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Abstract

In this paper, we design an exponentially convergent distur-

bance observer for a wave PDE on a time-varying domain by

using two boundary measurements u(0, t), ut(l(t), t). More

specifically, two auxiliary PDEs are constructed to build the

disturbance observer for tracking the external disturbance in

the wave PDE. Exponential convergence of the disturbance

estimation to the true disturbance value is proved by Lya-

punov analysis, and all states in the observer are shown to

be bounded once the original state u(x, t) is bounded via

designing control input.

1 Introduction

This paper considers a wave PDE on a time-varying
domain with mismatched unknown disturbances, which
can describe the axial vibration dynamics of a mining
cable elevator with the disturbance at the cage. For the
purpose of attenuating the disturbance in the feedback
control design, the objective of this paper is to estimate
the disturbance.

Different methods have been employed to deal with
the disturbance in PDE systems in the past decades.
Slide model control (SMC) is designed for heat, Euler-
Bernoulli, and Schrödinger equations with boundary
disturbances in [5],[8],[11],[13]. Adaptive control is
applied to attenuate the harmonic disturbance with
known frequencies in wave PDEs in [2],[3],[4].

An active disturbance rejection control (ADRC)
method which was proposed by Han [10] has been used
in PDE systems as well. The important step in ADRC is
to estimate the unknown disturbance in time with mea-
sured outputs in a feasible way. The ADRC method
has been verified theoretically and practically as a pow-
erful method of dealing with disturbances in PDE sys-
tems by many research groups. In most of literatures
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about ADRC in PDE systems, the disturbance estima-
tion converges asymptotically to the true value of the
disturbance [7],[9]. The state feedback designs, using
ADRC, of an one-dimensional anti-stable wave equation
and a generalized version of the wave equation subject
to matched disturbances d(t) were presented in [6],[12].
The output feedback design of an one-dimensional anti-
stable wave equation with a boundary disturbance d(t)
was developed in [7]. Boundary stabilization for a multi-
dimensional wave equation with a boundary disturbance
d(t) was considered in [9]. An observer-based output
feedback stabilising control for a wave PDE-ODE sys-
tem with an external disturbance was proposed in [14].

Recently, output feedback stabilization of a wave
equation with a matched external disturbance which is
estimated by constructing two PDEs was considered in
[1]. In this paper, we design a disturbance observer
to track the actual disturbance with an exponentially
convergent error in a wave PDE on a time-varying
domain as follows:

utt(x, t) = uxx(x, t),(1.1)

ux(0, t) = d(t),(1.2)

ux(l(t), t) = U(t),(1.3)

where u(x, t) is the PDE state. d(t) is an unknown
disturbance and U(t) is the control input. The following
assumptions are used.

Assumption 1. The domain length l(t) of the wave
PDE is deceasing from its initial value L, i.e. l̇(t) ≤ 0,
and a lower bound l > 0 exists on the domain length,
s.t. l(t) ≥ l−,∀t ≥ 0.

Assumption 2. The disturbance d(t) is bounded by

(1.4) |d(t)| < D,

where D̄ is unknown and arbitrary.

The remainder of the paper is organized as follows. The
design of the observer is presented in Section 2. The
proof of the exponentially convergent estimate error of
the observer is shown in Section 3 by Lyapunov analysis.
The boundedness of all states in the observer is proved
in Section 4. The conclusion is proposed in Section 5.
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2 Design of a Disturbance Observer

In this section, we design a disturbance estimator for
the unknown disturbance in the wave PDE (1.1)-(1.3)
on the time-varying domain by using the available
measurements ut(l(t), t) u(0, t):

d̄tt(x, t) = d̄xx(x, t),(2.5)

d̄(0, t) = u(0, t)− ū(0, t),(2.6)

d̄x(l(t), t) = −a1d̄t(l(t), t).(2.7)

where ū(x, t) satisfies the following system:

ūtt(x, t) = ūxx(x, t),(2.8)

ūx(0, t) = 0,(2.9)

ūx(l(t), t) = U(t) + a1(ut(l(t), t)− ūt(l(t), t)),(2.10)

which is a copy of the system (1.1)-(1.3) with the
injection a1(ut(l(t), t)− ūt(l(t), t)) and the constant a1

is to be determined later. We define the disturbance
estimate d̂(t) as

(2.11) d̂(t) = d̄x(0, t).

Remark 1. The system (2.5)-(2.7) and (2.8)-(2.10)
can be regarded as a disturbance estimator which uses
available measurements ut(l(t), t) u(0, t) to estimate the
unknown disturbance in the original system (1.1)-(1.3).

3 Convergence of Estimate Error

Theorem 3.1. The error d̃(t) between the disturbance

estimate d̂(t) defined in (2.11) and the actual distur-
bance d(t) is exponentially convergent in the sense of
the following equation:

|d̃(t)| = |d(t)− d̂(t)| ≤ Vd̃0e
−λ2t,∀t ≥ 0,

where λ2 > 0 and Vd̃0 is a positive constant which
depends on the initial value only.

In order to prove Theorem 3.1, we define ǔ(x, t) =
u(x, t)− ū(x, t) as

ǔtt(x, t) = ǔxx(x, t),(3.12)

ǔx(0, t) = d(t),(3.13)

ǔx(l(t), t) = −a1ǔt(l(t), t),(3.14)

and ṽ(x, t) = ǔ(x, t)− d̄(x, t) as

ṽtt(x, t) = ṽxx(x, t),(3.15)

ṽ(0, t) = 0,(3.16)

ṽx(l(t), t) = −a1ṽt(l(t), t).(3.17)

We present two lemmas first.

Lemma 3.1. For any initial data (ṽ(x, 0), ṽt(x, 0))
which belong to H1(0, L)× L2(0, L), the system (3.15)-
(3.17) is exponentially stable in the sense of the norm

(∫ l(t)

0

ṽ2
t (x, t)dx+

∫ l(t)

0

ṽ2
x(x, t)dx

)1/2

.

Proof. The following system norm will be used:

Ωṽ(t) = ‖ṽt(·, t)‖2 + ‖ṽx(·, t)‖2,(3.18)

where ‖ṽ(·, t)‖2 is a compact notation for∫ l(t)
0

ṽ(x, t)
2
dx. In addition, we employ a Lyapunov

function

Vṽ(t) =
1

2
‖ṽt(·, t)‖2 +

1

2
‖ṽx(·, t)‖2

+ δṽ

∫ l(t)

0

(1 + x)ṽx(x, t)ṽt(x, t)dx,(3.19)

where the parameter δṽ is to be determined and needs
to at least satisfy

(3.20) 0 < δṽ <
1

1 + L

to guarantee the positive definiteness of Vṽ(t). Then we
can get the following inequality:

(3.21) θṽ1Ωṽ(t) ≤ Vṽ(t) ≤ θṽ2Ωṽ(t),

where

θṽ1 =
1

2
− 1

2
δṽ(1 + L),(3.22)

θṽ2 =
1

2
+

1

2
δṽ(1 + L).(3.23)

Taking the derivative of Vṽ(t) along the system (3.15)-
(3.17), we obtain

V̇ṽ = −a1ṽ
2
t (l(t), t)

− 1

2

∣∣∣l̇(t)∣∣∣ ṽ2
t (l(t), t)− a2

1

1

2

∣∣∣l̇(t)∣∣∣ ṽ2
t (l(t), t)

+
δṽ
2

(1 + l(t))ṽ2
t (l(t), t)

+ a1
2 δṽ

2
(1 + l(t))ṽ2

t (l(t), t)− δṽ
2
ṽ2
x(0, t)

− δṽ
2
‖ṽt‖2 −

δṽ
2
‖ṽx‖2

+
∣∣∣l̇(t)∣∣∣ a1δṽ(1 + l(t))ṽ2

t (l(t), t)
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≤ −δṽ
2
‖ṽt‖2 −

δṽ
2
‖ṽx‖2

−
(
a1 −

δṽ(1 + L)

2
(1 + a1

2)

)
ṽ2
t (l(t), t)

−
∣∣∣l̇(t)∣∣∣ (1

2
+
a1

2

2
− a1δṽ(1 + L)

)
ṽ2
t (l(t), t)

− δṽ
2
ṽ2
x(0, t)

≤ −λ1Vṽ,(3.24)

where

(3.25) λ1 =
δṽ

2θṽ2
,

and δṽ is chosen to satisfy

0 < δṽ <
1

1 + L
min

{
1,

2a1

1 + a1
2
,

1 + a1
2

2a1

}
(3.26)

to make sure the coefficients before the term ṽ2
t (l(t), t)

are negative.

Lemma 3.2. For any initial data (e(x, 0), et(x, 0))
which belong to H1(0, L) × L2(0, L), the system
e(x, t) = ṽt(x, t) is exponentially stable such that

|e(x, t)| ≤ Ve0e−λ2t,∀t ≥ 0,

where λ2 > 0 and Ve0 is a positive constant which only
depends on the initial values. Then we obtain

|ṽx(0, t)| ≤ Vṽ0e
−λ2t,∀t ≥ 0,

where Vṽ0 is a positive constant which only depends on
the initial values.

Proof. According to the system (3.15)-(3.17), the e
system can be written as

ett(x, t) = exx(x, t),(3.27)

e(0, t) = 0,(3.28)

ex(l(t), t) = −b1et(l(t), t),(3.29)

where

(3.30) b1 =
a1 − |l̇(t)|
1− a1|l̇(t)|

.

We can choose

(3.31) |l̇(t)| < a1 <
1

|l̇(t)|

in the case of |l̇(t)| ≤ 1, and chose

(3.32)
1

|l̇(t)|
< a1 < |l̇(t)|,

when |l̇(t)| > 1, to make

(3.33) b1 > 0.

Consider a Lyapunov function for the system (3.27)-
(3.29),

Ve(t) =
1

2
‖et(·, t)‖2 +

1

2
‖ex(·, t)‖2

+ δe

∫ l(t)

0

(1 + x)ex(x, t)et(x, t)dx,(3.34)

where the parameter δe is to be determined and needs
to at least satisfy

(3.35) 0 < δe <
1

1 + L

to guarantee the positive definiteness of Ve(t).
Taking the derivative of Ve(t) along the system

(3.27)-(3.29), through a similar computation as (3.24),
we get the exponential stability of the system e(x, t),

V̇e ≤ −
δe
2
‖et‖2 −

δe
2
‖ex‖2

−
(
b1 −

δe(1 + L)

2
(1 + b1

2)

)
et

2(l(t), t)

−
∣∣∣l̇(t)∣∣∣ (1

2
+
b1

2

2
− b1δe(1 + L)

)
e2
t (l(t), t)

− δe
2
ex

2(0, t)

≤ −λ2Ve,(3.36)

where

(3.37) λ2 =
δe

2µe
,

and δe and µe satisfy:

0 < δe <
1

1 + L
min

{
1,

2b1

1 + b1
2 ,

1 + b1
2

2b1

}
,(3.38)

(3.39) µe =
1

2
+

1

2
δe(1 + L).

According to ṽ system (3.15)-(3.17), from Cauchy-
Schwarz inequality, we obtain

|ṽx(0, t)| ≤ |ṽx(l(t), t)|+
∣∣∣∣ ∫ l(t)

0

ṽxx(x, t)dx

∣∣∣∣
≤ |a1ṽt(l(t), t)|+ L

(∫ l(t)

0

|ṽtt(x, t)|2dx
) 1

2

= |a1e(l(t), t)|+ L ‖et(·, t)‖
≤ a1|ṽt(L, 0)|e−λ2t + L ‖ṽtt(·, 0)‖ e−λ2t,(3.40)
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then

(3.41) |ṽx(0, t)| ≤
(
a1|ṽt(L, 0)|+ L ‖ṽtt(·, 0)‖

)
e−λ2t.

The proof is thus completed.

With Lemma 3.2, we can then prove Theorem 3.1.

Proof. According to (2.11) and (3.13), the estimated
error of the proposed disturbance estimator can be
obtained as

d̃(t) = d(t)− d̂(t)

= ǔx(0, t)− d̄x(0, t)

= ṽx(0, t).(3.42)

According to Lemma 3.2, we can conclude Theorem 3.1.

4 Boundedness of the Observer State.

Theorem 4.1. All states in the disturbance observer
are bounded in the sense of,

sup
t≥0

[ ∫ l(t)

0

(d̄2
t (x, t) + d̄2

x(x, t)

+ ū2
t (x, t) + ū2

x(x, t))dx

]
<∞.(4.43)

In order to prove Theorem 4.1, we propose one Lemma
first.

Lemma 4.1. The system (3.12)-(3.14) is uniformly
bounded in the sense of

sup
t≥0

[ ∫ l(t)

0

(ǔ2
t (x, t) + ǔ2

x(x, t))

]
<∞.(4.44)

Proof. The following system norm will be used:

Ωǔ(t) = ‖ǔt(·, t)‖2 + ‖ǔx(·, t)‖2.(4.45)

In addition, we employ a Lyapunov function

Vǔ(t) =
1

2
‖ǔt(·, t)‖2 +

1

2
‖ǔx(·, t)‖2

+ δǔ

∫ l(t)

0

(1 + x)ǔx(x, t)ǔt(x, t)dx,(4.46)

where the parameter δǔ is to be determined and needs
to at least satisfy

(4.47) 0 < δǔ <
1

1 + L

to guarantee the positive definiteness of Vǔ(t). Then we
can get the following inequality:

(4.48) θǔ1Ωǔ(t) ≤ Vǔ(t) ≤ θǔ2Ωǔ(t),

where

θǔ1 =
1

2
− 1

2
δǔ(1 + L),(4.49)

θǔ2 =
1

2
+

1

2
δǔ(1 + L).(4.50)

Taking the derivative of Vǔ(t) along the system (3.12)-
(3.14), we obtain

V̇ǔ = −a1ǔ
2
t (l(t), t)− ǔt(0, t)ǔx(0, t)

− 1

2

∣∣∣l̇(t)∣∣∣ ǔ2
t (l(t), t)− a2

1

1

2

∣∣∣l̇(t)∣∣∣ ǔ2
t (l(t), t)

+
δǔ
2

(1 + l(t))ǔ2
t (l(t), t)−

δǔ
2
ǔ2
t (0, t)

+ a1
2 δǔ

2
(1 + l(t))ǔ2

t (l(t), t)−
δǔ
2
ǔ2
x(0, t)

− δǔ
2
‖ǔt‖2 −

δǔ
2
q‖ǔx‖2

+
∣∣∣l̇(t)∣∣∣ a1δǔ(1 + l(t))ǔ2

t (l(t), t).

Applying Young’s inequality,

V̇ǔ ≤ −
δǔ
2
‖ǔt‖2 −

δǔ
2
‖ǔx‖2

−
(
a1 −

δǔ(1 + L)

2
(1 + a1

2)

)
ǔ2
t (l(t), t)

−
∣∣∣l̇(t)∣∣∣ (1

2
+
a1

2

2
− a1δǔ(1 + L)

)
ǔ2
t (l(t), t)

− (
δǔ
2
− r1

2
)ǔ2
t (0, t) + (

1

2r1
− δǔ

2
)ǔ2
x(0, t).

By choosing

0 < δǔ <
1

1 + L
min

{
1,

2a1

1 + a1
2
,

1 + a1
2

2a1

}
,(4.51)

0 < r1 < δǔ,(4.52)

we obtain,

V̇ǔ ≤ −λ0Vǔ +M,(4.53)

where,

(4.54) λ0 =
δǔ

2θǔ2
,

and M = ( 1
2r1
− δǔ

2 )D
2
.

Multiplying both sides of (4.53) by eλ0t, we obtain

d(Vǔe
λ0t)

dt
≤Meλ0t.(4.55)

Integration of (4.55) yields

Ωǔ(t) ≤ 1

θǔ1
Vǔ(t) ≤ 1

θǔ1
(Vǔ(0)− M

λ0
)e−λ0t +

M

θǔ1λ0
,

(4.56)
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which implies Ωǔ(t) is uniformly bounded by 1
θǔ1

Vǔ(0).
Moreover, it is uniformly ultimately bounded with the

ultimate bound M
θǔ1λ0

.

According to Lemma 4.1, we can prove Theorem 4.1
now.

Proof. We can design the control input U(t) to ensure
u(x, t) uniformly bounded. Based on Lemma 4.1 which
prove the uniform boundedness of the system ǔ(x, t)
and Lemma 3.1 which means the exponential stability
of ṽ(x, t) system, we can get d̄(x, t) is uniformly bounded
considering ṽ(x, t) = ǔ(x, t) − d̄(x, t). Then we can ob-
tain that ū(x, t) is also uniformly bounded considering
ṽ(x, t) = u(x, t)−ū(x, t)−d̄(x, t). Therefore, all states in
the observer system (2.5)-(2.10) are uniformly bounded.
The proof is completed.

5 Conclusion

In this paper, we propose a disturbance observer for
wave PDEs on a time-varying domain, subject to un-
known anti-collocated disturbances. This method can
be applied in ADRC where the estimation of distur-
bance is required and used to attenuate the actual dis-
turbance by feedback control in wave PDEs. Expo-
nential convergence of the estimate error and uniform
boundedness of all states in the proposed observer have
been proved by Lyapunov analysis. Physically the ob-
server system can be used in cable elevators to estimate
the disturbance at the cage.
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