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a b s t r a c t

Using backstepping design, exponential stabilization of the linearized Saint-Venant–Exner (SVE) model
of water dynamics in a sediment-filled canal with arbitrary values of canal bottom slope, friction,
porosity, andwater–sediment interaction, is achieved. The linearized SVEmodel consists of two rightward
convecting transport Partial Differential Equations (PDEs) and one leftward convecting transport PDE. A
single boundary input control strategywith actuation located only at the downstream gate is employed. A
full state feedback controller is designedwhich guarantees exponential stability of the desired setpoint of
the resulting closed-loop system. Using the reconstruction of the distributed state through a backstepping
observer, an output feedback controller is established, resulting in the exponential stability of the closed-
loop system at the desired setpoint. The proposed state and output feedback controllers can deal with
both subcritical and supercritical flow regimes without any restrictive conditions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The SVE model has attracted considerable attention over the
past decades. Significant results such as Daly and Porporato (2005)
and Lanzoni, Siviglia, Frascati, and Seminara (2006) are devoted to
the numerical analysis of the dynamics of water flow coupled with
amovable bed. However, the boundary control of such systems de-
scribed by nonlinear hyperbolic PDEs is left out in most of these
contributions. In the present work, we are interested in the sta-
bilization of the SVE hyperbolic PDEs that describe the flow and
the bed evolutions in an open channel (Diagne, Bastin, & Coron,
2012; Diagne & Sène, 2013). During the past decades, various con-
trol strategies, which do not account for sediment dynamics, have
beendevelopedwith the aim to stabilize and to regulatewater flow
dynamics in irrigation channels. Usually, the openings of the gates
located at the ends of the channel are controlled to achieve the sta-
bilization of thewater level and flow rate at desired setpoints. Even
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though controlling of the discharge remains a possible alternative,
the superiority of gates openings control has been proven in many
cases. We refer the reader to Malaterre, Rogers, and Schuurmans
(1998), for an extensive review of control design methodologies
for irrigation channels. For instance, Balogun, Hubbard, and De-
Vries (1988) proposed an LQ control strategy, whereas Prieur and
de Halleux (2004) developed a Lyapunov-based design. Semigroup
approach (Xu & Sallet, 1999), H∞ control (Litrico & Fromion, 2006;
Pognant-Gros, Fromion, & Baume, 2001) and multi-models design
(Diagne, Santos Martins, & Rodrigues, 2010; Santos Martins, Ro-
drigues, & Diagne, 2008), to mention a few, have been exploited to
regulate irrigation channel.

Based on the linearized SVE model, the control of water flow
dynamics under amovable bed, is achieved by Diagne et al. (2012),
employing explicit dissipative boundary conditions that ensure
exponential stability in L2-norm of one-dimensional hyperbolic
systems of balance laws. Recently, boundary control of hyperbolic
systems based on singular perturbationwas utilized to successfully
control the linearized SVE model (Tang, Prieur, & Girard, 2014).
However, the two aforementioned methods require on-line mea-
surements of the water levels at the upstream (x = 0) and the
downstream (x = L) ends of the canal. Among the existing con-
tributions, only Diagne and Sène (2013), which uses a priori esti-
mation technique combinedwith Faedo–Galerkinmethod, enables
feedback stabilization by merely sensing the downstream gate.
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Fig. 1. A sketch of the channel.

In the recent years, PDE backstepping has proved to be of
fundamental importance for boundary feedback stabilization of
distributed parameter systems involving transport and diffusion
phenomena (Coron, Vazquez, Krstic, & Bastin, 2013; Di Meglio,
Vazquez, & Krstic, 2013; Krstic & Smyshlyaev, 2008). The key point
of backstepping is the construction of a suitable Volterra integral
transformation that maps an original PDE system into a so-called
‘‘target system’’ whose exponential stability is easier to establish.
Based on the invertibility of the transformation, the original and
the target system have equivalent stability. The kernel functions
of such a transformation are required to satisfy some PDEs whose
solutions are used as gains of the original system controller.

In the present work, we achieve exponential stabilization of the
linearized Saint-Venant–Exner (SVE) model that describes water
dynamics in a sediment-filled canalwith arbitrary values of bottom
slope, friction, porosity, and water–sediment interaction (Diagne
et al., 2012). The backstepping design (DiMeglio et al., 2013) is em-
ployed to construct the boundary feedback control action for the
stabilization of two rightward and one leftward convecting PDEs
derived from the linearization of the SVEmodel. The proposed con-
troller enables the stabilization of both subcritical and supercritical
flow regimes, which has not been the case in previous results (Di-
agne et al., 2012; Diagne & Sène, 2013). By solely considering an
actuation of the downstream gate, a full state feedback controller
is designed to ensure the exponential stabilization of the closed-
loop system at the desired setpoint. Designing an exponentially
convergent Luenberger observer that enables the reconstruction of
the distributed state, an output feedback controller is built using
only available measurements at the upstream gate. The properties
of the flow depend on the dimensionless Froude number (Fr). The
proposed controllers operate under both subcritical (Fr < 1) and
supercritical (Fr > 1) flow regimes. Particularly, the stabilization
of a supercritical flow regime for which the water flow involves a
high velocity and a low height setpoint values, is extremely hard to
achieve. Moreover, exponential stability results are achievedwith-
out the need to impose restrictive conditions on the matrix arising
from the source term of the system. Conversely, that matrix is re-
quired to satisfy a restrictive condition to bemarginally diagonally
stable (Diagne et al., 2012).

This paper is organized as follows. In the next section, the non-
linear SVE model is described. Section 3 introduces the backstep-
ping transformation which converts the linearized SVE model into
an exponentially stable target system, and the full state feedback
controller is designed. An exponentially convergent backstepping
observer is designed in Section 4. Based on the observer, which
reconstructs the full state from the output measurement, an out-
put feedback controller is constructed in Section 5, and exponen-
tial stability at the equilibrium setpoint of the resulting closed-loop
system is also established. Numerical simulations are provided for
the supercritical flow regime in Section 6. The paper endswith con-
cluding remarks and future directions stated in Section 7.

2. The Saint-Venant–Exner model

We consider a pool of a prismatic sloping open channel with a
rectangular cross-section, a unit width, and a moving bathymetry.
The water depth H(t, x), the water velocity V (t, x) and the
bathymetry B(t, x)which is the depth of the sediment layer above
the channel bottom, are defined as the state variables of the model
(see Fig. 1). The dynamics of the system are described by the
coupling of Saint-Venant and Exner equations (see e.g. Hudson &
Sweby, 2003)

∂H
∂t

+ V
∂H
∂x

+ H
∂V
∂x

= 0, (1a)

∂V
∂t

+ V
∂V
∂x

+ g
∂H
∂x

+ g
∂B
∂x

= gSb − Cf
V 2

H
, (1b)

∂B
∂t

+ aV 2 ∂V
∂x

= 0, (1c)

where, g is the gravity constant, Sb is the bottom slope of the
channel, Cf is a friction coefficient and a is a parameter that
encompasses the porosity and viscosity effects on the sediment
dynamics. The coefficient a expresses as (cf. Hudson & Sweby,
2003) a =

3Ag
1−pg

, with pg being the porosity parameter and Ag is
the coefficient to control the interaction between the bed and the
water flow.

2.1. The Linearized model of SVE and its representation in Riemann
coordinates

In order to linearize the model (1) around a steady-state, we
introduce the following vector
h u b

tr
=

H − H∗ V − V ∗ B − B∗

tr
.

Here, a steady-state is a constant state (H∗, V ∗, B∗)T which satisfies
the relation gSbH∗

= Cf V ∗2 and the linearized model of (1) is
written as follows
∂W
∂t

+ A(W ∗)
∂W
∂x

= B(W ∗)W , (2)

where W =

h u b

tr ,
A(W ∗) =

V ∗ H∗ 0
g V ∗ g
0 aV ∗2 0

 ,
B(W ∗) =

 0 0 0

Cf
V ∗2

H∗2
−2Cf

V ∗

H∗
0

0 0 0

 .
Exact, but rather complicated expressions of the eigenvalues λi of
A(W ∗) can be obtained by using the Cardano-Vieta method, see
Hudson and Sweby (2003). For the sake of simplicity, we introduce
the notation rk = Cf

V∗

H∗

λk
(λk−λi)(λk−λj)

. After some computations, (2)
can be written as:

∂ξk

∂t
+ λk

∂ξk

∂x
+

3
s=1

(2λs−3V ∗)rsξs = 0, k = 1, 2, 3, (3)

where the characteristic coordinates are

ξk =
H∗

Cf V ∗λk


(V ∗

− λi)(V ∗
− λj)+ gH∗


h

+ H∗λku + gH∗b

. (4)
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Using (3), we rewrite (2) in characteristic form as

∂ξ

∂t
+ 3

∂ξ

∂x
− Mξ = 0, (5)

ξ = (ξ1, ξ2, ξ3)
T , 3 = diag(λ1, λ2, λ3), (6)

M =


α1 α2 α3
α1 α2 α3
α1 α2 α3


, αk =


3V ∗

− 2λk

rk. (7)

2.2. Control problem statement

From the representation of the linearized SVE model in
Riemann coordinates defined in (7), we derive a boundary control
problem which is similar to the control problem solved (Di Meglio
et al., 2013). First, we redefine the state variables as

v(t, x) = ξ1(t, x), u1(t, x) = ξ2(t, x), u2(t, x) = ξ3(t, x)

and, the characteristics velocities as

λ1 = −µ, γ1 = λ2, γ2 = λ3.

Next, we adopt the following notations for the coefficients of the
matrixM defined in (7)

ηj = αj+1, for j = {1, 2}, σ =


α2 α3
α2 α3


.

Hence, the system (5)–(7) is rewritten as follow

∂tu1 + γ1∂xu1 = σ11u1 + σ12u2 + α1v, (8a)
∂tu2 + γ2∂xu2 = σ21u1 + σ22u2 + α1v, (8b)
∂tv − µ∂xv = η1u1 + η2u2 + α1v. (8c)

The change of variable w(t, x) = v(t, x) exp

−
α1
µ
x

transforms

system (8) into the following form

∂tu1 + γ1∂xu1 = σ11u1 + σ12u2 + α(x)w, (9a)
∂tu2 + γ2∂xu2 = σ21u1 + σ22u2 + α(x)w, (9b)
∂tw − µ∂xw = θ1(x)u1 + θ2(x)u2, (9c)
ui(t, 0) = qiw(t, 0) for i = 1, 2, (9d)
w(t, 1) = ρ1u1(t, 1)+ ρ2u2(t, 1)+ U(t), (9e)

w(0, x) = w0(x), ui(0, x) = u0
i (x) for i = 1, 2 (9f)

with α(x) = α1 exp

α1
µ
x

, θj(x) = αj+1 exp


α1
µ
x

, j = 1, 2.

Remark 1. From the physical model (1), (2), the dimensionless
Froude number is defined as Fr =

V∗
√
gH∗

. For a subcritical flow
regime (Fr < 1), the three eigenvalues of the matrix A satisfy
λ1 < 0 < λ2 ≪ λ3 whereas, λ2 < 0 < λ1 < λ3 for the super-
critical one (Fr > 1) (Hudson & Sweby, 2003). Here, λ1 and λ3 are
the characteristic velocities of the water flow and λ2 is the charac-
teristic velocity of the sediment motion. When the flow regime is
supercritical, the following changes of variable v(t, x) = ξ2(t, x),
u1(t, x) = ξ1(t, x), u2(t, x) = ξ3(t, x) and coefficients λ2 = −µ,
γ1 = λ1 and γ2 = λ3 need to be considered.

3. Full state controller design

3.1. Backstepping transformation and target system

Consider the following backstepping transformation (Di Meglio
et al., 2013)

ψi(t, x) = ui(t, x) for i = 1, 2 (10)
Fig. 2. Representation of the target system.

χ(t, x) = w(t, x)−

 x

0
k1(x, ξ)u1(t, ξ) dξ

−

 x

0
k2(x, ξ)u2(t, ξ) dξ −

 x

0
k3(x, ξ)w(t, ξ) dξ . (11)

We would like the transformation (10)–(11) to map (9) into the
following target system (see Fig. 2)

∂tψ1 + γ1∂xψ1 = σ11ψ1 + σ12ψ2 + α(x)χ

+

 x

0
c11(x, ξ)ψ1(t, ξ) dξ +

 x

0
c12(x, ξ)ψ2(t, ξ) dξ

+

 x

0
κ1(x, ξ)χ(t, ξ) dξ, (12a)

∂tψ2 + γ2∂xψ2 = σ21ψ1 + σ22ψ2 + α(x)χ

+

 x

0
c21(x, ξ)ψ1(t, ξ) dξ +

 x

0
c22(x, ξ)ψ2(t, ξ) dξ

+

 x

0
κ2(x, ξ)χ(t, ξ) dξ, (12b)

∂tχ − µ∂xχ = 0, (12c)
ψi(t, 0) = qiχ(t, 0) for i = 1, 2 and χ(t, 1) = 0, (12d)

where cij(·) and κi(·) are functions to be determined on the

triangular domain T =


(x, ξ) ∈ R2

| 0 ≤ ξ ≤ x ≤ 1

. A sufficient

condition for the transformation (10)–(11) to map (9) into (12) is
that the kernels ki satisfy the following PDEs

µ∂xk1(x, ξ)− γ1∂ξk1(x, ξ)

= σ11k1(x, ξ)+ σ21k2(x, ξ)+ θ1(ξ)k3(x, ξ), (13a)
µ∂xk2(x, ξ)− γ2∂ξk2(x, ξ)

= σ12k1(x, ξ)+ σ22k2(x, ξ)+ θ2(ξ)k3(x, ξ), (13b)
µ∂xk3(x, ξ)+ µ∂ξk3(x, ξ)

= α(ξ)k1(x, ξ)+ α(ξ)k2(x, ξ), (13c)

k1(x, x) = −
θ1(x)
γ1 + µ

, k2(x, x) = −
θ2(x)
γ2 + µ

, (13d)

µk3(x, 0) = q1γ1k1(x, 0)+ q2γ2k2(x, 0). (13e)

The existence, uniqueness and continuity of the solutions to the
system (13) are established in Di Meglio et al. (2013). Substituting
(10)–(11) into (12) and using (9), we deduce the following equality x

0


α(ξ)k1(x, ξ)− ci1(x, ξ)

+

 x

ξ

κ1(x, s)k1(s, ξ) ds

u1(ξ) dξ

+

 x

0


α(ξ)k2(x, ξ)− ci2(x, ξ)
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Fig. 3. Schematic steep of the hyperbolic system.1

+

 x

ξ

κ2(x, s)k2(s, ξ) ds

u2(ξ) dξ

+

 x

0


α(ξ)k3(x, ξ)− κi(x, ξ)+

 x

ξ

κ1(x, s)k3(s, ξ) ds

+ κ2(x, s)k3(s, ξ) ds,

w(ξ) dξ = 0 (14)

where κi and cij satisfy the following integral equations

κi(x, ξ) = α(x)k3(x, ξ)+

 x

ξ

κi(x, s)k3(s, ξ) ds, i = {1, 2}

cij(x, ξ) = α(x)kj(x, ξ)+

 x

ξ

κi(x, s)kj(s, ξ) ds, i, j = {1, 2}.

3.2. Inverse transformation and control law

To ensure that the target system and the closed-loop system
have equivalent stability properties, the transformation (10)–(11)
has to be invertible. Sinceψi = ui, for i = 1, 2, the transformation
(11) can be rewritten as

χ(t, x)+

 x

0
k1(x, ξ)ψ1(t, ξ) dξ +

 x

0
k2(x, ξ)ψ2(t, ξ) dξ

= w(t, x)−

 x

0
k3(x, ξ)w(t, ξ) dξ .

Let us define

Γ (t, x) = χ(t, x)+

 x

0
k1(x, ξ)ψ1(t, ξ) dξ

+

 x

0
k2(x, ξ)ψ2(t, ξ) dξ . (15)

Knowing that k3 is continuous (see. Theorem 5.3 in Di Meglio et al.,
2013), there exists a unique continuous inverse kernel l3 defined
on T, such that

w(t, x) = Γ (t, x)+

 x

0
l3(x, ξ)Γ (t, ξ) dξ . (16)

Hence, from (9) and (12) we get

α(x)w = α(x)χ +

 x

0
c11(x, ξ)ψ1(t, ξ) dξ

+

 x

0
c12(x, ξ)ψ2(t, ξ) dξ +

 x

0
κ1(x, ξ)χ(t, ξ) dξ . (17)

1 Figs. 2 and 3 are depicted in Di Meglio et al. (2013) for the general n+1 system.
Fig. 3 describes the interconnection among the states, the input and the measured
output of system (9).
It follows that

w(t, x) = χ(t, x)+

 x

0
l1(x, ξ)ψ1(t, ξ) dξ

+

 x

0
l2(x, ξ)ψ2(t, ξ) dξ +

 x

0
l3(x, ξ)χ(t, ξ) dξ, (18)

where

li(x, ξ) = ki(t, ξ)+

 x

ξ

ki(x, ξ)l3(ξ , s) ds, i = {1, 2}. (19)

The control lawU(t) is obtained by substituting the transformation
(11) into (9). Readily, χ(t, 1) = 0 implies that

U(t) = −ρ1u1(t, 1)− ρ2u2(t, 1)+

 1

0


k1(1, ξ)u1(x, ξ)

+ k2(1, ξ)u2(x, ξ)+ k3(1, ξ)w(1, ξ)

dξ, (20)

where the gain functions k1, k2 and k3 satisfy (13).

3.3. Stability of the closed-loop system

In order to establish the stability of the closed-loop system to
the desired equilibrium, we first prove the exponential stability of
the target system based on Lyapunov argument.

Lemma 1. For any given initial condition (ψ0
1 , ψ

0
2 , χ

0)T ∈
L 2([0, 1])

3 and under the assumption that cij, κi ∈ C (T), the
equilibrium (ψ1, ψ2, χ)

T
= (0, 0, 0)T of the target system (12a)–

(12d) is L 2-exponentially stable.

Proof. Consider the following Lyapunov function

V1(t) =

 1

0


a1e−δ1x


ψ2

1 (t, x)
γ1

+
ψ2

2 (t, x)
γ2


+

1 + x
µ

χ2(t, x)

dx, (21)

where a1 and δ1 are positive parameters to be determined.
Differentiating (21) with respect to time along the solutions of the
target system (12) and integrating by parts we get

V̇1(t) =


−a1e−δ1x(ψ2

1 (t, x)+ ψ2
2 (t, x))+ (1 + x)χ2(t, x)

1
0

−

 1

0
χ2(t, x) dx +

 1

0
a1e−δ1x

× Ψ T (t, x) (−δ1I2 + 20invσ)Ψ (t, x) dx

+ 2
 1

0
a1e−δ1xΨ T (t, x)0invα(x)χ(t, x) dx

+ 2
 1

0
a1e−δ1x

 x

0
Ψ T (t, x)0inv

× (C(x, ξ)Ψ (t, ξ) +K(x, ξ)χ(t, ξ)) dξ dx, (22)

where the vectors Ψ (t, x), α(x), K(x, ξ) and the matrices 0inv ,
C(x, ξ) are given by Ψ (t, x) =


ψ1(t, x)
ψ2(t, x)


, α(x) =


α(x)
α(x)


, K(x, ξ) =

κ1(x, ξ)
κ2(x, ξ)


, 0inv =

 1
γ1

0

0
1
γ2

, C(x, ξ) =


c11(x, ξ) c12(x, ξ)
c21(x, ξ) c22(x, ξ)


.

Assume that for M > 0 and ε > 0, we have ∥σ∥, ∥α(x)∥,
∥C(x, ξ)∥, ∥K(x, ξ)∥ ≤ M , and γi(x) > ε, ∀i = 1, 2,∀x ∈

[0, 1], ξ ∈ [0, x], where the matrix/vector norms ∥ · ∥ are
compatible with the other corresponding matrix/vector norms.
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Hence, using Young’s inequalities, we derive the following bounds
for the integral terms in (22)

2
 1

0
a1e−δ1xΨ T (t, x)0invσΨ (t, x) dx

≤ 2
M
ε

 1

0
a1e−δ1xΨ T (t, x)Ψ (t, x) dx, (23)

2
 1

0
a1e−δ1xΨ T (t, x)0invα(x)χ(t, x) dx

≤ a1


M
ε

2  1

0
e−δ1xΨ T (t, x)Ψ (t, x)dx

+ a1

 1

0
e−δ1xχ2(t, x)dx, (24)

2
 1

0
a1e−δ1x

 x

0
Ψ T (t, x)0invC(x, ξ)Ψ (t, ξ) dξ dx

≤ a1

 1

0
e−δ1x


M
ε
x +

M
δ1ε


Ψ T (t, x)Ψ (t, x)dx, (25)

and

2
 1

0
a1e−δ1x

 x

0
Ψ T (t, x)0invK(x, ξ)χ(t, ξ) dξ dx

≤ a1


M
ε

2  1

0
e−δ1xxΨ T (t, x)Ψ (t, x)dx

+ a1
1
δ1

 1

0
e−δ1xχ2(t, x)dx. (26)

Using the boundary conditions (23)–(26) and (12d) in (22), we
derive the following estimate:

V̇1(t) ≤


a1

2
i=1

q2i − 1


χ2(t, 0)

−

 1

0


1 − a1


1 +

1
δ1


e−δ1x


χ2(t, x) dx

− a1

 1

0
e−δ1xΨ T (t, x)P(x)Ψ (t, x) dx, (27)

P(x) =


δ1 − 2

M
ε

−
M
ε
x − 2


M
ε

2

−
M
δ1ε


I2 − 20invσ.

First, we choose the tuning parameter δ1 > 0 sufficiently large
so that the matrix P(x), x ∈ [0, 1] is positive definite. Then, by
choosing

0 < a1 < min


1


2
i=1

q2i


,

δ1

δ1 + 1


, (28)

we derive exponential stability of the target system. Then, from
the continuity and invertibility of the backstepping transformation
(10)–(11), we derive equivalence between the original system (9)
(with the control law (20)) and the target system (12). Thus, the
following theorem holds.

Theorem 1. Consider the system (9) and the control law (20). Then
under the assumptions that the initial data are in


L 2([0, 1])

3, the
origin is exponentially stable in the L 2 sense.

4. Backstepping observer design

The feedback controller (20) requires a full state measurement
across the spatial domain. In this section, we are interested in
the design of a boundary state observer for estimation of the
distributed states of the system (9) over the whole spatial domain
using the measured output w(t, 0) = y(t). We introduce the
observer (Di Meglio et al., 2013)

∂t û1 + γ1∂xû1 = σ11û1 + σ12û2 + α(x)ŵ
− p1(x)[y(t)− ŵ(t, 0)], (29a)

∂t û2 + γ2∂xû2 = σ21û1 + σ22û2 + α(x)ŵ
− p2(x)[y(t)− ŵ(t, 0)], (29b)

∂tŵ − µ∂xŵ = θ1(x)û1 + θ2(x)û2

− p3(x)[y(t)− ŵ(t, 0)], (29c)

ûi(t, 0) = qiy(t) for i = 1, 2 (29d)

ŵ(t, 1) = ρ1û1(t, 1)+ ρ2û2(t, 1)+ U(t), (29e)

where (û1, û2, ŵ)
T is the estimated state vector. The functions

θj(x) = αj+1 for j = 1, 2 and α(x) are the ones defined for the
transformed system (9).

Our objective is to find p1(x), p2(x) and p3(x) such that
(ŵ, û1, û2) converges to (w, u1, u2) in finite time. Defining
w̃ ũ1 ũ2

T
=

w − ŵ u1 − û1 u2 − û2

T (30)

leads to the following error system

∂tw̃ − µ∂xw̃ =θ1(x)ũ1 + θ2(x)ũ2 + p3(x)w̃(t, 0) (31a)
∂t ũ1 + γ1∂xũ1 =σ11ũ1 + σ12ũ2 + α(x)w̃ + p1(x)w̃(t, 0) (31b)
∂t ũ2 + γ2∂xũ2 =σ21ũ1 + σ22ũ2 + α(x)w̃ + p2(x)w̃(t, 0) (31c)
w̃(t, 1) = ρ1ũ1(t, 1)+ ρ2ũ2(t, 1), (31d)

ũi(t, 0) = 0 for i = 1, 2. (31e)

Next, we employ a backstepping transformation to prove the
exponential stability of the error system (31).

4.1. Backstepping transformation and target error system

We consider the backstepping transformation (Di Meglio et al.,
2013)

ũi(t, x) = π̃i(t, x)+

 x

0
mi(x, ξ)φ̃(t, ξ) dξ i = 1, 2, (32a)

w̃(t, x) = φ̃(t, x)+

 x

0
m3(x, ξ)φ̃(t, ξ) dξ, (32b)

to map (31) into the following target system

∂t π̃1 + γ1∂xπ̃1 = σ11π̃1 + σ12π̃2

+

 x

0
g11(x, ξ)π̃1(t, ξ) dξ +

 x

0
g12(x, ξ)π̃2(t, ξ) dξ, (33a)

∂t π̃2 + γ2∂xπ̃2 = σ21π̃1 + σ22π̃2

+

 x

0
g21(x, ξ)π̃1(t, ξ) dξ +

 x

0
g22(x, ξ)π̃2(t, ξ) dξ, (33b)

∂t φ̃ − µ∂xφ̃ = θ1(x)π̃1 + θ2(x)π̃2

+

 x

0
h1(x, ξ)π̃1(t, ξ) dξ +

 x

0
h2(x, ξ)π̃2(t, ξ) dξ, (33c)

with the boundary conditions

π̃i(t, 0) = 0, φ̃(t, 1) = ρ1π̃1(t, 1)+ ρ2π̃2(t, 1), (34a)

i = {1, 2}. Here, the functions gij and hi have to be determined on
the triangular domain T. Differentiating the transformations (32)
with respect to t and x, and substituting the results into (31) with
the help of (33), the following PDEs are derived

γ1∂xm1 − µ∂ξm1 = σ11m1 + σ12m2 + α(x)m3, (35a)
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γ2∂xm2 − µ∂ξm2 = σ21m1 + σ22m2 + α(x)m3, (35b)
µ∂xm3 + µ∂ξm3 = −θ1(x)m1 − θ2(x)m2, (35c)

m1(x, x) =
1

γ1 + µ
α(x), m2(x, x) =

1
γ2 + µ

α(x), (35d)

m3(1, ξ) = ρ1m1(1, ξ)+ ρ2m2(1, ξ). (35e)

The observer gains introduced in (31), are defined by

pi(x) = µmi(x, 0) for i = 1, 2, 3, (36)

and the integral coupling coefficients of the target system (33) are
given by

hi(x, ξ) = −θ(ξ)m3(x, ξ)−

 x

ξ

m3(x, s)hi(s, ξ) ds, (37a)

gi,j(x, ξ) = −θj(ξ)mi(x, ξ)

−

 x

ξ

mi(x, s)hj(s, ξ) ds, for {i, j} = 1, 2. (37b)

4.2. Inverse transformation

The continuity of the kernelm3 defined in (32b) guarantees the
existence of a unique continuous inverse kernel r3, which satisfies
the following relations

φ̃(t, x) = w̃(t, x)+

 x

0
r3(x, ξ)w̃(t, ξ) dξ, (38)

r3(x, ξ) = −m3(x, ξ)−

 x

ξ

m3(x, s)r3(s, ξ) ds (39)

defined on T. Substituting (39) into (32a), we obtain

π̃i(t, x) = ũi(t, x)+

 x

0
ri(x, ξ)w̃(t, ξ) dξ, i = 1, 2 (40)

ri(x, ξ) = −m̃i(x, ξ)−

 x

ξ

mi(x, s)r3(s, ξ) ds.

4.3. Exponential convergence of the observer

We first prove exponential stability of the observer target
system (33) by the following lemma

Lemma 2. Under the assumptions ψ0
1 , ψ

0
2 , χ

0
∈ L 2([0, 1]) and gij,

hi ∈ C (T), the system (33) with boundary conditions (34) and given
initial condition (ψ0

1 , ψ
0
2 , χ

0) is exponentially stable in the L 2 sense.

Proof. Consider the following Lyapunov function

V2(t) =

 1

0


a2e−δ2x


π̃2
1 (t, x)
γ1

+
π̃2
2 (t, x)
γ2


+

eδ2x

µ
φ̃2(t, x)


dx, (41)

where a2 and δ2 are strictly positive parameters to be determined.
Differentiating (41) with respect to time along the solution of the
target system (33) and integrating by parts, we get

V̇2(t) =


−a2e−δ2x(π̃2

1 (t, x)+ π̃2
2 (t, x))

+ eδ2xφ̃2(t, x)
1
0
− δ2

 1

0
eδ2xφ̃2(t, x) dx

+ 2
 1

0
a2e−δ2xΠ T (t, x)0invσ Π(t, x)dx
− δ2

 1

0
a2e−δ2xΠ T (t, x)Π(t, x) dx

+ 2
 1

0

 x

0
a2e−δ2xΠ T (t, x)0invG(x, ξ)Π(t, ξ)dξ dx

+ 2
 1

0

eδ2x

µ
φ̃(t, x)θ(x)Π(t, x)dx

+ 2
 1

0

eδ2x

µ
φ̃(t, x)

 x

0
h(x, ξ)Π(t, ξ) dξ dx,

where the vectorΠ, θ, h and the matrix G are given by

Π(t, x) =


π̃1(t, x)
π̃2(t, x)


, G(x, ξ) =


g11(x, ξ) g12(x, ξ)
g21(x, ξ) g22(x, ξ)


,

θ(x) =

θ1(x) θ2(x)


, h(x, ξ) =


h1(x, ξ) h2(x, ξ)


.

Assuming the existence of a constant M̃ > 0 such that

∥G(x, ξ)∥, ∥θ(x)∥, ∥h(x, ξ)∥ ≤ M̃, ∀x ∈ [0, 1], ξ ∈ [0, x],

we deduce the following estimate

V̇2(t) ≤ −e−δ2

a2 − 2ρ2

1e
2δ2

π̃2
1 (t, 1)

+

a2 − 2ρ2

2e
2δ2

π̃2
2 (t, 1)


−

 1

0
eδ2x


δ2 −

1 + x
µ


φ̃2(t, x) dx

−

 1

0
Π T (t, x)e−δ2xP̃(x)Π(t, x)dx, (42)

where

P̃(x) = a2


δ2 −

(2 + x + 1/δ2)M̃
ε


+ e2δ2x


1
δ2

− 1


M̃2

µ

−
M̃2

δ2µ
eδ2(1+x). (43)

We choose δ2 > 1+x
µ

and

a2 > max

2ρ2
1e

2δ2 , 2ρ2
2e

2δ2 ,

−

e2δ2x


1
δ2

− 1


M̃2

µ
−

M̃2

δ2µ
eδ2(1+x)

δ2 −
(2+x+1/δ2)M̃

ε

 (44)

to ensure the positiveness of the matrix P(x), x ∈ [0, 1]. Hence,
V̇2 < 0, which guarantees exponential stability of the target error
system. From the continuity and invertibility of the backstepping
transformation (32), exponential convergence of the designed
observer is obtained and the following theorem holds.

Theorem 2. Under the assumptions that the initial data are in
L 2([0, 1])

3, the observer system (29a)–(29c) (with the coefficient
functions pi(x), i = 1, 3 determined by (35)–(36)) and with the
boundary conditions (29d)–(29e) exponentially converge to the sys-
tem (9) in the L 2 sense.

5. Output feedback control

Combining the controller (20), which requires a full state
measurement, and the observer (29), which reconstructs the
distributed state based on an output measurement w(t, 0), we
design an observer-based output feedback controller.
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Theorem 3. Consider the (u1, u2, w)
T -system (9) together with

the (û1, û2, ŵ)T -observer (29). For a given initial condition
(u0

1, u
0
2, w

0, û0
1, û

0
2, ŵ

0)T ∈

L 2([0, 1])

6 and the control law

U(t) = − ρ1u1(t, 1)− ρ2u2(t, 1)+

 1

0


k1(1, ξ)û1(x, ξ)

+ k2(1, ξ)û2(x, ξ)+ k3(1, ξ)ŵ(1, ξ)

dξ, (45)

where k1, k2 and k3 satisfy (13), the (u1, u2, w, û1, û2, ŵ)
T -system

is exponentially stable in the sense of the L 2-norm.

Proof. From the definition of the error variable vector (30),
the combined closed-loop (u1, u2, w, û1, û2, ŵ)

T -system is
equivalent to the (û1, û2, ŵ, ũ1, ũ2, w̃)

T -system. In comparison
to the backstepping transformation (10) and (11), the invertible
transformation

ψ̂i(t, x) = ûi(t, x) for i = 1, 2 (46)

χ̂(t, x) = ŵ(t, x)−

 x

0
k1(x, ξ)û1(t, ξ) dξ

−

 x

0
k2(x, ξ)û2(t, ξ) dξ −

 x

0
k3(x, ξ)ŵ(t, ξ) dξ (47)

and (32) maps the system (29) into a (ψ̂1, ψ̂2, χ̂ , π̃1, π̃2, φ̃)
T -

system, of which the exponential stability can be proved with the
help of the following Lyapunov function

V (t) =

 1

0
a1e−δ1x


ψ̂2

1 (t, x)
γ1

+
ψ̂2

2 (t, x)
γ2


dx

+

 1

0

1 + x
µ

χ̂2(t, x)dx + b
 1

0

eδ2x

µ
φ̃2(t, x)dx

+ b
 1

0
a2e−δ2x


π̃2
1 (t, x)
γ1

+
π̃2
2 (t, x)
γ2


dx. (48)

Exponential stability of the (u1, u2, w, û1, û2, ŵ)
T -system is thus

proved.

6. Numerical simulations

This section is devoted to numerical simulations of the system
(8) using respectively the controllers U(t) defined in (20) and
(47). Our goal is to demonstrate the performance of the suggested
controllers (20) and (47) in stabilizing system (8) around the
zero equilibrium. We employ an accurate finite volume scheme (a
modified Roe scheme) to advance in time and space the hyperbolic
evolutionary system (8). Elsewhere, for the implementation of the
control law (47), the computation of the kernel PDE’s system (13)
on T is achieved using a finite element setup. The initial bottom
topography is defined as

B(0, x) = 0.4

1 + 0.25 exp


−
(x − 0.5)2

0.003


,

with a Gaussian distribution centered at the middle of the domain.
The initial water level and its velocity field are computed as
H(0, x) = 2.5 − B(0, x) and H(0, x)V (0, x) = 10 sin(πx),
respectively.

Using the initial conditions of system (1), namely, H(0, x),
V (0, x) and B(0, x), the initial data of the characteristic variables
v, u1 and u2 are computed from (4).
Fig. 4. Numerical solution of the kernel k1 on T.

Fig. 5. Evolution of the control U(t).

6.1. State feedback under subcritical flow regime (Fr < 1)

For a subcritical flow regime, we consider the set point (H∗,
V ∗, B∗) defined in Table 1 (see Appendix), which leads to the
characteristic speeds λ1 = −1.42, λ2 = 0.76 and λ3 = 7.42,
and the Froude number Fr = 0.6. The coefficients αi, θi and the
matrix σ are computed with the help of the characteristics speeds
λi. In order to implement the state feedback controller (20), the
values of the kernels k1, k2 and k3 at x = 1 are derived from the
numerical computation of (13) as it is shown in Fig. 4. Despite
the large initial amplitudes, the control input U(t) (see Fig. 5) and
the output measurement y(t) (see Fig. 6) converge to the zero
equilibrium after t ≥ 4 s.

Fig. 7 shows the convergence of the norm of the characteristics
to zero. Therefore system (9) converges to the zero equilibriumand
thereby, the linearized model (2) converges to (H∗, V ∗, B∗).

6.2. Output feedback under supercritical flow (Fr > 1)

For supercritical flow regime, the parameters of the physical
model are listed in Table 2 (see Appendix). The set point (H∗,
V ∗, B∗) leads to the characteristic velocities λ1 = 1.87, λ2 =

−0.74 and λ3 = 8.13 and the Froude number Fr = 1.6. The
dynamics of the closed-loop system (8), together with the output
feedback control law (47), is simulated. In order to implement the
feedback control law (47), the kernel PDEs (13) and (35) are solved
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Fig. 6. Evolution of the measured output y(t).

Fig. 7. Evolution of the norm of the characteristic solution.

numerically. The kernel gain pi(x) defined in (36) are depicted
in Fig. 8. The computation of the control law (47) also requires
the solution of the system (33)–(34), which is solved numerically
on time and space using a finite element setup. Fig. 9 shows the
evolution in time of the control input U(t) at downstream, and the
output measurement y(t) at upstream. Clearly, the amplitudes of
Fig. 8. Computed observer gains pi(x).

U(t) and y(t) decrease in time and vanishes for t ≥ 4 s as shown
in Fig. 9(a) and (b), respectively.

The dynamics of the L 2-norm are directly related to the
magnitude of the propagation speeds λi (see Fig. 10). Under this
supercritical flow regime, it is remarkable that the backstepping
output feedback control law (Fig. 10(a)) achieves exponential
stability compared to the approach in Diagne et al. (2012)
(Fig. 10(b)), which leads to an unstable dynamics. Fig. 11 describes
the space and time dynamics of the plant, and is consistent with
the numerical results presented above. As time increases, it can be
noticed that the perturbation in the overall system decreases and
vanishes later.

7. Concluding remarks

This paper considers the stabilization of a linearized Saint-
Venant–Exner model. A backstepping state feedback controller
is first designed for the stabilization of the water level and the
bathymetry at a desired equilibrium set. Using an exponentially
convergent Luenberger observer, we design a backstepping output
feedback controller with the measurements at upstream, which
also achieves the exponential stability of the linearized SVEmodel,
for both subcritical and supercritical flow regime. Although the
backstepping approach offers a more complicated design than the
method developed in Diagne et al. (2012), it enables exponential
stabilization of the SVE system without any restriction on the
system and the nature of the flow. Also, with the backstepping
(a) Output control law. (b) Measured output.

Fig. 9. Evolution of the control law and the measured output.
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(a) Backstepping design. (b) Lyapunov design (Diagne et al., 2012).

Fig. 10. Evolution of the norms of the characteristic solutions.
(a) Evolution of u1(t, x). (b) Evolution of u2(t, x).

(c) Evolution of v(t, x).

Fig. 11. Behavior in time and space of the distributed states.
controller, only a single boundary control is needed compared
to Diagne et al. (2012). One should mention that only the free
water surface level is measured at two boundaries in the feedback
control law introduced in Diagne et al. (2012). Our future works
are to consider disturbance rejection issues for this application
(Tang, Guo, & Krstic, 2014; Tang & Krstic, 2014), as well as
the adaptive estimation and control problems with unknown
boundary parameters (Anfinsen, Diagne, Aamo, & Krstic, 2016; He,
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Table 1
Parameters of the subcritical flow regime.

CFL A ρ1 ρ2 H∗ U∗ B∗

0.95 0.008 1.5 1.5 2 3 0.4

Table 2
Parameters of supercritical flow regime.

CFL Ag ρ1 ρ2 H∗ U∗ B∗

0.9 0.003 1 1.5 1 5 0.4

Ge, & Zhang, 2011; Zhang, Xu, & Zhang, 2014) and constrained
output due to the outflow gate operation (He & Ge, 2015).

Appendix

T = 8, 1x = 0.01, p = 0.002, Cf = 0.002, ρ2 = 1.5, q1 = 1,
q2 = 1.2.
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