evolution equations in [21], Chu, Coron and Shang studied in [6] the local asymptotic stability
property of (1.6) with the critical length L = 2kπ for any positive integer k such that (1.4) holds. They proved
the existence of a one-dimensional local center manifold. By analyzing the resulting one-dimensional re-
duced equation, they obtained the local asymptotic stability of 0 for (1.6). For L = 2π√7/3, we get, following
[6], the existence of a two-dimensional local center manifold. It is predictable that the two-dimensional local
center manifold introduces more complexity than the one-dimensional local center manifold case.

The organization of this paper is as follows. In Section 2, some basic properties of the linearized KdV
equation (1.9) and the KdV equation (1.6) are given. Then, in Section 3, we recall a theorem on the existence
of a local center manifold for the KdV equation (1.6) and analyze the dynamics on the local center manifold.
Theorem 1.1 follows from this analysis. In Section 4, we present the conclusion and some possible future
works. We end this article with Appendix A containing computations which are important for the study of
the dynamics on the center manifold.

2 Preliminaries

2.1 Some properties for the linearized equation of (1.6) around the origin

The origin y = 0 is an equilibrium of the initial-boundary-value nonlinear KdV problem (1.6). In this sub-
section, we derive some properties for the linearized KdV equation (1.9) around the origin of (1.6) posed on
the finite interval [0, L], where L = 2π√7/3 ∈ N�, for which there exists a unique pair {j = 2, l = 1} satisfying
(1.5).

LetA : D(A) ⊂ L2(0, L) → L2(0, L) be the linear operator defined by

Aφ := −φ� − φ���,
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with
D(A) := {φ ∈ H3(0, L); φ(0) = φ(L) = φ�(L) = 0} ⊂ L2(0, L).

Then the linearized equation (1.9) can be written as an evolution equation in L2(0, L):

dy(t, ⋅)
dt

= Ay(t, ⋅).

The following lemma can be immediately obtained.

Lemma 2.1. A−1 exists and is compact on L2(0, L). Hence, σ(A), the spectrum ofA, consists of isolated eigen-
values only: σ(A) = σp(A), where σp(A) denotes the set of eigenvalues ofA.

Proof. By calculation, we get
A−1φ = ψ for all φ ∈ L2(0, L),

with

ψ := −
1 − cos(x − L)
1 − cos L

L

∫
0

(1 − cos y)φ(y)dy +
L

∫
x

(1 − cos(x − y))φ(y)dy.

Hence we get the existence ofA−1 and that, by the Sobolev embedding theorem, this operator is compact on
L2(0, L). Therefore, σ(A), the spectrum ofA, consists of isolated eigenvalues only.

The following proposition is proved.

Proposition 2.2 ([20, Proposition 3.1]). A generates a C0-semigroup of contractions {S(t)}t≥0 on L2(0, L), that
is, for any given initial data y0 ∈ L2(0, L), S(t)y0 is the mild solution of the linearized equation (1.9), and

‖S(t)y0‖L2(0,L) ≤ ‖y0‖L2(0,L) for all t ≥ 0.

Moreover, Re(λ) ≤ 0 for every λ ∈ σ(A).

If Re(λ) < 0 for all λ ∈ σ(A), then it follows directly from the ABLP theorem (Arendt–Batty–Lyubich–Phong)
[16] that the semigroup S(t) is asymptotically stable on L2(0, L). Sincewe only have Re(λ) ≤ 0 for all λ ∈ σ(A),
the main concern needs to be put on the eigenvalues on the imaginary axis and their corresponding eigen-
functions. Following the proofs of [6, Lemma 2.6] and [20, Lemma 3.5] yields the next lemma.

Lemma 2.3. There exists a unique pair of conjugate eigenvalues ofA on the imaginary axis, that is,

σp(A) ∩ iℝ = {λ = ±iq; q =
20

21√21
}.

Moreover, the corresponding eigenfunctions ofA with respect to λ = ±iq are

φ := C(φ1 ∓ iφ2),

respectively, where C is an arbitrary constant, and φ1, φ2 are two nonzero real-valued functions:

φ1(x) = Θ(cos(
5

√21
x) − 3 cos( 1

√21
x) + 2 cos( 4

√21
x)), (2.1)

φ2(x) = Θ(− sin(
5

√21
x) − 3 sin( 1

√21
x) + 2 sin( 4

√21
x)), (2.2)

with
Θ := 1

√14π
4√3/7. (2.3)

Remark 2.4. The equations satisfied by φ1 and φ2 are

{{{
{{{
{

φ�
1 + φ

���
1 = −qφ2,

φ1(0) = φ1(L) = 0,
φ�
1(0) = φ

�
1(L) = 0,

(2.4)
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and
{{{
{{{
{

φ�
2 + φ

���
2 = qφ1,

φ2(0) = φ2(L) = 0,
φ�
2(0) = φ

�
2(L) = 0.

(2.5)

Remark 2.5. We have
L

∫
0

φ1(x)φ2(x)dx = 0, (2.6)

and, with the definition of Θ given in (2.3),

‖φ1‖L2(0,L) = ‖φ2‖L2(0,L) = 1. (2.7)

From the results in Lemma 2.1, Proposition 2.2 and Lemma 2.3, we obtain the following corollary.

Corollary 2.6. λ = ±i 20
21√21 is the unique eigenvalue pair ofA on the imaginary axis, and all the other eigenval-

ues of A have negative real parts which are uniformly bounded away from the imaginary axis, i.e., there exists
r > 0 such that any of the nonzero eigenvalues ofA has a real part which is less than −r.

Let us define
M := span{φ1, φ2} = {m1φ1 + m2φ2; m = (m1,m2) ∈ ℝ2} ⊂ L2(0, L), (2.8)

where φ1, φ2 are defined in (2.1), (2.2) and (2.3). Then the following decomposition holds:

L2(0, L) = M ⊕M⊥,

with

M⊥ := {φ ∈ L2(0, L);
L

∫
0

φ(x)φ1(x)dx = 0,
L

∫
0

φ(x)φ2(x)dx = 0}. (2.9)

2.2 Some properties of the KdV equation (1.6)

By considering equation (1.6) as a special case (with f = 0 and u = 0) of [7, (4.6)–(4.8)], we give the following
definition for a solution to equation (1.6), which follows from [7, Definition 4.1].

Definition 2.7. Let T > 0 and y0 ∈ L2(0, L). A solution to the Cauchy problem (1.6) on [0, T] is a function

y ∈ B := C0([0, T]; L2(0, L)) ∩ L2(0, T;H1(0, L))

such that, for every τ ∈ [0, T] and for every ϕ ∈ C3([0, τ] × [0, L]) satisfying

ϕ(t, 0) = ϕ(t, L) = ϕx(t, 0) = 0 for all t ∈ [0, τ], (2.10)

one has

−
τ

∫
0

L

∫
0

(ϕt + ϕx + ϕxxx)ydxdt +
τ

∫
0

L

∫
0

ϕyyxdxdt +
L

∫
0

y(τ, x)ϕ(τ, x)dx −
L

∫
0

y0(x)ϕ(0, x)dx = 0. (2.11)

A solution to the Cauchy problem (1.6) on [0, +∞) is a function

y ∈ C0([0, +∞); L2(0, L)) ∩ L2loc([0, +∞);H1(0, L))

such that, for every T > 0, y restricted to [0, T] × (0, L) is a solution to (1.6) on [0, T].

Then by considering equation (1.6) as a special case of [8, (A.1)] (with f = 0 and u = 0), the following two
propositions about the existence and uniqueness of the solutions to (1.6) follow directly from [8, Proposi-
tions 14 and 15].
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Proposition 2.8. Let T ∈ (0, +∞). There exist ε = ε(T) > 0 and C = C(T) > 0 such that, for every y0 ∈ L2(0, L)
with ‖y0‖L2(0,L) < ε(T), there exists at least one solution y to equation (1.6) on [0, T] which satisfies

‖y‖B := max
t∈[0,T]

‖y(t, ⋅)‖L2(0,L) + (
T

∫
0

‖y(t, ⋅)‖2H1(0,L)dt)
1/2

≤ C(T)‖y0‖L2(0,L).

Proposition 2.9. Let T ∈ (0, +∞). There exists C > 0 such that, for each pair of solutions (y1, y2), correspond-
ing to each pair of initial conditions (y10, y20) ∈ (L2(0, L))2, to equation (1.6) on [0, T], the following inequali-
ties hold:

T

∫
0

L

∫
0

(y1x(t, x) − y2x(t, x))2dxdt ≤
L

∫
0

(y10(x) − y20(x))2dx exp(C(1 + ‖y1‖2L2(0,T;H1(0,L)) + ‖y2‖2L2(0,T;H1(0,L)))),

L

∫
0

(y1(t, x) − y2(t, x))2dx ≤
L

∫
0

(y10(x) − y20(x))2dx exp(C(1 + ‖y1‖2L2(0,T;H1(0,L)) + ‖y2‖2L2(0,T;H1(0,L)))),

for all t ∈ [0, T].

Let us also mention that for every solution y to (1.6) on [0, T] or on [0, +∞),

t Ü→ ‖y(t, ⋅)‖2L2(0,L) is a non-increasing function. (2.12)

This can be easily seen by multiplying the first equation of (1.6) with y, integrating on [0, L] and performing
integration by parts. One then gets, if y is smooth enough,

d
dt

L

∫
0

y(t, x)2dx = −yx(t, 0)2,

which gives (2.12). The general case follows from a smoothing argument. As a consequence of Proposi-
tion 2.8, Proposition 2.9 and (2.12), one sees that (1.6) has one and only one solution defined on [0, +∞) if
‖y0‖L2(0,L) < ε(1).

3 Existence of a center manifold and dynamics on this manifold
Let us start this section by recalling why, as it is classical, the property “0 ∈ L2(0, L) is locally asymptotically
stable in the sense of the L2(0, L)-norm for (1.6)” stated at the end of Theorem 1.1 is a consequence of the
other statements in this theorem. For convenience, let us recall the argument. Let y0 ∈ L2(0, L) be such that
‖y0‖L2(0,L) < δ and let y be the solution to (1.6). It suffices to check that

y(t, ⋅) → 0 in L2(0, L) as t → +∞. (3.1)

By (1.13), (2.12) and the fact that M is of finite dimension, there exists an increasing sequence of positive
real numbers (tn)n∈ℕ and z0 ∈ L2(0, L) such that

tn → +∞ as n → +∞,
y(tn , ⋅) → z0 in L2(0, L) as n → +∞, (3.2)
z0 ∈ G and ‖z0‖L2(0,L) < δ. (3.3)

Let z : [0, +∞) × (0, L) → ℝ be the solution to (1.6) satisfying the initial condition z(0, ⋅) = z0. It follows from
(1.14) and (3.3) that

z(t, ⋅) → 0 in L2(0, L) as t → +∞. (3.4)
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Let η > 0. By (3.4), there exists τ > 0 such that

‖z(τ, ⋅)‖L2(0,L) ≤
η
2 . (3.5)

By Proposition 2.9 and (3.2),

y(tn + τ, ⋅) → z(τ, ⋅) in L2(0, L) as n → +∞. (3.6)

By (3.5) and (3.6), there exists n0 ∈ ℕ such that

‖y(tn0 + τ, ⋅)‖L2(0,L) < η,

which, together with (2.12), implies that

‖y(t, ⋅)‖L2(0,L) < η for all t ≥ tn0 + τ,

which concludes the proof of (3.1).
The remaining parts of this section are organized as follows.We first recall in Section 3.1 a theorem (The-

orem 3.1) on the existence of a local center manifold for (1.6). Then in Section 3.2 we analyze the dynamics
of (1.6) on this center manifold and deduce Theorem 1.1 from this analysis.

3.1 Existence of a local center manifold

In [6, Theorem 3.1], following [21], the existence of a center manifold for (1.6) was proved for the first critical
length, i.e., L = 2π. The same proof applies for our L (i.e., L = 2π√7/3) and allows us to get the following
theorem.

Theorem 3.1. There exist δ ∈ (0, ε(1)), K > 0, ω > 0 and a map g : M → M⊥ satisfying (1.10) and (1.11)
such that, with G defined by (1.12), the following two properties hold for every solution y(t, x) to (1.6) with
‖y0‖L2(0,L) < δ:
(i) Local exponential attractivity of G:

d(y(t, ⋅), G) ≤ Ke−ωtd(y0, G) for all t > 0,

where d(χ, G) denotes the distance between χ ∈ L2(0, L) and G:

d(χ, G) := inf{‖χ − ψ‖L2(0,L); ψ ∈ G}.

(ii) Local invariance of G: If y0 ∈ G, then y(t, ⋅) ∈ G for all t ≥ 0.

3.2 Dynamics on the local center manifold

In this section we study the dynamics of (1.6) on Gδ with

Gδ := {ζ(x) ∈ G; ‖ζ‖L2(0,L) < δ}.

Let
Ω := {(m1,m2) ∈ ℝ2; m1φ1 + m2φ2 + g(m1φ1 + m2φ2) ∈ Gδ},

then Ω is a bounded open subset of ℝ2 which contains (0, 0) ∈ ℝ2. Let m0 = (m0
1,m

0
2) ∈ Ω, and let y

be the solution of (1.6) on [0, +∞) for the initial data y0 := m0
1φ1 + m0

2φ2 + g(m0
1φ1 + m0

2φ2). It follows
from (2.12) and Theorem 3.1 that y(t, ⋅) ∈ Gδ for every t ∈ [0, +∞). Hence we can define, for t ∈ [0, +∞),
m(t) = (m1(t),m2(t)) ∈ Ω by requiring that

y(t, ⋅) = m1(t)φ1 + m2(t)φ2 + g(m1(t)φ1 + m2(t)φ2). (3.7)
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Since y ∈ C0([0, +∞); L2(0, L)), we havem ∈ C0([0, +∞);ℝ2). Let T > 0 and u ∈ C∞0 (0, T). We apply (2.11)
with τ = T and ϕ(t, x) := u(t)φ1(x) (note that, by (2.4), (2.10) holds). We get

−
T

∫
0

L

∫
0

(u̇(t)φ1(x) + u(t)φ�
1(x) + u(t)φ

���
1 (x))y(t, x)dxdt +

T

∫
0

L

∫
0

u(t)φ1(x)(yyx)(t, x)dxdt = 0. (3.8)

From (2.4), (2.9), (3.7) and (3.8), we have

−
T

∫
0

(m1(t)u̇(t) − qm2(t)u(t))dt −
1
2

T

∫
0

L

∫
0

y2(t, x)φ�
1(x)u(t)dxdt = 0.

Hence, in the sense of distributions on (0, T),

ṁ1 = −qm2 +
1
2

L

∫
0

(m1φ1 + m2φ2 + g(m1φ1 + m2φ2))
2φ�

1dx.

Similarly, in the sense of distributions on (0, T),

ṁ2 = qm1 +
1
2

L

∫
0

(m1φ1 + m2φ2 + g(m1φ1 + m2φ2))
2φ�

2dx.

Hence, if we define F : Ω → ℝ2,m = (m1,m2) Ü→ F(m) by

F(m) := (
−qm2 + 1

2 ∫L0 (m1φ1 + m2φ2 + g(m1φ1 + m2φ2))
2φ�

1dx

qm1 + 1
2 ∫L0 (m1φ1 + m2φ2 + g(m1φ1 + m2φ2))

2φ�
2dx

) , (3.9)

then
ṁ = F(m). (3.10)

Note that, by (1.10) and (3.9), F ∈ C3(Ω;ℝ2), which, together with (3.10), implies that

m ∈ C4([0, +∞);ℝ2). (3.11)

We now estimate g close to 0 ∈ M. Let ψ ∈ C3([0, L]) be such that

ψ(0) = ψ(L) = ψ�(0) = 0. (3.12)

Using Definition 2.7 with ϕ(t, x) := ψ(x), (3.12) and integration by parts, we get

−
1
τ

τ

∫
0

L

∫
0

(ψ� + ψ���)ydxdt − 1
2τ

τ

∫
0

L

∫
0

ψ�y2dxdt +
L

∫
0

1
τ (
y(τ, x) − y0(x))ψ(x)dx = 0. (3.13)

Letting τ → 0+ in (3.13), and using (3.9), (3.10) and (3.11), we get

−
L

∫
0

(ψ� + ψ���)y0dx −
1
2

L

∫
0

ψ�y20dx

+
L

∫
0

(ṁ1(0)φ1(x) + ṁ2(0)φ2(x) +
∂g
∂m1

(m0)ṁ1(0) +
∂g
∂m2

(m0)ṁ2(0))ψdx = 0. (3.14)

We expand g in a neighborhood of 0 ∈ M. Using (1.10) and (1.11), there exist

a ∈ M⊥, b ∈ M⊥, c ∈ M⊥ (3.15)
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10 | S. Tang et al., Asymptotic stability of a Korteweg–de Vries equation

such that

g(αφ1 + βφ2) = α2a + αβb + β2c + o(α2 + β2) in L2(0, L) as α2 + β2 → 0, (3.16)
∂g
∂m1

(αφ1 + βφ2) = 2αa + βb + o(|α| + |β|) in L2(0, L) as |α| + |β| → 0, (3.17)

∂g
∂m2

(αφ1 + βφ2) = αb + 2βc + o(|α| + |β|) in L2(0, L) as |α| + |β| → 0. (3.18)

As usual, by (3.16), we mean that, for every ς1 > 0, there exists ς2 > 0 such that

α2 + β2 ≤ ς1 ⇒ ‖g(αφ1 + βφ2) − (α2a + αβb + β2c)‖L2(0,L) ≤ ς2(α2 + β2).

Similar definitions are used in (3.17), (3.18) and later on.We now expand the left-hand side of (3.14) in terms
of m0

1, m
0
2, (m

0
1)

2, m0
1m

0
2 and (m0

2)
2 as |m0

1| + |m0
2| → 0.

For the functions φ1 and φ2 defined by (2.1), (2.2) and (2.3), the following equalities can be derived from
(2.4), (2.5) and using integrations by parts:

L

∫
0

φ1(x)φ�
2(x)dx =

10
7√21

,
L

∫
0

φ2(x)φ�
1(x)dx = −

10
7√21

, (3.19)

L

∫
0

φ2
1(x)φ

�
1(x)dx = 0,

L

∫
0

φ2
2(x)φ

�
2(x)dx = 0, (3.20)

L

∫
0

φ2
1(x)φ

�
2(x)dx = −2c1,

L

∫
0

φ2
2(x)φ

�
1(x)dx = 2√3c1, (3.21)

L

∫
0

φ1(x)φ2(x)φ�
1(x)dx = c1,

L

∫
0

φ1(x)φ2(x)φ�
2(x)dx = −√3c1, (3.22)

where the constant c1 is defined by

c1 :=
177147
392392π

√1/(2π) 4√3/7.

Looking successively at the terms in (m0
1)

2, m0
1m

0
2 and (m0

2)
2 in (3.14) as |m0

1| + |m0
2| → 0, we get, using

(3.9), (3.10), (3.16)–(3.18) as well as (3.19)–(3.22),

−
L

∫
0

(ψx + ψxxx)adx −
1
2

L

∫
0

ψxφ2
1dx +

L

∫
0

(−c1φ2 + qb)ψdx = 0, (3.23)

−
L

∫
0

(ψx + ψxxx)bdx −
L

∫
0

ψxφ1φ2dx +
L

∫
0

(c1φ1 −√3c1φ2 − 2qa + 2qc)ψdx = 0, (3.24)

−
L

∫
0

(ψx + ψxxx)cdx −
1
2

L

∫
0

ψxφ2
2dx +

L

∫
0

(√3c1φ1 − qb)ψdx = 0. (3.25)

Since (3.23)–(3.25) must hold for every ψ ∈ C3([0, L]) satisfying (3.12), one gets that a, b and c are of class
C∞ on [0, L] and satisfy

{
a� + a��� + φ1φ�

1 − c1φ2 + qb = 0,
a(0) = a(L) = 0, a�(L) = 0,

(3.26)

{
b� + b��� + φ1φ�

2 + φ
�
1φ2 + c1φ1 −√3c1φ2 − 2qa + 2qc = 0,

b(0) = b(L) = 0, b�(L) = 0,
(3.27)

{
c� + c��� + φ2φ�

2 +√3c1φ1 − qb = 0,
c(0) = c(L) = 0, c�(L) = 0.

(3.28)
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In Appendix A, we derive the unique functions a : [0, L] → ℝ, b : [0, L] → ℝ and c : [0, L] → ℝ which
are solutions to (3.26), (3.27) and (3.28). From (3.9) and (3.16), and using (3.20)–(3.22), we get that, as
m → 0 ∈ ℝ2,

F(m) = (
−qm2 +√3c1m2

2 + c1m1m2 + A1m3
1 + B1m

2
1m2 + C1m1m2

2 + D1m3
2

qm1 − c1m2
1 −√3c1m1m2 + A2m3

1 + B2m
2
1m2 + C2m1m2

2 + D2m3
2
) + o(|m|3), (3.29)

with

A1 :=
L

∫
0

aφ1φ�
1dx, B1 :=

L

∫
0

bφ1φ�
1dx +

L

∫
0

aφ2φ�
1dx, (3.30)

C1 :=
L

∫
0

cφ1φ�
1dx +

L

∫
0

bφ2φ�
1dx, D1 :=

L

∫
0

cφ2φ�
1dx, (3.31)

A2 :=
L

∫
0

aφ1φ�
2dx, B2 :=

L

∫
0

bφ1φ�
2dx +

L

∫
0

aφ2φ�
2dx, (3.32)

C2 :=
L

∫
0

cφ1φ�
2dx +

L

∫
0

bφ2φ�
2dx, D2 :=

L

∫
0

cφ2φ�
2dx. (3.33)

Let us now study the local asymptotic stability property of 0 ∈ ℝ2 for (3.10). We propose two methods
for that. The first one is a more direct one, which relies on normal forms for dynamical systems on ℝ2. The
second one, which relies on a Lyapunov approach related to the physics of (1.6), is less direct. However, there
is a reasonable hope that this second method can be applied to other critical lengths L ∈ N \ 2πℕ for which
the dimension of M is larger than 2.

Method 1: Normal form. Let z := m1 + im2 ∈ ℂ. Then

m1 =
z + z
2 , m2 =

z − z
2i ,

and it follows from (3.10) and (3.29) that, as |z| → 0,

ż = (iq)z + P2(z, z) + P3(z, z) + o(|z|3), (3.34)

where Pj(z, z) are polynomials in z, z of degree j. To be more precise, we have

P2(z, z) := (√3c1m2
2 + c1m1m2) + i(−c1m2

1 −√3c1m1m2)

= −
c1
2 (√3 + i)z2 + c12 (√3 − i)zz (3.35)

and

P3(z, z) := (A1 + iA2)(
z + z
2 )

3
+ (B1 + iB2)(

z + z
2 )

2
(
z − z
2i )

+ (C1 + iC2)(
z + z
2 )(

z − z
2i )

2
+ (D1 + iD2)(

z − z
2i )

3
. (3.36)

We can rewrite (3.34) as

ż = (iq)z +
3
∑
i+j=2

1
i!j! gijz

izj + o(|z|3), (3.37)

and it is known from [11, pp. 45, 47] that (3.37) has the following Poincaré normal form:

̇ξ = (iq)ξ + ρξ2ξ + o(|ξ|3), (3.38)
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12 | S. Tang et al., Asymptotic stability of a Korteweg–de Vries equation

where
ρ =

i
2q(g20g11 − 2|g11|2 −

1
3 |g02|

2) +
g21
2 . (3.39)

According to (3.35) and (3.36), through a simple computation, we have

g20 = −c1(√3 + i), g11 =
c1
2 (√3 − i), g02 = 0, (3.40)

g21 =
1
4 (3A1 + i3A2 − iB1 + B2 + C1 + iC2 − i3D1 + 3D2). (3.41)

Using (3.40) and (3.41), the formula of ρ provided by (3.39) gives ρ = ρ1 + iρ2, with

ρ1 :=
1
8 (3A1 + C1 + B2 + 3D2), ρ2 := −2

c21
q

+
1
8 (−B1 − 3D1 + 3A2 + C2).

It follows that we can derive the Poincaré normal form of the reduced equation on the local center manifold
(3.38). Moreover, in Cartesian coordinates, (3.38) is

̇ξ1 = −qξ2 + (ρ1ξ1 − ρ2ξ2)(ξ21 + ξ22 ) + o(|ξ1|
3 + |ξ2|3),

̇ξ2 = qξ1 + (ρ1ξ2 + ρ2ξ1)(ξ21 + ξ22 ) + o(|ξ1|
3 + |ξ2|3),

where
ξ = ξ1 + iξ2.

In polar coordinates, set
r = √ξ21 + ξ22 , θ = arctan ξ2

ξ1
.

We have, as r → 0,
̇r = ρ1r3 + o(r3), θ̇ = q + ρ2r2 + o(r2). (3.42)

Now it is clear to see from (3.42) that the origin 0 ∈ ℝ2 is asymptotically stable for (3.10) if ρ1 < 0 and
is not stable if ρ1 > 0. From (2.1)–(2.3), (3.30)–(3.33) and Appendix A, we can obtain all the coefficients
Ai , Bi , Ci , Di (i = 1, 2). Then, using Matlab, it follows that

ρ1 :=
1
8 (3A1 + C1 + B2 + 3D2) = −0.008766 < 0.

A straightforward computation leads to the existence of C > 0 such that, at least if r(0) ∈ [0, +∞) is small
enough, one has for the solution to (3.42),

r(t) ≤ Cr(0)
√1 + tr(0)2

for all t ∈ [0, +∞),

which concludes the proof of Theorem 1.1.

Method 2: Lyapunov function. Let us start with a formal motivation. Recall that, by (1.8) and with E defined
in (1.7), we have, along the trajectories of (1.6),

Ė = −
1
2K

2,

with K := yx(0). It is therefore natural to consider the following candidate for a Lyapunov function:

V := E − μKK̇,

where μ > 0 is small enough. Indeed, one then gets

V̇ := −
1
2K

2 − μ(K̇)2 − μKK̈,

and one may hope to absorb −μKK̈ with −1
2K

2 − μ(K̇)2 and get V̇ < 0 on G \ {0}, at least in a neighborhood
of 0.
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We follow this strategy together with the approximation of g previously found. Form = (m1,m2) ∈ Ω, let
(see (3.16))

g̃ := m2
1a + m1m2b + m2

2c ∈ C
∞([0, L]), (3.43)

ỹ := m1φ1 + m2φ2 + g̃ ∈ C∞([0, L]), (3.44)

and

Ẽ := 1
2

L

∫
0

ỹ2dx.

Then, using (2.4), (2.5) and (3.26)–(3.28) (compare with (3.14)), one gets that, along the trajectories of
(3.10), form ∈ Ω and ψ ∈ C3([0, L]) satisfying ψ(0) = ψ(L) = 0, one has

−
L

∫
0

(ψ� + ψ���)ỹdx + ψ�(0)(m2
1a

�(0) + m1m2b�(0) + m2
2c

�(0))

−
1
2

L

∫
0

ψx ỹ2dx +
L

∫
0

(ṁ1φ1 + ṁ2φ2 +
∂g̃
∂m1

ṁ1 +
∂g̃
∂m2

ṁ2)ψdx

=
L

∫
0

(ỹt + ỹx + ỹxxx + ỹỹx)ψdx

=
L

∫
0

[m3
1(A1φ1 + A2φ2 − bc1 + φ1a� + aφ�

1)

+ m2
1m2(B1φ1 + B2φ2 + 2ac1 − b√3c1 − 2cc1 + φ1b� + φ2a� + aφ�

2 + bφ
�
1)

+ m1m2
2(C1φ1 + C2φ2 + 2a√3c1 + bc1 − 2c√3c1 + φ1c� + φ2b� + bφ�

2 + cφ
�
1)

+ m3
2(D1φ1 + D2φ2 + b√3c1 + φ2c� + cφ�

2) + o(|m|3)]ψdx as |m| → 0. (3.45)

Then, using (3.45) with ψ := ỹ (which, by (2.4), (2.5), (3.26)–(3.28), (3.43) and (3.44), satisfies ψ(0) =
ψ(L) = 0), along the trajectories of (3.10), we have from (2.6), (2.7), (3.15) and (3.29)–(3.33) that the right-
hand side of (3.45) is o(|m|4), and

̇Ẽ = −
1
2 K̃

2 + o(|m|4) as |m| → 0,

with K̃ : Ω → ℝ defined by
K̃ := a�(0)m2

1 + b
�(0)m1m2 + c�(0)m2

2. (3.46)

Let us emphasize that, even if “along the trajectories of (3.10)” might be misleading, ̇Ẽ is just a function of
m ∈ Ω. It is the same for ̇Ṽ, ̇K̃, ̈K̃ which appear below. Using (1.11) and (3.9), we have, along the trajectories
of (3.10),

̇K̃ = qb�(0)m2
1 + 2q(c�(0) − a�(0))m1m2 − qb�(0)m2

2 + o(|m|2). (3.47)

Using (3.9), we get the existence of C > 0 such that, along the trajectories of (3.10),

| ̈K̃| ⩽ C|m|2 for allm ∈ Ω.

We can now define our Lyapunov function Ṽ. Let μ ∈ (0, 14 ]. Let Ṽ : Ω → ℝ be defined by

Ṽ := Ẽ − μK̃ ̇K̃. (3.48)

From (3.48), we have the existence of η0 > 0 such that, for everym ∈ ℝ2 satisfying |m| < η0 and along the
trajectories of (3.10),

̇Ṽ = −
1
2 K̃

2 − μ( ̇K̃)2 − μK̃ ̈K̃ + o(|m|4)

≤ −
1
4 K̃

2 − μ( ̇K̃)2 + μ2( ̈K̃)2 + o(|m|4)
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14 | S. Tang et al., Asymptotic stability of a Korteweg–de Vries equation

≤ −
1
4 K̃

2 − μ( ̇K̃)2 + 2μ2C2|m|4

≤ −μ(K̃2 + ( ̇K̃)2 − 2μC2|m|4). (3.49)

Let us assume for the moment that, for everym = (m1,m2) ∈ ℝ2,

{
a�(0)m2

1 + b
�(0)m1m2 + c�(0)m2

2 = 0,
qb�(0)m2

1 + 2q(c�(0) − a�(0))m1m2 − qb�(0)m2
2 = 0

⇒ m = 0. (3.50)

Then, by homogeneity, there exists η1 > 0 such that

(a�(0)m2
1 + b

�(0)m1m2 + c�(0)m2
2)

2 + (qb�(0)m2
1 + 2q(c�(0) − a�(0))m1m2 − qb�(0)m2

2)
2 ≥ 2η1|m|4 (3.51)

for allm = (m1,m2) ∈ ℝ2. From (3.46), (3.47) and (3.51), we get the existence of η2 > 0 satisfying

K̃2 + ( ̇K̃)2 ≥ η1|m|4 for allm ∈ ℝ2 such that |m| < η2. (3.52)

From (3.49) and (3.52), we get the existence of η3 > 0 such that, for every μ ∈ (0, η3),

̇Ṽ ≤ −
μ
2 η1|m|4 for allm ∈ ℝ2 such that |m| < η3. (3.53)

Moreover, straightforward estimates show that there exists η4 > 0 such that, for every μ ∈ (0, η4),

η4|m|2 ≤ Ṽ ≤
1
η4

|m|2 for allm ∈ ℝ2 such that |m| < η4,

which, together with (3.53), proves the existence of C > 0 such that, at least ifm0 ∈ ℝ2 is small enough, the
solution to (3.10) satisfies

|m(t)| ≤ C|m0|
√1 + t|m0|2

for all t ≥ 0.

It only remains to prove (3.50). From Appendix A, one gets that c�(0) ≈ 0.0118 ̸= 0, then (3.50) holds
if m1 = 0. Let us now deal with the case m1 ̸= 0. If we divide both polynomials in the two equations on the
left-hand side of (3.50) by m2

1, then the two resulting polynomials have a common root if and only if their
resultant is zero. This resultant is the determinant of the Sylvester matrix S:

S := (

c�(0) b�(0) a�(0) 0
0 c�(0) b�(0) a�(0)

−b�(0) −2(a�(0) − c�(0)) b�(0) 0
0 −b�(0) −2(a�(0) − c�(0)) b�(0)

) .

Straightforward computations show that

det(S) = a�(0)3[b�(0) + 4c�(0)] + a�(0)2[−2b�(0)2 + b�(0)c�(0) − 8c�(0)2] (3.54)
+ a�(0)[5b�(0)2c�(0) + 4c�(0)3] − b�(0)2c�(0)2 − b�(0)4. (3.55)

From (3.55) and Appendix A (see in particular (A.7)–(A.9)), we have

det(S) ≈ −0.0197 ̸= 0.

Hence, the two resulting polynomials do not have a common root. Thus, (3.50) is proved.

Remark 3.2. It follows from our proof of Theorem 1.1 that the decay rate stated in (1.14) is optimal in the
following sense: there exists ε > 0 such that, for every y0 ∈ G with ‖y0‖L2(0,L) ≤ ε,

‖y(t, ⋅)‖L2(0,L) ≥
ε‖y0‖L2(0,L)

√1 + t‖y0‖2L2(0,L)
.

For the Lyapunov approach, let us point out that, decreasing if necessary η3 > 0, one has, for every μ ∈ (0, η3),

̇Ṽ ≥ −
1
η3

|m|4 for allm ∈ ℝ2 such that |m| < η3.
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4 Conclusion and future works
In this article, we have proved that for the critical case of L = 2π√7/3, 0 ∈ L2(0, L) is locally asymptotically
stable for the KdV equation (1.6). First, we recalled that the equation has a two-dimensional local center
manifold. Next, through a second-order power series approximation at 0 ∈ M of the function g defining the
local center manifold, we derived the local asymptotic stability of 0 ∈ L2(0, L) on the local center manifold
and obtained a polynomial decay rate for the solution to the KdV equation (1.6) on the center manifold.

Since the KdV equation (1.6) also has other (periodic) steady states than the origin (see Remark 1.2), it
remains anopenand interestingproblem to consider the (local) stability property of these steady states for the
KdV equation (1.6). Furthermore, it remains to consider all the other critical cases with a two-dimensional
(local) center manifold as well as all the last remaining critical cases, i.e., when the equation has a (local)
center manifold with a dimension larger than 2.

A On the solution a, b and c to equations (3.26), (3.27) and (3.28)
Set

f+(x) := a(x) + c(x), f−(x) := a(x) − c(x), (A.1)

and
{{{
{{{
{

g+(x) := φ1(x)φ�
1(x) + φ2(x)φ�

2(x) +√3c1φ1(x) − c1φ2(x),
g−(x) := φ1(x)φ�

1(x) − φ2(x)φ�
2(x) −√3c1φ1(x) − c1φ2(x),

g(x) := φ1(x)φ�
2(x) + φ

�
1(x)φ2(x) + c1φ1(x) −√3c1φ2(x).

(A.2)

First, adding each equation of (3.28) to the corresponding equation of (3.26), we have the following ODE for
f+(x):

{
f ���+ (x) + f �+(x) + g+(x) = 0,
f+(0) = f+(L) = 0, f �+(L) = 0.

(A.3)

Second, subtracting each equation of (3.28) from the corresponding equation of (3.26), we obtain

{
2qb(x) + f �−(x) + f ���− (x) + g−(x) = 0,
f−(0) = f−(L) = 0, f �−(L) = 0,

(A.4)

which gives
b(x) = −

1
2q (f

�
−(x) + f ���− (x) + g−(x)). (A.5)

Substitute (A.5) into (3.27), then the following ODE for f−(x) is obtained:

{{{
{{{
{

f (6)− (x) + 2f (4)− (x) + f ��− (x) + 4q2f−(x) + g�−(x) + g���− (x) − 2qg(x) = 0,
f−(0) = f−(L) = f �−(L) = f ���− (L) = 0,

f �−(0) + f ���− (0) = 0, f ��− (L) + f
(4)
− (L) = 0,

(A.6)

where the boundary conditions follow from (2.4), (2.5), (3.27), (A.2), (A.4) and (A.5).
Employing the method of undetermined coefficients, we get the following (unique) solution to the non-

homogeneous ODE (A.3):

f+(x) =
3
∑
l=1
C+l f+l(x) + c+11 cos(

1
√21

x) + c+12 sin(
1

√21
x) + c+21 cos(

3
√21

x)

+ c+31 cos(
4

√21
x) + c+32 sin(

4
√21

x) + c+41 cos(
5

√21
x)

+ c+42 sin(
5

√21
x) + c+51 cos(

6
√21

x) + c+61 cos(
9

√21
x),
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where the fundamental solutions f+l(x), l = 1, 2, 3, are

f+1(x) = 1, f+2(x) = cos(x), f+3(x) = sin(x),

and the constants are

c+11 =
3c1Θ

( 1
√21 ) − ( 1

√21 )
3
, c+12 =

−3√3c1Θ
−( 1
√21 ) + ( 1

√21 )
3
, d21 =

Θ2 18
√21

( 1
√21 ) − ( 1

√21 )
3
,

c+31 =
−2c1Θ

( 1
√21 ) − ( 1

√21 )
3
, d32 =

2√3c1Θ
−( 1
√21 ) + ( 1

√21 )
3
, d41 =

c1Θ
( 1
√21 ) − ( 1

√21 )
3
,

c+42 =
√3c1Θ

−( 1
√21 ) + ( 1

√21 )
3
, d51 =

Θ2 18
√21

( 1
√21 ) − ( 1

√21 )
3
, d61 =

Θ2 −18
√21

( 1
√21 ) − ( 1

√21 )
3
,

and
C+l =

det(A+l)
det(A+)

, l = 1, 2, 3.

Here,

A+ = (
f+1(0) f+2(0) f+3(0)
f+1(L) f+2(L) f+3(L)
f �+1(L) f �+2(L) f �+3(L)

) ,

and each A+l is the matrix formed by replacing the l-th column of A+ with a column vector −b+, where

b+ = (b+1 b+2 b+3)
T ,

and

b+1 = c+11 + c+21 + c+31 + c+41 + c+51 + c+61,

b+2 = c+11 cos(
1

√21
L) + c+12 sin(

1
√21

L) + c+21 cos(
3

√21
L)

+ c+31 cos(
4

√21
L) + c+32 sin(

4
√21

L) + c+41 cos(
5

√21
L)

+ c+42 sin(
5

√21
L) + c+51 cos(

6
√21

L) + c+61 cos(
9

√21
L),

b+3 = −
1

√21
c+11 sin(

1
√21

L) +
1

√21
c+12 cos(

1
√21

L) −
3

√21
c+21 sin(

3
√21

L)

−
4

√21
c+31 sin(

4
√21

L) +
4

√21
c+32 cos(

4
√21

L) −
5

√21
c+41 sin(

5
√21

L)

+
5

√21
c+42 cos(

5
√21

L) −
6

√21
c+51 sin(

6
√21

L) −
9

√21
c+61 sin(

9
√21

L).

Similarly, the method of undetermined coefficients gives the following (unique) solution to the non-
homogeneous ODE system (A.6):

f−(x) =
6
∑
l=1
C−l f−l(x) + c−11 cos(

1
√21

x) + c−12 sin(
1

√21
x) + c−21 cos(

2
√21

x)

+ c−31 cos(
4

√21
x) + c−32 sin(

4
√21

x) + c−41 cos(
5

√21
x)

+ c−42 sin(
5

√21
x) + c−51 cos(

8
√21

x) + c−61 cos(
10
√21

x),

where the fundamental solutions f−l(x), l = 1, . . . , 6, are

f−1(x) = eα1x cos(β1x), f−2(x) = eα1x sin(β1x), f−3(x) = e−α1x cos(β1x),
f−4(x) = e−α1x sin(β1x), f−5(x) = cos(β2x), f−6(x) = sin(β2x),
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with

α1 =
(20 +√57) 13 − 7(20 +√57)− 13

2√7
,

β1 =
(20 +√57) 13 + 7(20 +√57)− 13

2√21
, β2 =

(20 +√57) 13 + 7(20 +√57)− 13
√21

,

and the constants are

c−11 =
−3Θ2 40

212 + 4qΘ2 2
√21 + 9qc1Θ

( 1
√21 )

6 − 2( 1
√21 )

4 + ( 1
√21 )

2 − 4q2
, c−12 =

−9√3qc1Θ
( 1
√21 )

6 − 2( 1
√21 )

4 + ( 1
√21 )

2 − 4q2
,

c−21 =
3Θ2 18

212 − 4qΘ2 32
√21

( 2
√21 )

6 − 2( 2
√21 )

4 + ( 2
√21 )

2 − 4q2
, c−31 =

3Θ2 240
212 − 4qΘ2 12

√21 − 6qc1Θ

( 4
√21 )

6 − 2( 4
√21 )

4 + ( 4
√21 )

2 − 4q2
,

c−32 =
6√3qc1Θ

( 4
√21 )

6 − 2( 4
√21 )

4 + ( 4
√21 )

2 − 4q2
, c−41 =

−3Θ2 600
212 + 4qΘ2 30

√21 − 3qc1Θ

( 5
√21 )

6 − 2( 5
√21 )

4 + ( 5
√21 )

2 − 4q2
,

c−42 =
−3√3qc1Θ

( 5
√21 )

6 − 2( 5
√21 )

4 + ( 5
√21 )

2 − 4q2
, c−51 =

3Θ2 2048
212 − 4qΘ2 16

√21

( 8
√21 )

6 − 2( 8
√21 )

4 + ( 8
√21 )

2 − 4q2
,

c−61 =
3Θ2 1250

212 + 4qΘ2 5
√21

( 10
√21 )

6 − 2( 10
√21 )

4 + ( 10
√21 )

2 − 4q2
,

and
C−l =

det(A−l)
det(A−)

, l = 1, . . . , 6.

Here, the matrix A− is defined by

A− = (α−1 α−2 α−3 α−4 α−5 α−6)

with
α−l = (f−l(0) f−l(L) f �−l(L) f �−l(0) + f

���
−l (0) f ���−l (L) f ��−l(L) + f

(4)
−l (L))

T , l = 1, . . . , 6.

Each A−l is the matrix formed by replacing the l-th column of A− with a column vector −b−, where

b− = (b−1 b−2 b−3 b−4 b−5 b−6)
T

and

b−1 = c−11 + c−21 + c−31 + c−41 + c−51 + c−61,

b−2 = c−11 cos(
1

√21
L) + c−12 sin(

1
√21

L) + c−21 cos(
2

√21
L)

+ c−31 cos(
4

√21
L) + c−32 sin(

4
√21

L) + c−41 cos(
5

√21
L)

+ c−42 sin(
5

√21
L) + c−51 cos(

8
√21

L) + c−61 cos(
10
√21

L),

b−3 = −
1

√21
c−11 sin(

1
√21

L) +
1

√21
c−12 cos(

1
√21

L) −
2

√21
c−21 sin(

2
√21

L)

−
4

√21
c−31 sin(

4
√21

L) +
4

√21
c−32 cos(

4
√21

L) −
5

√21
c−41 sin(

5
√21

L)

+
5

√21
c−42 cos(

5
√21

L) −
8

√21
c−51 sin(

8
√21

L) −
10
√21

c−61 sin(
10
√21

L),

b−4 =
20

21√21
c−12 cos(

1
√21

L) +
20

21√21
c−32 cos(

4
√21

L) −
20
√21

c−42 cos(
5

√21
L),
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b−5 = −
20

21√21
c−11 sin(

1
√21

L) +
20

21√21
c−12 cos(

1
√21

L) −
34

21√21
c−21 sin(

2
√21

L)

−
20

21√21
c−31 sin(

4
√21

L) +
20

21√21
c−32 cos(

4
√21

L) +
20

21√21
c−41 sin(

5
√21

L)

−
20

21√21
c−42 cos(

5
√21

L) +
344

21√21
c−51 sin(

8
√21

L) +
790

21√21
c−61 sin(

10
√21

L),

b−6 = −
20
212

c−11 cos(
1

√21
L) −

20
212

c−12 sin(
1

√21
L) −

68
212

c−21 cos(
2

√21
L)

−
80
212

c−31 cos(
4

√21
L) −

80
212

c−32 sin(
4

√21
L) +

100
212

c−41 cos(
5

√21
L)

+
100
212

c−42 sin(
5

√21
L) +

2752
212

c−51 cos(
8

√21
L) +

7900
212

c−61 cos(
10
√21

L).

Therefore, we derive from (A.1) that

a(x) = 1
2 (f+(x) + f−(x))

=
1
2[

3
∑
l=1
C+l f+l(x) +

6
∑
l=1
C−l f−l(x)

+ (c+11 + c−11) cos(
1

√21
x) + (c+12 + c−12) sin(

1
√21

x) + c−21 cos(
2

√21
x)

+ c+21 cos(
3

√21
x) + (c+31 + c−31) cos(

4
√21

x) + (c+32 + c−32) sin(
4

√21
x)

+ (c+41 + c−41) cos(
5

√21
x) + (c+42 + c−42) sin(

5
√21

x) + c+51 cos(
6

√21
x)

+ c−51 cos(
8

√21
x) + c+61 cos(

9
√21

x) + c−61 cos(
10
√21

x)] (A.7)

and

c(x) = 1
2 (f+(x) − f−(x))

=
1
2[

3
∑
l=1
C+l f+l(x) −

6
∑
l=1
C−l f−l(x)

+ (c+11 − c−11) cos(
1

√21
x) + (c+12 − c−12) sin(

1
√21

x) − c−21 cos(
2

√21
x)

+ c+21 cos(
3

√21
x) + (c+31 − c−31) cos(

4
√21

x) + (c+32 − c−32) sin(
4

√21
x)

+ (c+41 − c−41) cos(
5

√21
x) + (c+42 − c−42) sin(

5
√21

x) + c+51 cos(
6

√21
x)

− c−51 cos(
8

√21
x) + c+61 cos(

9
√21

x) − c−61 cos(
10
√21

x)]. (A.8)

From (A.5), we obtain

b(x) = −
1
2q (f

�
−(x) + f ���− (x) + g−(x))

= −
1
2q[

6
∑
l=1
C−l f �−l(x) +

6
∑
l=1
C−l f ���−l (x)

− (
20

21√21
c−11 +

2
√21

Θ2 + 3c1Θ) sin(
1

√21
x) + (

20
21√21

c−12 + 3√3c1Θ) cos(
1

√21
x)

− (
34

21√21
c−21 +

9
√21

Θ2) sin( 2
√21

x) − (
20

21√21
c−31 + 2c1Θ) sin(

4
√21

x)

+ (
20

21√21
c−32 − 2√3c1Θ) cos(

4
√21

x) + (
20

21√21
c−41 +

30
√21

Θ2 + c1Θ) sin(
5

√21
x)
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− (
20

21√21
c−42 +√3c1Θ) cos(

5
√21

x) −
12
√21

Θ2 sin( 6
√21

x)

+ (
8 × 43
21√21

c−51 −
16
√21

Θ2) sin( 8
√21

x) + (
790
√21

c−61 −
5

√21
Θ2) sin( 10

√21
x)]. (A.9)
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