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Among the existing global challenges, water system management is becoming more and more important
as the consumption patterns are continually growing. The implication of water system regulation in ir-
rigated agriculture and production of sustainable energy is self-evident nowadays. In the present paper,
new perspectives are given on the control of water flowing in an open channel. Mathematically, these
physical processes are described by coupled hyperbolic partial differential equations (PDEs). In view of
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the recent development in PDE control, backstepping methodology has been proven to be a powerful
tool in the sense that it provides a systematic design technique. This paper presents the exponential
stabilization results of two shallow wave systems including the shallow waves of two unmixed fluids.
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1. Introduction

The management of water resource involves innumerable en-
vironmental and economic challenges of major concern, among
which one can mention water management sustainability, inten-
sively irrigated agriculture, flooding phenomena, production of re-
newable and sustainable energy through hydropower plants. Sev-
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eral efforts have been deployed during the last decades, to repre-
sent water management systems as dynamic systems that have the
ability to predict consistently water resource evolution over time.
From a cohesive perspective, water management systems are com-
plexly integrated, some of which take into account the increasing
demand of hydropower that has tremendous implications for the
evolution of ecosystems (Winz, Brierley, & Trowsdale, 2009), and
may even consist of conflicting sub-systems. For instance, to deal
water-related problems that occurs in a complex network of open-
channels consisting of

nodes without storage capacity and nodes with storage capacity
such as lakes and reservoirs with infiltration and evaporation,
channels as river reaches as well as canals, ditches and inter-
basin transfers,

consumptive demands such as irrigated zones or municipal and
industrial,

(Andreu, Capilla, & Sanchis 1996) developed a generalized decision-
support system (DSS) for water-resources planning and operational
management known as AQUATOOL.

The dynamics of open-channel hydraulic systems can be mod-
eled by nonlinear coupled first-order PDEs, derived from the
conservation of mass and momentum. For instance, estuaries
(Horrevoets, Savenije, Schuurman, & Graas, 2004), rivers (Saint-
Venant, 1871), irrigation canals (Malaterre, Rogers, & Schuur-
mans, 1998), overland flow (Tayfur, Kavvas, Govindaraju, & Storm,
1993; Wang, Chen, Boll, Stockle, & McCool, 2002), lake hydrody-
namics (Zhao, Shen, Lai, & III, 1996) as well as coastal circula-
tion (Bouchut, Fernandez-Nieto, Mangeney, & Narbona-Reina, 2016;
Broche, Salomon, Demaistre, & Devenon, 1986) are described by
shallow water dynamic equations also called as Saint-Venant equa-
tions, neglecting the lateral movement of the water and assuming
a constant velocity over the cross-section of an open channel.

The problematic of designing control tools to reinforce the reg-
ulation of the water level and the flow rate in open-channel hy-
draulic systems has a long history and is still driving the atten-
tion of researchers due to its challenging aspects. The controllers
are usually actuated by adjusting the inflow and the outflow at
the two boundaries of the channel. More precisely, changes in the
volume of a canal pool connected to an upstream reservoir and a
downstream reservoir occur when opening gates are actuated to
vary the inflow and the outflow at the two channel boundaries.

Earlier attempts of controller designs consider the approxi-
mation of the linearized shallow water equations in the fre-
quency domain as finite-dimensional systems in the spatial co-
ordinate (Corriga, Fanni, Sanna, & Usai, 1982; Corriga, Salimbeni,
Sanna, & Usai, 1988; Corriga, Sanna, & Usai, 1983; 1984; Schu-
urmans, Bosgra, & Brouwer, 1995; Shand, 1971). For example in
Corriga et al. (1988), the solutions to the resulting set of ordi-
nary differential equations are given by a distributed transfer ma-
trix relating both the water depth and the water flow discharge at
any point in the canal pool to upstream and downstream bound-
ary discharges. Based on these solutions typically given in an an-
alytical closed-loop form, some lumped parameter models equiv-
alent to constant volume control models can then be constructed
by accounting for the delay introduced by the wave propagation
through two boundaries, enabling the design of simple linear state-
feedback controllers. However, all these efforts are based on a non-
realistic assumption that the system transfer matrices are uniform
with respect to the spatial variable. Indeed, due to the intrinsi-
cally nonuniform transfer matrices, such methods are not actually
enabling to reduce the complexity of the original control prob-
lem. Based on the method of characteristics, proportional bound-
ary feedback controllers are successfully designed to cancel the os-
cillating modes induced by the reflection of propagating waves on
the boundaries of the water pool (Litrico & Fromion, 2006).

Originating from an attempt to deal with a wave equation
in Greenberg and Li (1984), more sophisticated controller de-
signs for the shallow water systems are considered, which are
based on stability analysis of the distributed parameter mod-
els (Coron, de Halleux, Bastin, & Novel, 2002; de Halleux &
Bastin, 2002; de Halleux, Prieur, Coron, d’Andréa Novel, & Bastin,
2003; Prieur, Winkin, & Bastin, 2008; Santos & Prieur, 2008). Par-
ticularly in Santos and Prieur (2008), a boundary feedback con-
troller is obtained through a direct analysis of the coupled nonlin-
ear Saint-Venant equations subject to some perturbations such as
frictions. The control performance has been tested successfully us-
ing the experimental data of the Sambre river, Belgium and an ex-
perimental test bed located in Valence, France. This control frame-
work has then been generalized in Li (1994) for higher order sys-
tems.

A major improvement for the stabilization of shallow water
equations has been driven by the application of Lyapunov-based
control techniques to a one-dimensional Saint-Venant model. As
stated in Coron, d’Andréa Novel, and Bastin (1999), for a segment,
which is of irrigation channel described by Saint-Venant equa-
tions with two underflow gates at its boundaries, the total en-
ergy of the system is not a suitable Lyapunov candidate. Alterna-
tively, the authors constructed an entropy-based Lyapunov func-
tion in this same paper, which achieved asymptotic stabilization of
the shallow water equations with appropriate upstream and down-
stream boundary control actions. Since then, systematic Lyapunov-
based techniques are used towards achieving efficient controlling
of shallow water waves, i.e., the stabilization for coupled systems
of one-dimensional hyperbolic PDEs through boundary controllers
(Bastin & Coron, 2016). Later on, it was generalized to a “net-
work of systems of conservation laws” in Bastin, Haut, Coron, and
d’Andréa Novel (2007) and further improved in Coron, Novel, and
Bastin (2007) for systems of conservation laws that can be di-
agonalized with Riemann Invariants with the introduction of a
strict Lyapunov function by choosing properly the boundary con-
trol action (see also Tchousso, Besson, & Xu, 2009; Xu & Sal-
let, 2002 for a class of symmetric linear hyperbolic systems). As
a result, Coron et al. (2007) achieved the regulation of the wa-
ter level and flow in a horizontal open channel, and an exten-
sion of the design methodology allows the stabilization of sloping
irrigation channels with an arbitrary number of cascading pools
(Bastin, Coron, & d’Andréa Novel, 2009).

Various other methods have proven to be effective to en-
sure stability of such water driven fluvial processes. Some ex-
amples are, the proportional-integral boundary feedback con-
troller presented in Santos, Bastin, Coron, and Novel (2008),
Xu and Sallet (1999) and Bastin, Coron, and Tamasoiu (2015) (note
that a generalization (Xu & Sallet, 1999) for linear hyperbolic
systems can be found in Xu and Sallet (2014)), the infinite-
dimensional linear matrix inequalities (LMI)-based design pro-
posed in Diagne, Santos, and Rodrigues (2010) and Santos, Ro-
drigues, and Diagne (2008), and the proportional integral boundary
feedback controller in Santos, Wu, and Rodrigues (2014).

Recently, a more complicated shallow water equation involv-
ing sediment dynamics has also been investigated. Such dynam-
ics called as Exner equation represents the transport of the sed-
iment in a water flow in the case where the sediment moves
predominantly as bedload (Bastin & Coron, 2016, Page 25). Ex-
ponential stabilization is achieved for coupled linearized Saint-
Venant-Exner models that are hyperbolic PDE systems by employ-
ing various methodologies such as a singular perturbation ap-
proach (Tang, Prieur, & Girard, 2014), explicit boundary dissipative
conditions (Diagne, Bastin, & Coron, 2012), the ISS-Lyapunov func-
tion for time-varying hyperbolic systems (Prieur & Mazenc, 2012),
and the backstepping technique (Diagne, Diagne, Tang, & Krstic,
2017). Among these approaches, backstepping is, to the best of our
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knowledge, the first one that could deal with supercritical flow
regime without any restrictive conditions.

Backstepping boundary controller design methodology relies on
the construction of an invertible transformation, generally called
as backstepping transformation, which converts the original sys-
tem into a stable target system. Therefore, induced by the expo-
nential stability of the target system and continuity of the transfor-
mation and its inverse, exponential stability of the original system
is guaranteed as well. For hyperbolic systems, the first application
of the backstepping boundary control approach was introduced for
the control of a 1D-wave PDE (Krstic, Guo, Balogh, & Smyshlyaev,
2008). The approach has been extended to 2 x 2 hyperbolic sys-
tems in Vazquez, Krstic, and Coron (2011) and lately generalized
to linear hyperbolic systems with an arbitrary number of posi-
tive and one negative characteristic speed in Meglio, Vazquez, and
Krstic (2013a). Recently, the problem of stabilizing general bidi-
rectional systems of coupled hyperbolic PDEs has been solved in
Hu, Meglio, Vazquez, and Krstic (2016) with backstepping tech-
nique. We also refer the readers to Coron, Vazquez, Krstic, and
Bastin (2013) and its recent extension (Hu, Vazquez, Meglio, &
Krstic, 2017), where quasi-linear hyperbolic systems are investi-
gated. Moreover, for the class of general linear hyperbolic balance
laws, a new proof on the optimal finite control time is presented
in Coron, Hu, and Olive (2017), where the authors make use of
the Fredholm backstepping transformation. Elsewhere, the problem
of estimating state and boundary parameters in general heterodi-
rectional linear hyperbolic systems have been recently studied in
Anfinsen, Diagne, Aamo, and Krstic (2017). We refer the interested
readers to Anfinsen and Aamo (2017), Auriol and Meglio (2016) and
Deutscher (2017) for the research results of heterodirectional hy-
perbolic systems using boundary control.

The present paper demonstrates the feasibility of the back-
stepping design methodology for exponentially stabilizing shallow
waves equations modeled by hyperbolic PDEs.

- First, the design procedure is introduced by studying the case
of the Saint-Venant-Exner equation (Diagne et al., 2017) whose
linearized and transformed version can be described by three
coupled first-order hyperbolic PDEs, two of which have positive
propagation speeds and one of which has a negative propaga-
tion speed. Here, the characteristic speeds are associated to the
water and the sediment dynamics. In particular, supercritical
flow regime, which are more difficult to deal with, can be sta-
bilized by applying the general results of Meglio et al. (2013a).
Second, the practical relevance of such a technique is further
demonstrated through the stabilization of the “bi-layer”Saint-
Venant equation, which is derived from the depth-averaged
incompressible Navier-Stokes or Euler equations (Bouchut &
Morales, 2008; Castro et al., 2004) and reflect the interfacial
coupling phenomena that cannot be described by the Saint-
Venant or Exner models. The “bi-layer” model describes the flow
characteristic of two unmixed fluids, i.e., the superposition of
two immiscible fluids with different densities and different flow
rates. Some examples for these phenomena are, the flow in-
volved in the Strait of Gibraltar where two layers of water with
different properties are founded, and the denser Mediterranean
and the Atlantic water (Castro, Garcia-Rodriguez, Gonzalez-
Vida, Macias, & Parés, 2007). Also, tsunamis generated by un-
derwater landslide can be described by the “bi-layer” Saint-
Venant model (Kim & Veque, 2008). Moreover, in some coastal
regions (e.g., US Gulf Coast), the suppression of interfa-
cial waves on dense fluid mud layers is needed to avoid
a strong dissipation of surface waves, and the control of
a “bi-layer” model can be useful to achieve this objective
(Sheremet, Jaramillo, Su, Allison, & Holland, 2017). The PDE
backstepping method is applied onto the feedback (exponen-
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Fig. 1. A sketch of the channel.

tial) stabilization problem of (a linear version of) the 1D “bi-
layer” Saint-Venant model, which are quite relevant applications
in fluid dynamics by exploiting the result in Hu et al. (2016). To
the best of the authors’ knowledge, this result is the first one
on the stabilization of a shallow wave model of two unmixed
fluids.

The outline of this paper is as follows. In Section 2, we briefly
recall the backstepping stabilization result of the 1D Saint-Venant-
Exner model (Diagne et al., 2017) by presenting the key steps
and providing some simulation results. In Section 3, the 1D “bi-
layer” Saint-Venant model that governs the two unmixed fluids is
first introduced based on its physical description. Then, a corre-
sponding control problem related to its linearized version around
a steady state is presented, based on which the backstepping con-
troller designs are presented. Numerical simulations are provided
in Section 4 for the linearized “bi-layer” Saint-Venant model as
well, and this paper ends with a conclusion in Section 5.

2. Preliminary: backstepping control of a Saint-Venant-Exner
model

In this section, the major steps for designing a backstepping
controller for the linearized Saint-Venant-Exner equation are pre-
sented. Such a model describes the dynamics of water and sedi-
ment in a prismatic sloping open channel delimited by two gates.
The control objective is to ensure (local) exponential stabiliza-
tion of the water depth H(t, x), the water velocity V(t, x) and
the bathymetry B(t, x) which is the depth of the sediment layer
above the channel bottom, to the desired setpoints by actuating
the downstream gate (see Fig. 1).

2.1. Physical description of the Saint-Venant-Exner model

Given a pool of prismatic sloping open channel, the dynam-
ics of the shallow water system is described by the coupling
of Saint-Venant and Exner (SVE) equations (see e.g. Hudson &
Sweby, 2003)
oH JoH Vv

W-ﬁ-vﬁ"t‘H& =0, (1a)

av oV oH 0B v?

ot TV ox TEax TEx ~ B O (16)
3B L0V

ap TAVia =0, (1)
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where g is the gravity constant, S, is the bottom slope of the chan-
nel, G is a friction coefficient and a is a parameter that encom-
passes the porosity and viscosity effects on the sediment dynamics.
The coefficient a is defined as (cf Hudson & Sweby, 2003) a = %,
with pg being the porosity parameter and Ag being the coefficient
to control the interaction between the bed and the water flow. In-
deed, this Saint-Venant-Exner model has been intensively studied
in the existing literature. A significant amount of theoretical, nu-
merical and experimental works dealing with the characteristics of
water flow under movable bed can be found in Daly and Porporato
(2017); Lanzoni, Siviglia, Frascati, and Seminara (2017) and the ref-
erences therein. However, the boundary control of this system is
left out in most of the contributions.

Linearization is the most frequently used method to consider
the local behavior of nonlinear systems. In the few existing ones
(Diagne et al., 2012; Diagne et al., 2017; Tang, Prieur et al., 2014), a
straightforward but lengthy computation that is performed on the
linearized Saint-Venant-Exner model around a constant steady state
(H*, v+, B5)T allows to express the system in Riemann coordinates
as follows:

dE 3¢ _
Ze AT —ME=0, 2)

E: (E19EZ9E3)T7 A :diag()"lv)‘Q?)"?r)’ (3)

@ 0y O3

M=o (0%) asz |, o= (3‘/* — 2Ak)rk_ (4)
o1 [0%) o3

where
v A

n=C——"r—r——-—,
CTHH O = A (g — Ap)

and the characteristic coordinates are

H* " * *
& = m[(w* —A)(V* = Aj) + gH") (H(x, t) — H")
+ H*A (V(x,t) — V*) + gH*(B(x,t) — B")]. (5)

Here, Ay, A3 are the characteristic velocities of the water
flow and X, is the characteristic velocity of the sediment
motion. One should mention that the sediment motion is
much slower than the water flow, physically. The flow char-

acteristics depend on the Froude number Fr= —X_. Accord-

NI

ing to Hudson and Sweby (2003), for a subcritical flow regime
(Fr<1), Ay <0<Ay«A3; and for a supercritical one (Fr>1),
)\,2 < 0 < )\.1 < )u3.

2.2. Backstepping control problem formulation for the SVE model

For both the subcritical and supercritical regimes, the linear
coupled PDE system (2)-(4) has two positive and one negative
characteristic velocities and thus can be mapped into the follow-
ing system through some coordinate transformations’:

Oty + y10xly = oy + opplly + 2 (X)W (6a)
Orlly + Y2 0xlUy = O Uy + Oty + (X)W (6b)
0w — oxw = 01 (X1 + G2 (X) Uy (6c)

1 We refer the interested readers to Diagne et al. (2017) in which detailed deriva-
tions of the system (6) are presented. Also, Section 3 can be a good reference pro-
viding the derivation of a linearized coupled hyperbolic PDE system related to a
more complex “bi-layer” Saint-Venant model.

uy(t,%)
A A
T o
o iy 1,x
q & X A )‘ P1
) Ao
9 . P2
;6 i 6
y(t) € Y 2 u()
w(t,x)
I }
x=0 1
Fig. 2. Schematic of the hyperbolic system.
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Fig. 3. Representation of the target system.

where the variables uq, u,, w are the distributed states and y1, 2,
/4 are positive constants.

For the system (6), the following boundary conditions are as-
sumed, which can be considered as some special case of physical
constraints:

u;(t,0) =qw(,0) fori=1,2, (7)
w(t, 1) = prur(t. 1) + paup(t, 1) + U(0), (8)

u;(0,x) =ud(x), w(0,x) =w(x), fori=1,2. (9)

Here, U(t) is the control input as shown in Figure 2 2
2.3. Backstepping control design

2.3.1. State feedback backstepping controller design

When designing a backstepping controller, the main difficulty
is to find a suitable state transformation and a stable target sys-
tem under the transformation. In order to stabilize the system (6)-
(9) through backstepping, an invertible coordinate transformation
(Diagne et al., 2017; Meglio et al., 2013b) is constructed as fol-
lows:

Yi(t,x) = u;(t,x) fori=1, 2, (10a)

X% = w(t.x) —/Oxkl(x,s)m(r,smé
- /Oxkz<x,s>uz(r,s>ds —/Oxk3<x,s>w(r,s>ds (10b)

aiming to convert the system (6)-(9) into the following target sys-
tem:

2 Figure 2and Figure 3are depicted in Meglio, Vazquez, and Krstic (2013b) for the
general n+ 1 system.



M. Diagne et al./Annual Reviews in Control 44 (2017) 211-225 215

0V + Y101 = o + oY +ax)x
+ [ ey 8)ds
0

+/Xcu(x,5)wz(t,s>ds
0

+/XK1<x,s>x<r,s>ds, (11a)
0
s + V2 0x¥ra = 0211 + 0¥ + (X)X
+/ Con (%, £ )Y (£, &) dE
0
+f Con (%, E) Yo (t. £) dE
0
+/ (6, E) X (6, E) dE, (11b)
0
O x — Moxx =0, (11c)
Yi(t,0) =qix(t,0) fori=1,2and x(t,1) =0, (11d)

where the kernel functions k;, i = 1, 2, 3 of the transformation (10)
and the functions ¢;(-), «;(-), i=1,2, j=1,2, are to be deter-

mined on the triangular domain T = {(x, E)eR0<é<x< 1},

to guarantee exponential stability of (11). One major difference be-
tween the original system (6) and the transformed system (11) is
that the coupling in the negative propagating transport Eq. (6¢) no
longer appears in the new coordinate equations as shown in (11c¢).
The dynamics of system (11) is schematically represented in Fig. 3.
Also, setting the boundary condition x(t, 1) to zero in (11d) en-
ables one to derive the following boundary feedback control law:

1
U(t) = — prity (6. 1) — patty (£, 1) +f0 [km, £ (6. §)
+kz<1,s>uz<t,s>+k3(1,s>w(1,s>] d, (12)

where (8) and (10b) are used. From (12), one could notice that the
implementation of the controller also requires the kernels k;’s to be
known. Indeed, by comparing (6) and (11), such kernel functions
need to satisfy the following first-order hyperbolic PDEs:

MOk (%, &) — y10:k1 (x, &) = o1k (%, &) + 021 k2 (%, §)

+ 01(§)ks(x. §), (13a)
Woxka (%, &) — y20:ka (x, &) = 012k (X, &) + 022ka (%, &)
+ 92(5)"3(X7§)7 (l3b)

WOxks (X, &) + gk (x,. &) = a(§)ki (x,§) + a(§)kz (x. &), (13¢)

ki(x,x) = — , ka(x,x 13d
1(%, %) Y— 2(%, X) Y (13d)
ks (x,0) = q1y1k (x. 0) + q2y2ka (%, 0). (13e)

The existence, uniqueness, and continuity of the solu-

tions to the system (13) are assessed by Theorem 5.3 in
Meglio et al. (2013b). These kernels can be solved offline by simple
finite element discretization on the domain T. The transformation
(10) is also proved to be invertible in Meglio et al. (2013b).

Furthermore, the coefficients «/s can be chosen to satisfy the
following integral equation for i =1, 2:

k(% &) = 2 (Oks (x, &) + /E (%, $)ks (5. ) ds. (14)

Under the fact that the k;’s exist and are sufficiently smooth, the
coefficients c¢;’s can be further chosen such that

ci(x. &) :a(x)kj(x,$)+fé Ki(x,9)kj(s,&)ds, i, j=1, 2.

Then, the target system (11) can be proved to be exponentially
stable by a Lyapunov function (Diagne et al., 2017; Meglio et al.,
2013b)

_ (! s VEEX) | Y3t x) 1+x ,
V1(t)—/O |:a1e T, X (t, x) |dx,

where a; and §; are carefully chosen positive parameters.

Lemma 1. (Diagne et al, 2017) For any given initial condition
W2, vl x0T e (£2([7,00]))> and under the assumption that
Gj. ki € C(T), the equilibrium (Y1, ¥, )T =(0, 0, 0)T of the
target system (11) is LS-exponentially stable.

It is worth noting that an alternative proof can be provided for
finite time stability by looking into the solution, as presented in
Hu et al. (2016).

From the continuity and invertibility of the backstepping trans-
formation (10), the equivalence between the original system (6)
(with the control law (12)) and the target system (11) can be es-
tablished.

Theorem 1. Consider the system (6) and the control law (12). Under
the assumptions that the initial data u®, ud, w® are in (L<([/, oo)3,
the state (uq, up, w)' is exponentially stable at the origin in the L€
sense.

2.3.2. Output feedback control design

The feedback controller (12) is implementable only in the case
that a full state measurement across the spatial domain is avail-
able, however, the measurement of the distributed states is not
doable in most flow control problems. Generally, boundary sensing
approach, which is more feasible, is employed for control purposes.
Next a state observer is designed in order to recover the state at
each point of the whole spatial domain based on boundary mea-
surements y(t) = w(t, 0).

Part I: observer design. Denoting the estimated state as
@iy, 0y, W)T, the following state estimator can be associated to
system (6):

Oty + y10xily = ol + oplly + 2 ()W

= p1)[y(t) —w(t, 0)], (15a)
8{1]2 + )/zaxﬁz = 091 ﬁ] + O'zzﬁz + Ot(X)VT/
= pa()[y(t) —w(t, 0)], (15b)
8fV’\\/ - uava/ = 91 (X)ﬁ] + 92 (X)ﬁz
- p3s(®)[y(t) —w(t,0)], (15¢)
U;(t,0) =qy () fori=1,2, (15d)
W(t, 1) = priis (£, 1) + ol (£, 1) + U(L). (15¢)

Looking into the structure of this observer, it consists of a copy of
the original plant plus some observer error injection terms, where
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the injection gains p;(x), po(x) and p3(x) need to be chosen such
that the estimated state (iI;, i, W) converges to the plant state
(uq,uy,w) in some sense. In order for this to happen, the conver-
gence of the observer error

(111 az W)T = (U1 — ﬁl Uy — l:iz w — W)T, (16)

must hold. In other words, the following error system

0ty + Y10kl =0l + 012Uz + (X)W + p1 (X)W(E, 0), (17a)
Ol + Y2 0xily =0211l1 + Oplly + (X)W + p2 (X)W(t, 0), (17b)
OW — WOW =07 (x)T; + 6, (x)T; + p3(x)W(t, 0), (17¢)
4(t,0)=0 fori=1,2, (17d)
Wit 1) = pyfly (t.1) + poila (£, 1) (17¢)

must converge to the origin for some careful choices of the gain
functions p(x), po(x) and p3(x).

As in the previous section, the following backstepping transfor-
mation (Meglio et al., 2013b) is applied:

Ui (t, x) = 7;(t. x) +/(;xmi(xv§)(5(ts$)d§ i=1,2, (18a)

W(ax>==$(Lx>+1ﬁxnuc&s)$<ns>ds, (18b)

where the functions m;, defined on the triangular domain T, sat-
isfy the following well-posed system:

Y10xMy — 0z My = oMy + 012y + a(x)ms, (19a)
Y20xiMy — [LOg My = 021M7 + 022y + o (X)M3, (19b)
WOxm3 + dgms = -6 (X)my — G2 (x)my, (19¢)

,X) = , ,X) = , 19d
my (X, X) y1+u°‘(x) my (x, X) yﬁua(x) (19d)
m3(1,8) = pymy(1,8) + pamy(1,8). (19e)

As a result, the error system (17) is mapped into the following
system:

X
0r7T1 + y10x7T1 = onit +012ﬁ2+f0 gu(x, &) (t.§)dé

+ / Xglz(x, E)7ty(t, &) dE, (20a)
0
0Tty + V2 0xTTy = 091781 + 0272 + /0ng1 (x, &)71(t, &) d&
+ / g (%, £ )70 (1, £) dE, (20b)
0
a@—w@:awﬁ+&wm+[mm@ﬂm@@
+ /x hy (x, )75, (¢, €) dE, (20¢)
0

with the boundary conditions as
Fi(£,0) =0, §(t, 1) = pr7tr (6, 1) + pa7a (£, 1), (21)

for i = 1, 2, where the integral coupling coefficients are given by

hm&é)::—9(Eﬁn3@,$)—1éxm3@,9hwaé)d& (22)
gij(x.8) =—6;(E)ym(x. &)
_ /Xmi(x,s)hj(s,é)ds, for i, j}=1,2.  (22b)
:

Moreover, the observer gains are defined by
pi(x) = um;(x,0) fori=1, 2, 3. (23)

Exponential stability holds for the system (20), which can be
proved by the following Lyapunov function (Diagne et al.,, 2017;
Meglio et al., 2013b):

Va(t) = /01 [azegz"<ﬁ12(t’x) + ﬁf(t,x)) + (efj(flgz(t,x)}dx,

4! V2

where a, and §, are strictly positive parameters that are carefully
determined.

Lemma 2. Under the assumptions that the initial condition 7?10,
ﬁg, @0 e £5([/, 00]) and the functions g, hie ¢(T), the system
(20) with boundary conditions (21) and integral coupling coefficients
(23) is exponentially stable in the LS sense.

With the invertibility and continuity of the transformation (18),
equivalence between the error system (17) and the target system
(20) can be established. Thus, the following theorem holds.

Theorem 2. Under the assumptions that the initial data are in
(L, oo]))3, the observer system (15) (with the coefficient functions
pi(x), i=1,3 determined by (19) and (23)) exponentially converges
to the system (6) in the L€ sense.

Part II: Output feedback backstepping controller design.
Combining the controller (12), which requires a full state measure-
ment, and the observer (15), which reconstructs the distributed
state based on an output measurement w(t, 0), an observer-based
output feedback controller can be designed.

Theorem 3. Consider the (uq,uy, w)!-system (6) together with the
(fiy, iy, W)T-observer (15) (with the coefficient functions p;(x), i =
1,3 determined by (19) and (23)). For a given initial condition

@, ul, wo, a9, a9, wO)T e (Lo(lr. oo]))® and the control law

1
WO=—mm¢U—mw@U+£[hﬁ£Wﬂf)
+«xL@mmsH«xL@wasﬂ@, (24)

where kq, ky and ks satisfy (13), the (uy, uy, w, iy, iy, W)T-system
is exponentially stable in the sense of the LS-norm.

The proof can be found in Krstic and Smyshlyaev (2008, Section
5.2) by constructing a weighted Lyapunov function.

2.4. Simulation of the output feedback controller under a
supercritical flow regime

T=10, Ax=001, pg=0.02, C;=0.15 p;=15, =@ =
1.5.

In this subsection, the dynamic of the closed-loop system (6),
together with the output feedback control law (24), is simulated.
The parameters of the physical model together with the set point
(H*, V*, B*) are listed in Table 1. Linearizing the system (1) around
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Table 1
Parameters.

CFL A, o p2 H U B

0.8 0.002 1 15 2 5 0.4

0
-10

-20

-30

Control Input U(t)

-40

Measured output y(t)

3

-50

)

4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

(a) Output control law (b) Measured output

Fig. 4. Evolution of the control law and the measured output.

the set point (H*, V*, B*) gives the corresponding characteristic
velocities A1 = 1.87, A, = —0.5 and A3 = 8.13. A supercritical flow
regime is considered setting the Froude number to Fr = 1.13. Phys-
ically, a high velocity profile and a low water level are considered
to be the setpoint in this simulation.

The initial bottom topography is chosen as

MOJ)=04<1+025®@(*E%i%gﬁ))

which presents a Gaussian distribution centered at the middle of
the domain. The initial water level and its velocity field are com-
puted, respectively as

10sin (T x)

H(0,x) =2.5-B(0,x), H(0, %)

V(@0,x) =
Using initial conditions of the physical system (1), namely, H(O, x),
V(0, x) and B(0, x), the initial data of the characteristic variables w,
u; and u, are computed from (5).

In order to implement the control law (24), the kernel PDEs
(13) are solved numerically offline and the values of the kernels
ki, ky and k3 at x=1 are employed. In sight of the triangular
shape of the kernel function domain T, an accurate finite volume
scheme (a modified Roe scheme) can be employed to advance in
time and space the hyperbolic evolutionary system (6). The solu-
tion to the kernel problem is computed accurately by using the
quadratic finite element P,. Moreover, the finite element setup is
used to compute the kernel gain p;(x) defined in (23). Elsewhere,
the computation of the control law (24) also requires the solution
of the system (19), which is solved numerically on time and space
using a finite element setup. Fig. 4 shows the evolution in time
of the control input U(t) at downstream, and the output measure-
ment y(t) at upstream. Clearly, the amplitude of U(t) decreases in
time and vanishes for t>4s as shown in Fig. 4(a) and the ampli-
tude of the output measurement y(t) decreases in time and tends
to zero after t>3s as depicted in Fig. 4(b). The dynamics of the
Le-norm are directly related to the magnitude of the propaga-
tion speeds A; (see. Fig. 5). Under this supercritical flow regime,
it is remarkable that the backstepping output feedback control law
(Fig. 5(a)) achieves exponential stability compared to the approach
in Diagne et al. (2012) (Fig. 5(b)), which leads to an unstable dy-
namics. This striking fact is justified knowing that the conditions of
Theorem 2 (cf Diagne et al., 2012) are not fulfilled in this specific
case. Fig. 6 describes the space and time dynamics of the plant,
and is consistent with the numerical results presented above. As
time increases, it can be noticed that the perturbation in the over-
all system decreases and vanishes later.

500 x10*

w

IS

w

)

L*-Norm characteristics

L*Norm characteristics

l

Time (s)

Time (s)

(a) Backstepping design. (b) Lyapunov design [34]

Fig. 5. Evolution of the norms of the characteristic solutions.

()
us(t, )

5
Time (s)

z(m) 00 z(m) 0o Time (s)

(a) Evolution of u (z,x) (b) Evolution of uy(z,x)

Time (s)

z(m) 00
(c) Evolution of v(z,x)

Fig. 6. Behavior in time and space of the distributed states.

The presented numerical simulations of system (6) subject to
the backstepping feedback control U(t), is stabilized around the
zero equilibrium as expected from the theoretical part.

The simulations verify the physical importance of the result in
this section. More precisely, the backstepping controller offers the
possibility to stabilize the moving bed dynamics under a rapidly
varying water flow with a relatively small depth, with a single
boundary actuation.

3. Backstepping control of a “bi-layer” Saint-Venant model

“Bi-layer” Saint-Venant models are often used to describe more
complex interaction between the sediment and the water layers
in river flows, for which the major characteristic of the physical
phenomena cannot be described by the Saint-Venant-Exner model
and thus requires to adopt the bi-layer model accounting for two
unmixed fluids with the lower layer consisting of dense mixture
of water and moving sediment. In this section, a “bi-layer” Saint-
Venant model is presented for the purpose of controlling these
waves with fast dynamics.

3.1. Physical description of the “bi-layer” Saint-Venant model

Fig. 7 depicts a “bi-layer” shallow water flow of two unmixed
fluids delimited by two gates. The dynamics of these two super-
posed immiscible layers of shallow water fluids could be modeled
by the following 1D “bi-layer” Saint-Venant model:

JH d(H1U
1y (HiUy) _

3t x -0 (252)
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iB (@)

Fig. 7. “Bi-layer” shallow water flows.

aU; au; oH, 0H,

Tt TUigx T8k TEGx tE = (25b)
0H,  d(HUp)

R ity (259
U, U,  0Hy  pdH1 o1 o Pigs

9t +U,—— I +8 W+gp—W+Eng_ ES . (25d)

In these equations, the indices 1 and 2 refer to the upper and
lower layers, respectively, as depicted in Fig. 7 as well. The state
variables H;, U;, i =1, 2 represent respectively the thickness of the
ith layer and the velocity. Each layer is assumed to have a constant
density p;, i=1,2 (p1 < p3). The system contains the source terms
gSp, and S, where S, is the slope of the bathymetry and S stands
for the friction between the two layers which is given by

Cr(Uy — Uy)?

;G 2
Sh= ~HH (26)
The equation (25) could be recast into the following form:
W  9dF(W)
S+ S =S, (27)
where W:=[ H;, U;, Hy U ]T and the maps

H,U;
F(W) _ UT% +g(Hl +H2) (28)

| HoUs ’
2

% +g(Hy +rHy)

SW)y=(0 S-gs, 0 rS/—rgs,). (29)

where 1 = p1/05.

Physically, the ratio r characterizes the relative thickness of the
bottom fluid layer with respect to the upper fluid layer. In the fol-
lowing parts of this section, we deal with the case when r«1,
namely, when the bottom fluid is much thicker than the upper
fluid.

3.2. Linearization of the 1D “bi-layer” Saint-Venant model

Similar to the stabilization problem of the Saint-Venant-Exner
equation, a local behavior of the nonlinear system (25) is consid-
ered around a steady state. denotes the corresponding Jacobian
matrix function for (27). For the sake of simplification, we only
consider here only the case when the steady state is constant, i.e.,
uniform in both time and space where W* = (H*,U;‘,Hﬁ,U;)T is
the constant steady state associated with the system (27). One can

note from (29) that the constant steady state is characterized by
Sf(W*) = gS,. More precisely, from (26), the equilibrium set is cho-
sen to match the following condition:

q(L;}I:*—;I;LJ;)Z = g5. (30)
Defining the deviation of the state W with respect to the steady-
state W* as
w=W —W* =[hy,u;, hy, up]", (31)
the linearized model of (27) is written as follows:

Iw +AW*) 0w = S;(w), (32)
where

U H 0 O

g U g 0
AW)=19 0 H, (33)
rg 0 g U,
and
S(w) =10, 1, 0, r]"ef (w) (34)
with
al = —ay(hH; + hyHp) + ap (U — up), (35)
=C Ui -0 ’ 2C —U; (36)
al—fw o @2 = fH*H*-

For the case of r~1 and U; ~U,, i.e.,, when the two-layers have
very similar densities and flow rates, a first-order approximation of
the eigenvalues is given in Nieto, Castro-Diaz, and Parés (2011) and
Abgrall and Karni (2009).

The next step is to further simplify the problem by diagonaliz-
ing the system matrix A(W*) of (32) and expressing the system in
Riemann coordinates. The characteristic equation derived from the
matrix A(W*) is given by

((k —Up)? —gH{) ((A —up)? —gH;) — rg?H:H;. 37)

Following the results in Schijf and Schonfeld (1953), the eigenval-
ues of the system (32) in the case of r« 1 i.e., p; < py approach
to those given as

A o=Uf— JgHr, Ay =Us+ JgHr, (38a)
A3 =Ui — JgH;, A4 =U;+ JgH;, (38b)

which are the eigenvalues of A(W*) in the critical case of r=0.
In what follows, the above A, (k=1,4) are taken as the eigen-
values of A(W*). From (38), it is remarkable that the internal and
external characteristics travel at different speeds. Indeed, the lower
layer characteristics moves much slower than the upper ones. We
consider the subcase when

A1 A3 <0, Ap #As3; (39)

A2, Ag >0, Ay # Ag, (40)

which corresponds to a subcritical flow regime for each layer.
For a given eigenvalue A, (k=1,4) of the matrix A(W*), the
associated left eigenvector is expressed by
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-1
LTw=— [T Qi—-2
ie{1,2,3,4}/{k}

T
X[lm leo I3 lk,4], (41)
where

lea = U = (tr(AW™)) = M) (U + gHY) + fi
det(A(W*))

+ 3gH; — "

(42)
Iz = 3H{UP? = 2H{UF (tr(AW™)) — M) + Hi (fi + gHY),  (43)
I3 =gHi (TU7 = Ak).  Iks = gHTH;. (44)

The quantities f; are defined by:
fi= Qs +22)hg+ Aahs3, fo = (A3 +A1)Ag + A3, (45)

f3= Qo+ A+ AAy, fa= (A +A2)As + AqAs. (46)

Multiplying w by L (k =1,4), the following characteristic coordi-
nate (Riemann invariant) is obtained:

-1
gk = sz = < 1_[ ()‘*i - )\k)>
ief }/{k}

1234

x@mm+mwrumm+mwﬂ. (47)

Therefore, the variables w can be expressed in term of the Rie-
mann invariant £ as

11 1 1
_In Y2 V3 Va
Y=g B B Bt (48)

o1 (0%) (0%} Oy
where £ = (§ & & 54)T and for k=1, 4,

M —1 1
Yk = kHik H ,Bkz

U2 4200 — DU — A2 + H*),
gHT( 1 k 1 kT8

and

@ = ﬁ((gm‘ﬂk ~202)U5 43U 4 7(h — DU

+ 2(gH7 - 2Af)U1 + )Lﬁ (tr(A*) — Ay) + gHy (A + 2)). (49)
Let
A =diag{iq, Ao, A3, Ag), (50)
then (32) can be rewritten as follows:

0rE + A0k&E = ME, (51)

where

a(y1 —aq) —ay(H; + B1HY)
ay(y2 — az) —ay (H; + B2Hy) (52)
ay(ys —asz) —a;(H; + BsHy) | -

a (va — a4) —ay (H; + B4HY)

M=[0, 1,0, r]T

3.3. Boundary control problem formulation for the “bi-layer”
Saint-Venant model

Define the state vectors as

u(t,x) = (&,82)", v(t,x) = (61,63)"

and introduce the transport speed matrices as

A" = diag{A] = Ay, M) = A4}, (53)
A =diag{\} = —A1, AL = —As), (54)

where it holds from (39)-(40) that

)»5,)»5,)»11,}»12>0, Al # AL, )»llyéklz. (55)

Then, the system (51) is rewritten as

deu(t, x) + ATdcu(t, x) = STu(t, x) + Stv(t, x), (56a)
A v(t,x) — Aldw(t,x) =0, (56b)

where the in-domain parameters are given as
S10 S 1_|S3  Sa
T __ —
S= |:T'Sl T52j|’ 5= r53 rS4 ’ (57)

where S; = a,(y; — ;) — a1 (H + BiH?), i =1, 4. The objective is to
stabilize the system (56) with the following boundary condition:

u(t,0) = Qou(t,0), v(t,1) =Rqu(t, 1) +uU(t), (58)
where the boundary parameters
Qo = {gij} € M22(R), Ry = {rjj} € Mz (R), (59)

and U(t) = [U; (t), Uy (t)]T consists of the boundary controllers we
need to design.

3.4. Backstepping control design

3.4.1. State feedback backstepping controller design

The backstepping method could be used to design feedback
boundary controllers for stabilizing the (linearized) “bi-layer”
Saint-Venant system in Riemann invariants, i.e., (56)-(58), which
consists of two leftwards and two rightwards propagating waves.
In this section, the generalized backstepping methodology that en-
ables the feedback stabilization of an arbitrary number of waves
traveling in both directions (Diagne, Tang, Diagne, & Krstic, 2016a;
2016b; Hu et al.,, 2016) is applied to ensure the exponential stabi-
lization of this linearized “bi-layer” model.

Part I: controller design. The following Volterra-type change of
coordinates

€(t.x)) _ (u(t.x)
B, x) ] — \v(t,x)
“(© 0 u(t. €)
- /o <G(X,$) H(x,é)) (y(t,é:))dg (60)

is performed to transform the system (56)-(58) into a finite-time
stable target system Hu et al. (2016)

dee(t,X) + ATove(t, x) = Se(t,x) + S'B(t, x) + /OX C'(x,&)e(t, &)dE

+/¥wfwm9@,
0

P (t.x) — A'3B(t,x) = AX)B(O, 1), (61b)

(61a)



220 M. Diagne et al./Annual Reviews in Control 44 (2017) 211-225

€(t,0) = QuB(t,0), (61c)
Bt 1) =0, (61d)
where

Ak = |:gz,1(x) 8} (62)

and CT,C' are matrices of functions defined on the triangular do-
main T. Here, C",C' and §;, 1(x) are all to be chosen.

Remark 1. Compared with the v-subsystem in the system (56)-
(58) that the control is applied on and thus has a coupling term
with the u-subsystem, the B-subsystem in the target system (61)
has zero boundary input and is clearly finite-time stable. The re-
maining part, i.e., the target e-subsystem, is then connected to
the B-subsystem, making the resulting cascaded system finite-time
stable.

In order to map the system (56)-(58) into the desired target
system (61), the kernels G and H, defined on the domain T, must
satisfy the following system of equations:

0:G(x, E)AT — A19,G(x, &) = —G(x, §)S", (63a)
:H(x, E)A"+ A'9H(x, &) = G(x, §)S", (63b)
G, X)A"+ AlG(x,x) =0, (63¢)
Hx, x)A'— A'H(x,x) =0, (63d)
G(x,0)A"Qy — H(x,0)A' = —~A(x). (63e)

The existence and uniqueness of the backstepping transforma-
tion (60) could be guaranteed by adding some artificial boundary
conditions (Hu et al., 2016). Also, as proved in Hu et al. (2016), the
kernel PDE admit (61) admit a unique discontinuous which guar-
antees the existence of a unique inverse transformation. The in-
verse transformation is

u(t,x)\ _ [e(t,x)
v(t,x) ) — \B(t.x)
(° 0 €(t.§)
_/o<g<x’f> H(xf))(ﬁ(t,g))d& (64)

where the kernels G(x, £), H(x, &) satisfy

0=G(x.&)+G(x E) - /E MG, €) dn. (65)

0= H(x &) + H(x.£) - /&S “Hx mH(. €) dn. (66)

In the meantime, §, 1(x) and thus A(x) can be obtained. Also, the
following equations are obtained for C'(x, &), C'(x, £):

C(x. &) = SIG(x. £) + fS " Ol mGEE. ) dn. (67)

C(x. &) = SH(x £) + /é_ “Ox mHE. ) dn. (68)

Hence, the control law #/(t) can be obtained by plugging the
transformation (60) into (58). Indeed, (61d) implies that

1
U(t) = —Ryu(t. 1) + /0 (G(L.&)u(t.&) + H(1. £)v(t. £)]dE. (69)

Part II: stability of the target system. In this part, the stability of
the target system (61) is studied based on the Lyapunov method,
which proves that it is exponentially stable as well.?

Assume there exist constants My, M7, q > 0 such that

IS, 1Sl < Mo, (70)
IC"x, &), IC' (x, )1 < My, V& €[0,x], ¥x € [0, 1], (71)
105 Qoll < 4. (72)
where || - || stands for the 2-norm, and denote

min {Af, Af | i=1,2} =2, (73)
max {AL A} | i=1.2}:=1. (74)

The exponential stability of the target system (61)-(62) can be
then proved.

Lemma 1. For any given initial data ((€%)T, (BOT)T =
(€7(0,), BT, N € (L‘Z([O,l]))4 and under the assumption
that C*, C' € ¢(T), the equilibrium (€T, BT)T = (0, 0, 0, 0)T of
the target system (61)-(62) is exponentially stable in the £2-norm:

(€™ (t.). BTt NTNIZ = [01 €' (t, x)e(t, ) + B (£, x) (L, x)dx.

(75)
Proof. A Lyapunov function is constructed as follows:
1
V5(t) = %fo e el (¢, x) AL e (t, x)dx
1 1
+3 fo (1487 (€, x)DAL_B(t.x)dx, (76)
where
Al = (AD)! = diag L (77)
mnv )"li ’ ’ )\"l:! ’
_ 1 1
Al = (A ]=diag{,...,}, (78)
nv ( ) )\’]] )\’}n

and D = diag{d; , d,}. The constants v; and d;,d, are all positive
parameters to be determined®. Then, we have

Gll(e" (&, ), BT, N7 = V5(0)
= C2||(€T(t7')’IBT(t?'))THEZs (79)

where the two positive constants are

1
C; = —minile™, dy, dy}!, 80
1 2 { 1 2} (80)
G = 1 max {1, 2d;, 2d (81)
2—1 ax {1, 15 2}

3 A different Lyapunov-based proof is also presented in Diagne, Tang, Diagne, and
Krstic (2016b).

4 A generalized version of the Lyapunov function was presented in
Diagne et al. (2016a); 2016b) for dealing with the general class of coupled
systems of m+n heterodirectional transport PDEs, where the elements in the
weighing matrix D are successively determined.
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This ensures that V3(t) is positive definite.
Differentiating (76) with respect to time leads to

1
Vs(t) = f e"%eT (£, x) AL dre (t. x)dx
0

mnv

+ / "1 40087 (¢ 0ODAL_8,B(t, X)dx. (82)
0

Substituting equations (61a) and (61b) into (82), the following in-
equality is derived:

V()= /0 e et x) e (E. )+ /0 LT ()AL STe(t X dx
+ /0 LT (6 )AL SIB(t, X)dx
4 /01 e~ % (¢, x) (/Ox AL C (%, 8)e (§)d§>dx
4 /0 Lene (1) ( /0 AL sw(s)ds)dx

+/1(1 + )BT (£, x)D3B(t, X)dx + I(t), (83)
0

where

It) = /0 "1+ 087 (6. )DAL AX)B(O, £) dx

<[ PLEX g 0B x) dx
, 2

T14x 1

+ Bi(t.0)? /0 : %WS%J(XW (84)
Further calculations give
Vs(t) < J1 () +J2(0), (85)
where

g 1 1 1

Ji(®) = Ba(t, O)Z{g -5 +/0 ;ngwz)zfgn(x)dx}

+ Bt 0>2{§ - ;dz} (86)

and

-l 1
L) = —jfl(vl)/(; e el (t,x)e(t, x)dx

1
- b b [ BT E0pE ) dr (87)
0
with
fl(w):v]—a%—%(uvl]), (88)
fz(dl,dz,vo:min{dl,dz}—%—%% (89)

Choose the positive constants dq,d, as follows:

1
dy>q, d > (H/ (14 0d 82, (x) dx, (90)
0

1
(A)?
which guarantee that J;(t) is non-positive. Then, by choosing v >0
large enough to satisfy

fi(v1) >0, f3(V1)5=q—T—**>01 (91)

it holds that f,(v{)>f3(v{)>0 and
Vs(t) < o (t) < —c1V5(0), (92)

with
, 1
o= amin { i), o (@ v | (93)
which gives
V5(t) < V3(0)e™ . (94)

Finally, it can be derived from (79) that

(€™ (. ), BTt Nl < \/EII(GO(J, Bl zee, (95)

where C;,C, are defined in (80) and (81). This completes the
proof. O

Part III: stability of the closed-loop control system. The expo-
nential stability of the target system (61), together with existence,
uniqueness, regularity and invertibility of the backstepping trans-
formation (60), guarantee the stability of the closed-loop control
system (56)-(58) with the designed state feedback controller (69).

Theorem 4. For any given initial data (w®)T, @@°)DHT =
@"(0,), v, NT e (£2(0, 1]))4 and under the assumption
that €, C!' e ¢(T), the equilibrium (u”, vT)T = (0, 0, 0, 0)T of
the closed-loop system (56)-(58) with controller (69) is exponentially
stable in the sense of the norm || (u (t,-), V7 (t, -))T||iz.

3.4.2. Output feedback backstepping controller design

As in the SVE case, the backstepping controller (69) requires
a full state measurement across the spatial domain. In the situa-
tion when the only available data is the measured boundary out-
put y(t) =v(t,0), one needs to first construct an observer to re-
cover the full state information of the system (56)-(58). Then, us-
ing these recovered data, an output feedback controller can be de-
signed.

Part I: observer design. Next, a boundary state observer design
is presented which helps avoid the full state measurement in a to-
be-designed output feedback controller.

Defining the estimated state vector as (ﬁT,T/T)T, the following
state observer consisting of a copy of the plant (56), (58) plus out-
put injection terms:

Ol + Aol = ST + S'D — P (x)[y(t) — D(t, 0)], (96a)
30— A9 = —P(x)[y(t) — D(t,0)], (96b)
i(t,0) = Quy(t), D(t,1) =Ryii(t, 1) +U(t) (96¢)

is anticipated to achieve the reconstruction of the distributed state
vector (uT,v)T.

Doing so, the vector (" o7 "=t oT—p" )T is in-
troduced which satisfies the following observer error system:

Bl + A"dxil = Sl + S'D + Py (x)U(t, 0), (97a)
37— A9, = B, (x)¥(t, 0), (97b)
i(t,0) =0, ¥(t, 1) = Ryii(t, 1). (97¢)

Thus, the objective is to determine the output injection coeffi-
cients P;(x) and P,(x) so that the observer error (ii', 77)T converges
to the origin in the sense of the norm ||(@", ?")7|| ..

According to the backstepping control transformation (60), the
following backstepping transformation inspired by the duality be-
tween controller and observer designs can be considered:

e, x)) _ (€ (0 M(x.&)\[(Et.§)
<ﬁ<f’><>>‘(ﬂ(t,x>>+fo (o N(xf))(ﬂ(t,@)dﬁ (98)
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where the to-be-determined kernels M and N are defined on the
triangular domain T to map the error system (97) into the follow-
ing exponentially stable target system:

Bte”—i—Araxé:Sf€+/xDr(x,§)€(t,$)d§, (99a)
0
af - Aaf= [ Dix e s)de, (99b)
0
~ 1 ~ ~
(c.0=0. fe=Rew - [ AehCEE (9%

Here, the functions D'(x, £),D!(x, £) and A(£) are also to be
determined.

By matching the error system (97) and the above target system,
it can be derived that the transformation kernels M(x, £) and N(x,
&) satisfy the following PDEs:

— M (%, §)A'+ AT™M(x, &) = SM(x,§) + S'N(x, &), (100a)
—N: (% &)A' = A'Ne(x, &) =0, (100Db)
M@, x)A'+ AT™™M(x,x) = S, (100c)
N, x)A' = A'N(x,x) = 0, (100d)
and meanwhile, the observer gains are given by

Pi(x) =—M(x,0)A!, P,(x) =N(x,0)A. (101)

Moreover, the functions D'(x, ), D'(x, £) and A (&) are defined by
the following equations:

D'(x.£) + /S "M D (0. £)dy =0, (102)
D(x. £) + /E “NGe. D (0. £)dr =0, (103)
A(§) =N(1.&) — RIM(1. &), (104)

The existence, uniqueness, and regularity of the transformation
(98) are discussed in Hu et al. (2016), which guarantees the exis-
tence of a unique inverse transformation. The inverse transforma-
tion is

E(t,x)\ _ [ii(t,x) 0 M. E)) (it x)

(B(m)) - <f»(r,x>) + (0 N(x.€) ) (ﬁ(r, x))df - (109)
and it can be derived from (98) and (105) that the kernels
M(x, &), N(x, &) need to satisfy

0= M(x. &) + M(x. £) +/;M(x, NG &)dn, (106)

0= N(x.&) + N(x.£) + /E "N NG, E)d. (107)

In order to solve the system of equations (106)-(107), the
method of successive approximations can be used, see, Krstic and
Smyshlyaev (2008, Section 4.4).
Assume there exists a constant M, > 0 such that
ID"(x, &), ID'(x. I, 1A &) < Ma, V& €[0,x],
Vx e [0, 1], (108)

then exponential stability of the target system (99) can be proved.

Lemma 2. For any given data ((€°)7, (B9)T)T e (£2([0,1]))4, the
system (99), with (100), (102)-(104), is exponentially stable in the £2
sense. Furthermore, for any given data ((u®)T, W"T, @7, )T
e (£2([0,1]))8, the observer (96) exponentially converges to the sys-
tem (56) and (58) in the £2 sense.

Proof. The following Lyapunov function is constructed:
1 1
Va(t) = s f e T (¢, x) (A") € (¢, x)dx
0

100 .
45 [ e B0 B ndx (109)
2 Jo

where the constants d3 and v, are both positive parameters to be
determined. In fact, V, is equivalent to the square of the state £2-
norm:

Gl @ (t,-), BT, - NTN12 < Va(t) <Call(€7(t, ), BT (¢, NTII%,
(110)

where C3, C4 are two positive constants. Thus, the Lyapunov func-

tion Vy4(t) is positive definite.
Differentiating (109) with respect to time leads to

Vi(t) = ds / LT (6 x) (AT) BeE (¢ x)dx
0
+ /le”z"BT(t,x)(Al)’]S[B(t,x)dx. (111)
0

Substituting the Egs. (99a) and (99b) into (111), the following in-
equality is derived:

Va(t) < — %e"bgT(t, 1)[ds — 4e"2RIR;]é(t, 1)
1
- %fzx(ds,vz)/ e V2XeT (t, x)E(t, x)dx
0
1 ~ ~
— 550) [ BT 0B dx (12)
where
Mo + M M, 1
fa(ds, v3) = (Uz - %)dg - +gr-n, (13)
M
fs(vy) = vy — =2 — 4M2. (114)

A

To ensure the exponential stability of the system (99), first, the
positive parameter v, is chosen as follows:

Mo +M; M
v2>max{g,—2+4M§}, (115)
A A
and then the positive constant ds is chosen to satisfy
My(1+e22 -1
dy > 4e"RIRy, dy = 21 +6 7 =1 (116)

Vo (Voh — Mo — M)’

With these choices of parameters, the positiveness of fy, f5 is guar-
anteed:

fa(v.d3) > 0, f5(vz) >0,

and it holds that

(117)
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. 1 1
Va(t) < —§f4(d3, Vz)/o e V2XET (¢, x)E(t, x)dx

1 d ! vox BT a3 d
— hs(ds,va) [ e BT 0B x) dx

< —CaVy (1), (118)
for some positive constant c4, which then gives
Va(t) < V4(0)e " (119)
Finally, it can be derived from (110) that
~ = Ca\ o a 5 N
1@, BT E Dl =[O B Olmes. (120)

This proves the exponential stability of the target error system
(99), with (100) and (102)-(104). Then, from the continuity and
invertibility of the backstepping transformation (98), exponential
convergence of the designed observer (96) can be derived. O

Part II: Output feedback backstepping controller design.
Based on the designed backstepping controller (69), which requires
a full state measurement, and the observer (96), which recon-
structs the state over the whole spatial domain through the bound-
ary measurement v(t, 0), an observer-based output feedback con-
troller is designed:

1
u(e) = ~Rii@ 1)+ [ 1606 E) +HALE)0(e,§)ds,

(121)
which works with the help of the observer (96).

Theorem 5. For any given initial data ((u°)T, @°)T, @7, ®)T)T
€ (£2([0,1]))8, the closed-loop (uT vT, 4T, 97)T-system, consisting
of the original system (56)-(58), the observer (96) defined by (100)
and (101), and the controller (121) with the kernels G and H defined
by (61), is exponentially stable in the sense of the £2-norm:

1
(¢, ). v (e, ). ar (e, ). 07 (¢t )12 :=/ [uT(t,X)u(t,X)
0
FUT(E, 0, X) + 47 (6, X)L, %) + DT (6, X)L, x)]dx.

The proof is omitted as well, for which a weighted Lyapunov
function can be constructed by following the idea in Krstic and
Smyshlyaev (2008, Section 5.2).

4. Simulation results

The goal of the following numerical simulations is to illustrate
the efficiency of the designed output feedback controller (t),
namely, (121), to stabilize the linearized “bi-layer” Saint-Venant sys-
tem in Riemann invariants (56)-(58) around the zero equilibrium.

The following data are considered as initial conditions for the
layers 1 and 2 through the physical variables:

Hy(0,x) = 2+ 0.5exp (-W), (122)
H1(0,%x) =6 — Hy(x), (123)
10 .
U1(0,x) = 005 + 3sin(2mx), (124)
10 .
U,(0,x) = A 3sin(2mwx). (125)

30
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Fig. 8. Evolution in time of the control input U(t) and the norm of the characteristic
solutions.

The initial data of the characteristic variables &, (k=1, 2, 3, 4)
for the system (51) are computed as functions of the physical vari-
ables H;(0, x) and U;(0, x) for i = 1, 2, thanks to the relation (47).

The ratio r between the densities is set to 0.01 and the fric-
tion coefficient C; is set to 0.05. The following uniform steady
state: Hf =3, Uf =1, H; =1, U; = 0.95 satisfies the constraints
(30) with S, = 240100g. Moreover, with this choice of steady state,
the characteristic speeds are given by: A1 = —4.42, A, = 6.42, A3 =
—2.18, A4 = 4.08. The &-solution is computed up to time T = 10s.
Regarding the boundary conditions (58), it is assumed that

-1.5 0.01 0.5 0.1
%= [0.01 15 ] R = [0.15 —0.5]'

As for the SVE simulation, a finite volume discretization method
is performed for the evolution Eq. (51). The method uses a vol-
ume integral formulation of the problem with a finite partition-
ing set of volume to discretize, and it is well suited for dis-
cretizing computational fluid dynamics equations (Benkhaldoun
& Seaid, 2010; Diaz, Chacén, Fernandez-Nieto, & Parés, 2007;
Veque, 2002). For instance, a general family of finite volume
methods for non-homogeneous hyperbolic system is presented in
Diaz et al. (2007) and some numerical tests to solve the “bi-layer”
Saint-Venant model are provided.

Elsewhere, the computation of the control law requires the ker-
nel values defined in (61). In sight of the triangular shape of the
computational domain, we solve numerically the kernel system us-
ing the finite element method. Seen that the kernels are piecewise
continuous, we adopt the discontinuous Galerkin (DG) finite ele-
ment method to approximate the solution of the kernels. It is well-
known in the literature that the DG technique yields accurate solu-
tion if at least piecewise quadratic polynomials are used for the ba-
sis function. The finite element method is particularly adapted for
problems with complex geometries. An extensive review of these
methods can be found in Thomee (2001).

In Fig. 8(a), the behavior in time of each component of the out-
put feedback input controller is depicted. Despite the initial ampli-
tudes, the second component of the control input ¢ (t) decreases
in time and vanishes, with the settling time being about 4s. The
first component of the control input ¢/ (t) shows the same trend
as well, with its amplitude decreasing in time and tending to zero,
with the same settling time.

Fig. 8(b) depicts the evolution in time of the £2-norms of the
characteristics for the output feedback closed-loop system. As ex-
pected from the theoretical part we observe clearly that the norm
of the characteristics decreases in time and converges to zero. This
shows that the closed-loop system (51) subjected to the output
feedback controller converges to the zero equilibrium. Thereby, the
“bi-layer” Saint-Venant model (25) converges to (Hj, Uy, H;, Us).

Fig. 9 shows the evolution in time of the component of the so-
lution to the closed-loop (51). The initial conditions are computed
using the data in (122)-(125) and the considered uniform steady
state. As expected from Fig. 8(b), it can be seen from Fig. 9 that

(126)
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(a) Evolution of (z,x) (b) Evolution of (z,x)
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Fig. 9. Behavior in time and space of the distributed states.

each component of the £-solution converges to the origin and this
is consistent with the theoretical results.

5. Conclusion and future works

This paper is devoted to the stabilization problem of shallow
water waves that has been attracting the interest of control en-
gineers for many decades. New perspectives are given based on
some recent results that deal with exponential stabilization of
linear coupled hyperbolic PDE systems. It has been proven that
the backstepping methodology may unlock several important con-
straints regarding the design of boundary feedback control laws for
such application.

The backstepping control of the linearized Saint-Venant-Exner
model, which describes the dynamics of water and sediment in
a prismatic sloping open channel delimited by two gates and can
be transformed into a system that consists of two rightward and
one leftward convecting transport PDEs, is first presented as a pre-
liminary result. It is remarkable that a single boundary controller
applied at the downstream gate enables the closed-loop feedback
system to be exponentially regulated to a constant set point. No
dissipativity restriction is imposed on the controller gain as in
Diagne et al. (2012). Moreover, not only the subcritical but also the
supercritical flow regimes can be treated by such a backstepping
design.

Going to the depth of this contribution, the case of two un-
mixed fluids flowing in a portion of channel delimited by two gates
is studied. Different from the SVE controller design, two backstep-
ping controllers at the downstream gates are used to exponentially
stabilize the corresponding “bi-layer” Saint-Venant model, which
consists of two rightward and two leftward convecting transport
PDEs.

It is worth mentioning that these two results stand among the
first ones attempting to formulate and solve the control problems
in the multi-layer flow dynamics. An effective control algorithm for
boundary disturbance rejection (Tang, Guo, & Krstic, 2014; Tang &
Krstic, 2014) can make a high impact on water system manage-
ment. Also, extending the present results in the context of net-
works of open channel is an important but challenging future re-
search direction.
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