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Abstract: This study proposes a constructive stabilisation and H∞ robust controller design method for stochastic non-linear
systems from a novel dissipation analysis and energy point of view. First, the authors propose a sufficient condition for the
dissipation of stochastic Hamiltonian systems and discuss the energy property of the systems, which will be used for the stability
analysis and feedback controller design. Then, the authors show that the system is (asymptotically) stable in probability if it is
(strictly) dissipative. By completing the Hamiltonian realisation of the stochastic non-linear systems, a feedback controller is
proposed to stabilise the system under the condition of dissipation and zero state detectability. For stochastic non-linear
systems subjected to external disturbances, an energy-based H∞ controller was proposed by choosing the Hamiltonian function
to construct a solution of Hamiltonian–Jacobi inequality. Finally, the effectiveness of the proposed method was illustrated via the
inverted pendulum systems.

1 Introduction
There are various types of random disturbances in the physical
systems, such as environmental changes, measurement noises,
friction force and model uncertainty. The dynamics of the disturbed
systems can be presented as stochastic non-linear systems [1].
However, random uncertainties can decrease the performance, such
as the stability and robustness of the systems. So far, a lot of work
has been carried out on the analysis and synthesis of stochastic
non-linear systems. Deng et al. [2] and Mao [3] addressed some
sufficient conditions for the stability and asymptotical stability in
probability based on the stochastic Lyapunov function method and
stochastic La Salle's invariant principle. Florchinger [4]
constructed a state feedback stabilisation controller for stochastic
non-linear systems via the control Lyapunov function method.
Deng et al. [5] proposed a Backstepping procedure to stabilise
stochastic non-linear systems with unknown covariance noises. Niu
et al. [6] investigated the disturbance attenuation problem of
stochastic non-linear systems subjected to external disturbances
and proposed a solvability condition for Hamiltonian–Jacobi
inequality. In [7–9], non-linear stochastic H∞ controllers were
constructed for stochastic non-linear systems by solving the
Hamiltonian–Jacobi equations or inequalities.

In general, it is difficult to find a suitable Lyapunov function for
the stability analysis and stabilisation of stochastic non-linear
systems. Moreover, for the robust control of stochastic non-linear
systems, it is also a difficult task to solve the Hamiltonian–Jacobi
equation and inequality. Note that the passivity property of non-
linear systems has a natural relationship with the stability and the
storage function can be chosen as a solution of Hamiltonian–Jacobi
inequality under some conditions, many researchers have made
efforts to extend the passive theory of deterministic non-linear
systems to stochastic non-linear systems. By utilising the passivity
characters of stochastic systems, Florchinger [10] proposed some
sufficient conditions for the asymptotical stability of the systems.
Also, the global passivity-based stabilisation controllers were
constructed in [11]. Lin et al. [12] investigated the problem of
stochastic passivity, feedback passivity and stabilisation of
stochastic non-linear systems. Ferreira et al. [13] proposed some
sufficient conditions for the stability in probability and noise-to-
state stability of large-scale non-linear stochastic systems by using

the stochastic passivity properties of subsystems. Wu et al. [14]
extended the dissipativity theory to the stochastic case and
proposed some criteria for the stability analysis of stochastic non-
linear systems. Recently, Rajpurohit et al. [15] discussed the
dissipativity of controlled Markov diffusion processes and
proposed some extended Kalman–Yakubovich–Popov conditions
in terms of the drift and diffusion dynamics for characterising
stochastic dissipativity via storage functions. However, how to
construct a storage function to complete the passivity-based or
dissipativity-based stability analysis and stabilisation control still
largely remains open.

The Hamiltonian function method views the non-linear systems
from the energy point of view and utilises their dissipation
structure to complete the stability analysis and feedback controller
design, see [16–18] and the references therein. One of the most
important advantages of the Hamiltonian function method is that
the Hamiltonian function can be chosen as a Lyapunov function
candidate to perform stability analysis and to construct a solution
for Hamiltonian–Jacobi inequality. Recently, Satoh et al. [19, 20]
extended the results of deterministic Hamiltonian systems to
stochastic non-linear Hamiltonian systems and proposed a
stabilising controller for the full-actuated and under-actuated
systems in the presence of persistent noise disturbances. In this
study, we discuss the energy-based stabilisation and H∞ control of
stochastic non-linear systems by reformulating them as stochastic
Hamiltonian systems. First, the dissipation property of stochastic
Hamiltonian systems is analysed. The internal structure and energy
property of the systems are discussed as well. Then, the feedback
stabilisation controller for stochastic non-linear systems is
constructed by completing their Hamiltonian realisation. For the
stochastic non-linear systems with external disturbances, the L2
gain analysis and energy-based H∞ control are investigated.
Finally, this study extends the results in [21] and proposes a H∞
controller for inverted pendulum systems by transforming them
into feedback equivalent stochastic Hamiltonian systems.
Simulation results demonstrate the effectiveness of the proposed
method.

The rest of the paper is organised as follows. Section 2
discusses the dissipation and energy property of stochastic
Hamiltonian systems. Section 3 puts forward an energy-based
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stabilisation controller of stochastic non-linear systems. In Section
4, a robust H∞ controller is constructed for stochastic non-linear
systems by completing their Hamiltonian realisation. Section 5
investigates the energy-based robust control of inverted pendulum
systems subjected to external disturbances to illustrate the
effectiveness of the proposed method. Finally, Section 6 draws the
conclusion.

2 Dissipation and energy property of stochastic
Hamiltonian systems
The Hamiltonian model provides a suitable representation of many
physical systems and can explicitly present the essential energy
interconnection and dissipation of the system. In this section, we
discuss the dissipativity of stochastic Hamiltonian systems and
explore their energy properties.

Consider the following stochastic Hamiltonian systems
presented in the sense of the Itô differential equation

dx = J(x) − R(x) ∂H(x)
∂x + g(x)u dt

+gw(x) dw,

y = gT(x)∂H(x)
∂x ,

(1)

where x ∈ ℝn, u(t), and y(t) ∈ ℝm are the state, control input and
output, respectively. The signal w(t) ∈ ℝr is a standard Wiener
process defined on a probability space (Ω, ℱ, P). The structure
matrix J(x) ∈ ℝ(n × n) is skew-symmetric and the dissipation matrix
R(x) ∈ ℝ(n × n) is symmetric and positive semi-definite. The
continuous differentiable function H(x) is the Hamiltonian
function. f (x), g(x) and gw(x) are supposed to be the Borel
measurable matrix with suitable dimensions. Assume that the input
u is a ℝm-valued measurable function and satisfies
E ∫0

t∥ u2(s) ∥ds < ∞ with respect to the measure P, denoted by
E[ ⋅ ]. For more details about stochastic Hamiltonian system, see
[19].
 
Definition 2.1: For the system (1), if the Hamiltonian function H(x)
satisfies

E H(x(t1)) − E H(x(t0)) ≤ E ∫
t0

t1
ϕ(u, y) dt , (2)

for any initial condition x(t0) = x0, t1 ≥ t0, then the system is
dissipative with respect to the supply rate ϕ(u, y) and H(x) is the
corresponding storage function.
 
Theorem 1: Consider the stochastic Hamiltonian system (1).
Assume that the Hamiltonian function H(x) is positive definite and
the following inequality holds

− ∂TH(x)
∂x R(x)∂H(x)

∂x

+ 1
2Tr gw(x)T ∂2H(x)

∂x gw(x) ≤ 0,
(3)

then the system (1) is dissipative. Moreover, the system is strictly
dissipative if

− ∂TH(x)
∂x R(x)∂H(x)

∂x

+ 1
2Tr gw(x)T ∂2H(x)

∂x gw(x) < 0.
(4)

 
Proof: Choose the Hamiltonian function H(x) as the storage
function and yTu as the supply rate. According to (3), we have

ℒH(x) = − ∂TH(x)
∂x R(x)∂H(x)

∂x

+ 1
2Tr gw(x)T ∂2H(x)

∂x gw(x) + yTu

≤ yTu,

(5)

where ℒ is the infinitesimal generator of the solution of (1).
Letting 0 ≤ t0 ≤ t1, we have

E ∫
t0

t1
ℒH(x)ds − E ∫

t0

t1
yTu dt

= E ∫
t0

t1
dH(x)ds − E ∫

t0

t1
yTu dt

= E H(x(t1)) − E H(x(t0)) − E ∫
t0

t1
yTu dt

≤ 0,

(6)

so the system (1) is dissipative. Moreover, if (4) holds, then
ℒH(x) < yTu and the system is strictly dissipative. □
 
Remark 1: Theorem 1 extends from the (strict) dissipation of
deterministic Hamiltonian systems. Actually, if we decompose the
noise w(t) from the system, i.e. gw(x) = 0, the system reformulates
to the deterministic Hamiltonian systems

ẋ = J(x) − R(x) ∂H(x)
∂x + g(x)u,

y = gT(x)∂H(x)
∂x ,

(7)

and (3) and (4) are reformed as

− ∂TH(x)
∂x R(x)∂H(x)

∂x ≤ 0 and − ∂TH(x)
∂x R(x)∂H(x)

∂x < 0,

respectively (or R(x) ≥ 0( > 0) equally), which are specifically the
sufficient conditions of (strict) dissipation of deterministic
Hamiltonian systems.

Now we analyse the energy property of the stochastic
Hamiltonian systems. The derivative of H(x) along the trajectories
of system (1) can be written as

dH(x) = ℒH(x) + ∂H(x)
∂x gw(x) dw, P − a . s . (8)

Taking integration of (6), we have

H(x(t)) − H(x(0))

= ∫
0

t
ℒH(x(s))ds + ∫

0

t ∂H(x)
∂x gw(x) dw, P − a . s . (9)

Substituting (5) into the above equation and calculating the
expectation of both sides, we have the following energy balance
equation of stochastic Hamiltonian systems:

E H(x(t)) − E H(x(0))
change of total energy

= E −∫
0

t ∂TH(x)
∂x R(x)∂H(x)

∂x ds + E ∫
0

t
yTuds

energy dissipation energy injection

+E ∫
0

t 1
2Tr gw(x)T ∂2H(x)

∂x gw(x) ds .

energy generated by noises

(10)
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For the deterministic Hamiltonian system (7), the time
derivative of the Hamiltonian function H(x) is

Ḣ(x) = − ∂TH(x)
∂x R(x)∂H(x)

∂x + yTu (11)

and the energy balance equation of the deterministic Hamiltonian
systems is

H(x(t)) − H(x(0)) = −∫
0

t ∂TH(x)
∂x R(x)∂H(x)

∂x ds

change of total energy energy dissipation

+∫
0

t
yTu ds .

energy injection

(12)

Comparing (7) with (10), we can see that for stochastic
Hamiltonian systems, the noises can be viewed as sources in the
system and the term

E ∫
0

T 1
2Tr gw(x)T ∂2H(x)

∂x gw(x) ds

represents the energy generated by the noises. So, the stochastic
Hamiltonian system is a more general open system with internal
energy transformation (i.e. (∂TH(x)/∂x)J(x)(∂H(x)/∂x) = 0),
energy dissipation, energy generation and external energy injection
from input–output ports. In the next sections, by reformulating the
considered stochastic non-linear systems into their equivalent
stochastic Hamiltonian systems, we will take advantage of the
energy property and the specified structure of the system to
complete the stabilisation and H∞ controller design.

3 Energy-based stabilisation of stochastic non-
linear systems
Consider the following stochastic non-linear systems presented by
the Itô differential equation

dx = f (x) dt + g(x)u dt + gw(x) dw,
y = h(x), (13)

where x ∈ ℝn and u, y ∈ ℝm are the state, control input and
measured output, respectively. w(t) ∈ ℝr is a standard Wiener
process. f (x), g(x) and gw(x) are Borel measurable matrices with
suitable dimensions.
 
Definition 3.1: Suppose there exists a continuously differentiable
function H(x) and structure JT(x) = − J(x) and R(x) ≥ 0 such that
the stochastic non-linear system (13) can be reformulated as the
stochastic Hamiltonian system (1), then (1) is called a Hamiltonian
realisation of (13).
 
Theorem 2: Suppose the stochastic non-linear system (13) can be
dissipative Hamiltonian realised as (1) with respect to a positive
definite continuously differentiable Hamiltonian function H(x),
then the trivial solution of the system (13) is stable in probability.
Also, the strict dissipation implies asymptotical stability in
probability.
 
Proof: Choosing the Hamiltonian function H(x) as a stochastic
Lyapunov function and noticing that

ℒ(H(x)) = − ∂TH(x)
∂x R(x)∂H(x)

∂x

+ 1
2Tr gw(x)T ∂2H(x)

∂x gw(x) ,
(14)

we can get LH ≤ 0 if the system is dissipative and LH < 0 if it is
strict dissipative. According to the stability theory of stochastic
non-linear systems, we have the results directly. □

For the feedback stabilisation of stochastic non-linear systems,
we have the following result.
 
Theorem 3: For the stochastic non-linear system (13), suppose the
system can be dissipative Hamiltonian realised as (1). If the
following conditions hold:

(i) the Hamiltonian function H(x) is positive definite continuous
differentiable with the origin being its minimum point;
(ii) the system is zero state detectable,

then the system (13) can be stabilised by

u = − K(x)gT(x)∂H(x)
∂x , (15)

where K(x) > 0 is the feedback gain.
 
Proof: Choose V(x) = H(x) − H(0) as a candidate Lyapunov
function. For the closed loop system, we have

ℒV = − ∂TH(x)
∂x R(x)∂H(x)

∂x + 1
2Tr gw(x)T ∂2H(x)

∂x gw(x)

− ∂TH(x)
∂x g(x)K(x)gT(x)∂H(x)

∂x

≤ − ∂TH(x)
∂x g(x)K(x)gT(x)∂H(x)

∂x .

Note K(x) > 0, the points that make ℒV = 0 must satisfy
gT(x)(∂H(x)/∂x) = h(x) = 0. According to the zero state
detectablility of the system, the state x(t) tends to 0 in probability.
□
 
Remark 2: Similar to the energy-based stabilisation controller
design of non-linear systems, the feedback controller (15) stabilises
the stochastic non-linear system by injecting damp into the system.
If the stochastic Hamiltonian realisation system is not dissipative,
one can choose the feedback gain large enough to make the closed
loop system dissipative and asymptotically stable in probability.
 
Remark 3: Compared with the other passivity-based stabilisation of
stochastic non-linear systems (such as Florchinger [11, 13], Lin et
al. [12], Wu et al. [14], etc.), where it is generally very difficult to
seek a suitable storage function to complete the stability analysis
and controller design, this study proposes a constructive method by
transforming the considered stochastic non-linear systems to its
equivalent Hamiltonian formulation and use the internal structure
and energy property to construct a stabilisation controller. The
Hamiltonian function can be chosen as a Lyapunov candidate to
complete the stability analysis.
 
Remark 4: The key to reformulate the system (13) as a stochastic
Hamiltonian system is to seek a continuous differentiable function
H(x), a positive semi-definite matrix R(x) and a skew-symmetric
matrix J(x) such that f (x) = J(x) − R(x) (∂H(x)/∂x). There are
many methods to complete the Hamiltonian realisation [22]. For
mechanical systems and power systems, the inherit energy property
is generally utilised to complete their Hamiltonian realisation.

4 Energy-based H∞ robust control of stochastic
non-linear systems
In this section, we consider the robust control of stochastic non-
linear systems subjected to external disturbances by completing the
Hamiltonian realisation.

Consider the following uncertain stochastic non-linear system:
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dx = f (x) dt + gv(x)v dt + gw(x) dw,
z = h1(x), (16)

where v ∈ ℝr is the unknown bounded disturbance signal,
gv ∈ ℝn × r is a matrix valued function and z ∈ ℝq is an estimation
variable.
 
Theorem 4: For a given disturbance attenuation level γ > 0,
suppose there exists a non-negative differentiable function
V(x) ≥ 0 (V(0) = 0) such that the following Hamiltonian–Jacobi
inequality holds

∂TV
∂x f + 1

2γ2
∂TV
∂x gvgv

T ∂V
∂x

+ 1
2h1

Th1 + 1
2Tr gw

T ∂2V
∂x2 gw ≤ 0,

(17)

the L2 gain of the system (16) is not more than γ, i.e.

E ∫
0

T
∥ z ∥2 dt ≤ E γ2∫

0

T
∥ v ∥2 dt , ∀v ∈ L2[0, T] . (18)

 
Proof: If V(x) is a differentiable scalar function which satisfies
(17), then we have

ℒV = ∂TV
∂x f + ∂TV

∂x gvv + 1
2Tr gw

T ∂2V
∂x2 gw

≤ − 1
2h1

Th1 − 1
2γ2

∂TV
∂x gvgv

T ∂V
∂x + ∂TV

∂x gvv

− 1
2γ2vTv + 1

2γ2vTv

= 1
2{γ2∥ v ∥2 − ∥ z ∥2} − 1

2∥ γv − 1
γ gv

T ∂TV
∂x ∥

2

.

Note that

∥ γv − 1
γ gv

T ∂TH
∂x ∥

2

≥ 0,

we get

ℒV ≤ 1
2{γ2∥ v ∥2 − ∥ z ∥2} . (19)

By the It o^ 's formula

E V(T) − E V(0)

≤ E 1
2∫0

T
(γ2∥ v ∥2 − ∥ z ∥2) dt . (20)

Since V(x) ≥ 0 and V(0) = 0, the inequality (20) is equivalent to
(18).
Now we consider the H∞ control of following stochastic non-linear
systems subjected to external disturbances

dx = f (x) dt + g(x)u dt + gv(x)v dt + g~(x) dw,
z = h1(x),
y = h2(x),

(21)

where v ∈ ℝs and z ∈ ℝm are, respectively, the unknown bounded
disturbance signal and the estimation variable. gv(x) and g~(x) are
matrix-valued functions with proper dimensions. The other
variables can be referred to (11).
The objective of the H∞ control is to construct a state feedback
control law u(x) = α(x) with α(0) = 0 such that the L2 gain of the
closed loop system is not more than the given disturbance

attenuation value γ and the homogeneous closed loop system is
asymptotically stable in probability. □
 
Theorem 5: Consider the system (21). Suppose it can be a
dissipative Hamiltonian realised as

dx = J(x) − R(x) ∂H(x)
∂x + g(x)u + gv(x)v dt

+g~(x) dw,

z = r(x)gT(x)∂H(x)
∂x ,

y = gv
T(x)∂H(x)

∂x ,

(22)

where r(x) is a weighted matrix with a full column rank. Suppose
the following conditions hold:

(i) the Hamiltonian function H(x) is positive definite continuous
differentiable with the origin being its minimum point;
(ii) the system is zero state detectable;

(iii) Kg(x)gT(x) + 1
2γ2 g(x)gT(x) − gv(x)gv

T(x) ≥ 0.

Then for the given disturbance attenuation level γ > 0, a H∞
controller can be constructed as

u(x) = − K + 1
2rT(x)r(x) + 1

2γ2 gT(x)∂H
∂x , (23)

where K > 0.
 
Proof: First, we will show the L2 gain of the closed loop system is
not more than γ. Substituting the feedback controller (23) into
system (22), we have

dx = J − R − g K + 1
2rT(x)r(x) + 1

2γ2 gT ∂H(x)
∂x dt

+gv(x)v dt + g~(x) dw

= f
~(x) dt + gv(x)v dt + g~(x) dw,

z = gT(x)∂H(x)
∂x .

(24)

Along the trajectories of the system (24), we get

∂TH
∂x f

~ + 1
2γ2

∂TH
∂x gvgv

T ∂H
∂x + 1

2h1
Th1

+ 1
2Tr g~T ∂2H

∂x2 g~

= ∂TH
∂x J − R − g K + 1

2rT(x)r(x) + 1
2γ2 gT ∂H

∂x

+ 1
2γ2

∂TH
∂x gvgv

T ∂H
∂x + 1

2
∂TH
∂x grT(x)r(x)gT ∂H

∂x

+ 1
2Tr g~T ∂2V

∂x2 g~

= − ∂TH
∂x R∂H

∂x + 1
2Tr g~T ∂2V

∂x2 g~ + 1
2γ2

∂TH
∂x gvgv

T ∂H
∂x

− K + 1
2γ2

∂TH
∂x ggT ∂H

∂x
≤ 0.

□
According to Theorem 4, the L2 gain of the closed loop system

is not more than γ.
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Next, we will show the homogeneous part of the closed loop
system is asymptotically stable in probability. Choosing
V(x) = H(x) − H(0) > 0 as a Lyapunov function, we have

ℒV = − ∂TH
∂x R(x)∂H

∂x + 1
2Tr g~T(x)∂2H

∂x2 g~(x)

− ∂TH
∂x g(x) K + 1

2rT(x)r(x) + 1
2γ2 gT(x)∂H

∂x

≤ − ∂TH
∂x Kg(x)gT(x)∂H

∂x − 1
2γ2

∂TH
∂x ggT ∂H

∂x

+ 1
2γ2

∂TH
∂x gvgv

T ∂H
∂x − 1

2
∂TH
∂x grT(x)r(x)gT ∂H

∂x

− 1
2γ2

∂TH
∂x gvgv

T ∂H
∂x

≤ − 1
2γ2

∂TH
∂x gv(x)gv

T(x)∂H
∂x

≤ 0.

So, we have ℒV = 0 if and only if y = gv
T(x)(∂H /∂x) = 0.

According to the condition (ii), the closed loop system with v = 0
is asymptotically stable in probability.
 
Remark 5: It can be seen from Theorem 4 that the Hamiltonian
function and internal structure can be utilised to construct a robust
controller. For a given uncertain stochastic non-linear system, one
can follow three steps to obtain an energy-based H∞ controller: (i)
to re-formulate the considered stochastic non-linear system as an
equivalent stochastic Hamiltonian formulation(24); (ii) to verify
the dissipativity of the system. If the system is not dissipative, one
can design a feedback controller to inject damp and make the
closed loop system dissipative (as shown in Remark 3, Section 3);
(iii) to select the Hamiltonian function as a solution of the
Hamiltonian–Jacobi inequality and construct an energy-based H∞
controller (23) by utilising the internal structure of the system.

5 Energy-based H∞ control of uncertain inverted
pendulum systems
5.1 Stochastic dynamic modelling and Hamiltonian
realisation

Consider the inverted pendulum system shown in Fig. 1. 
The dynamics of the system can be written as [22, 23]

M(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u, (25)

where q is the angle between the pendulum rod and the vertical
direction

M(q) = L 4
3 − m1cos2 q

m1 + m2

is the inertia matrix, where L, m1 and m2 are a half of the length of
the rod, the mass of the pendulum and the mass of the cart,
respectively

C(q, q̇) = m1Lq̇sin(2q)
2(m1 + m2)

is the Coriolis/centripetal matrix. G(q) = − gsin q is the gravity
matrix, where g = 9.8 m/s2 is the acceleration of the gravity.
B(q) = (cos q/(m1 + m2)) is the control input coefficient. u is the
force acting on the cart.

Denote p = M(q)q̇ as the generalised momentum, then the
system (25) can be reformed as

q̇ = M−1(q)p,

ṗ = − 1
2 p2 ∂M−1(q)

∂q + B(q)u − G(q) .
(26)

Incorporating the possibly existing disturbances from the input
channel and stochastic disturbances from the external environment,
the dynamics of the inverted pendulum can be further modelled by
the following stochastic system:

dq = M−1(q)p dt,

dp = − 1
2 p2 ∂M−1(q)

∂q dt + B(q)u dt − G(q) dt

+B(q)v dt + p dw,

(27)

where v represents the disturbance from the input channel and w is
the stochastic disturbance caused by the vibration of the system,
which is generally directly related to the speed and mass.

To design the robust controller for the inverted pendulum
system, we need to first reformulate the system as an equivalent
stochastic Hamiltonian system. Assume q∗ is the desired position
and choose the Hamiltonian function

H(p, q) = p2

2M(q) + (q − q∗)2 . (28)

The Jacobian matrix of H(p, q) is

∂H
∂q
∂H
∂p

=
1
2 p2 ∂M−1(q)

∂q + 2(q − q∗)

M−1(q)p
. (29)

The calculation shows that the inverted pendulum cannot be
transformed to the Hamiltonian system directly with the chosen
Hamiltonian function. We need to design a feedback controller to
complete the Hamiltonian realisation and stabilise the system.

Consider the following feedback controller:

u = B−1(q) G(q) − 2(q − q∗) − KdM−1(q)p + ū, (30)

where ū is the new control input to be designed and Kd > 2L/3 is
an adjustable constant. The closed loop system is

dq = M−1(q)p dt,

dp = − 1
2 p2 ∂M−1(q)

∂q dt + B(q)ū dt

+B(q) G(q) − 2(q − q∗) − KdM−1(q)p dt
−G(q) dt + B(q)v dt + p dw,

(31)

which can be re-written as the following standard stochastic
Hamiltonian system:

dx = J(x) − R(x) ∂H
∂x dt + g(x)ū dt

+gv(x)v dt + g~ dw,
(32)

where x = [q, p]T, g(x) = gv(x) = [0, B(q)]T

Fig. 1  Inverted pendulum system
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J(x) = − JT(x) = 0 1
−1 0 and R(x) =

0 0
0 Kd

≥ 0,

g~ = 0 0
0 p

.

Moreover, the infinitesimal generator of H(x) is

ℒH = ∂H
∂q

∂H
∂p

0 1
−1 −Kd

∂H
∂q
∂H
∂p

+ 1
2Tr g~T(x)∂2H

∂x2 g~(x)

= − Kd
∂H
∂p

2

+ 1
2Tr g~T(x)∂2H

∂x2 g~(x)

= − Kd M−1(q)p 2 + 1
2 p2M−1(q)

≤ p2

L
3(m1 + m2)

4(m1 + m2) − 3m1cos2(q) − 3Kd
4L + 1

2 .

(33)

Note that

Kd > 2
3L and 3(m1 + m2)

4(m1 + m2) − 3m1cos2(q) > 0,

we have ℒH ≤ 0. So, the Hamiltonian formulation (32) is
dissipative.

5.2 H∞ robust controller design

Now we consider the H∞ control of the system with the estimation
variable

z = rgT(x)∂H(x)
∂x = rB(q)q̇

= 3rpcos(q)
4(m1 + m2) − 3m1cos2(q) ,

(34)

where r > 0 is the weight parameter. The estimation signal z is
meaningful in that it represents the error between the angle speed
and its desired value.

It is obvious that the Hamiltonian function H(q, p) is positive
definite and achieves strict minimum at (q∗, 0). According to (23)
in Theorem 5, for the given disturbance attenuation value γ > 0,
the H∞ controller can be constructed as

ū = − K + 1
2r2 + 1

2γ2 gT(x)∂H
∂x , (35)

where K > 0.
The corresponding closed loop system is

dx =
0 1

−1 −Kd
− g K + 1

2r2 + 1
2γ2 gT ∂H

∂x dt

+gv(x)v dt + g~ dw

= f̄ dx + gv(x)v dt + g~ dw .

It can be verified that for the given γ

∂TH
∂x f̄ + 1

2γ2
∂TH
∂x gvgv

T ∂H
∂x + 1

2 zTz

+ 1
2Tr g~T ∂2H

∂x2 g~

= − ∂TH
∂x R∂H

∂x − K + 1
2r2 + 1

2γ2
∂TH
∂x ggT(x)∂H

∂x

+ 1
2γ2

∂TH
∂x gvgv

T ∂H
∂x + 1

2
∂TH
∂x gr2gT ∂H

∂x

+ 1
2Tr g~T ∂2H

∂x2 g~

= − ∂TH
∂x R∂H

∂x + 1
2Tr g~T ∂2H

∂x2 g~ − K ∂TH
∂x ggT ∂H

∂x

≤ p2

L
3(m1 + m2)

4(m1 + m2) − 3m1cos2(q) − 3Kd
4L + 1

2

−K M−1(q)p cos(q)
m1 + m2

2

≤ 0.

So, the L2 gain of the closed loop system is not more than γ.
Moreover, the infinitesimal generator of H(x) along the

trajectories of the closed loop system in the absence of v is

ℒH = ∂TH
∂x f̄ + 1

2Tr g~T ∂2H
∂2x

g~

= − Kd
∂H
∂p

2

+ 1
2Tr g~T ∂2H

∂2x
g~

− K + 1
2r2 + 1

2γ2
∂TH
∂x ggT ∂H

∂x

≤ p2

L
3(m1 + m2)

4(m1 + m2) − 3m1cos2(q) − 3Kd
4L + 1

2

−(K + 1
2r2 + 1

2γ2 ) M−1(q)p cos(q)
m1 + m2

2

≤ p2

L
3(m1 + m2)

4(m1 + m2) − 3m1cos2(q) − 3Kd
4L + 1

2
≤ 0.

Thus, the homogeneous system is stable in probability. Moreover,
we have ℒH = 0 only and if only

p2(m1 + m2)
4(m1 + m2) − 3m1cos2(q) = 0

and the later means p = 0 and q = q∗, which is exactly the desired
equilibrium point. According to LaSalle's invariance principle of
stochastic non-linear systems, the homogeneous closed loop
system is asymptotically stable in probability.

Integrating the above discussions, the H∞ robust controller for
the inverted pendulum system can be constructed as

u = B−1(q) G(q) − 2(q − q∗) − KdM−1(q)p

− K + 1
2r2 + 1

2γ2
q̇cos q

m1 + m2
.

(36)

5.3 Simulation

To verify the effectiveness of the proposed control scheme, we
simulate the inverted pendulum system under the following
parameters: m1 = 0.1 kg, m2 = 1 kg and L = 0.5 m. The weighted
parameter r = 1 and the feedback gain Kd = 1, K = 1. The desired
angle position is q∗ = π /6. The external disturbance v = cos q and
the disturbance attenuation value γ = 1.

The following cases are considered during the simulation:
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Case I:The inverted pendulum system (without external
disturbance, i.e. v = 0) under the feedback dissipation controller
(30).
Case II:The inverted pendulum system (with external disturbance
v = cos q) under the dissipation controller (30).
Case III:The inverted pendulum system (with external disturbance
v = cos q ) under the energy-based H∞ controller (36) and the
following filtered feedback linearisation controller [24],
respectively

uL = B−1(q)[G(q) + C(q, q̇)q̇] − KL1(q − q∗) − KL2p, (37)

where KL1 = 12, KL2 = 3.

The simulation results are shown in Figs. 2–4. In Fig. 4, the red
line indicates the response of the system under the energy-based
robust controller (36) and the black line shows the response under
the filtered feedback linearisation controller (37). 

From Fig. 2 we can see that when there are no external
disturbances (v = 0), the feedback dissipation controller (30) can
drive the inverted pendulum system stable, while in Fig. 3 we can
see that when the system is subjected to external disturbance v, it
oscillates intensely. Fig. 4 shows that the proposed energy-based
H∞ controller (36) and the filtered feedback linearisation controller
(37) can both stabilise the system subjected to external disturbance
from the input channel and stochastic disturbances from an external
environment. However, compared with the feedback linearisation
controller (37), there is a smaller oscillation and a shorter
adjustment time under the H∞ robust controller (36), which verifies
the effectiveness of the proposed control method.

6 Conclusion
This study investigates the dissipation, stabilisation and H∞ control
of stochastic non-linear systems via the Hamiltonian system
method. First, we propose a sufficient condition for the dissipation
of the stochastic Hamiltonian systems. The energy dissipation,
transformation, internal energy generation and external energy
exchange property of the systems are explored as well. Then, by
completing the Hamiltonian realisation of stochastic non-linear
systems, a feedback stabilising controller is proposed by utilising
the internal structure of the system. For stochastic non-linear
systems subjected to the external disturbances, a H∞ feedback
controller is constructed with the Hamiltonian function being
chosen to construct an explicit solution of Hamiltonian–Jacobi
inequality. Finally, the robust control of inverted pendulum systems
is discussed to verify the effectiveness of the proposed method. In
the future research, we will investigate the parameter estimation
and adaptive robust control of stochastic non-linear systems
subjected to parameter uncertainties and external disturbances. It is
also interesting to investigate the synchronisation of chaotic
systems subjected to stochastic disturbances using an energy-based
method.
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