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Analysis of Predictor Feedback for Time-Varying Delays that may
Assume Zero Value

Yonglong Liao, Shu-Xia Tang*, Fucheng Liao, and Miroslav Krstic

Abstract— For linear systems with a time-varying input delay,
the predictor feedback controller and exponential stability
have been established. However, the now-classical approach
of representing the delay by a transport partial differential
equation (PDE) on a strictly positive and constant spatial
domain precludes the possibility of the delay assuming the
zero value at any time instant. To eliminate this limitation,
we provide a new representation of the delay by a transport
equation with a time-varying spatial domain. The resulting
backstepping approach leads to the same predictor feedback
that was previously designed by the last author. However,
the controller derivation and the stability analysis are quite
different, even though both the controller and the assumptions
are the same. A representative example is provided to illustrate
the methodology and results.

Index Terms— Time-varying delay, coupled transport PDE-
ODE, backstepping, predictor, time-varying spatial domain

I. INTRODUCTION

Time-varying delay systems are present in numerous prac-
tical applications, such as networked control systems [1, 2]
and driving control systems [3]. Several existing techniques
for compensating time-varying input delay, such as [4-9], are
extensions of the Smith Predictor [10].

Another efficiency approach is backstepping method was
given in [11, 12] and their references. Similar to the
processing approach in dealing with single input systems
with time-invariant delay [13], the delay is modeled by a
transport partial differential equation. The delay system is
represented by a coupled PDE-ordinary differential equation
(ODE) system. Then, a backstepping transformation is used
to convert the original system into a stable target system. The
feedback control law is obtained according to the backstep-
ping transformation and the boundary condition of the target
system. The closed-loop system is proved exponential stable
by constructing a Lyapunov functional. The transport PDE
provided in [11] is used in other systems widely. For general
nonlinear systems with time-varying input and state delays, a
global asymptotic stable predictor-based feedback controller
can be designed [14]. For linear systems with time-varying
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input delay and additive disturbances, [15] shows that the
basic predictor feedback control law is inverse optimal and
establishes its robustness. For linear time-varying systems
with time-varying measurement delay, [16] establishes the
exponential stability of the estimation error for arbitrarily
large time-varying delays.

The key challenge in dealing with time-varying delay is
the selection of a state for a transport PDE, which has a
non-constant propagation speed [11]. In fact, the propagation
speed function in [11] needs to be uniformly bounded from
below and from above by finite constants, and accordingly,
the delay cannot be zero for any time. The scope of applica-
tion of that method reduces greatly. This paper gives a new
method to deal with the systems with time-varying input
delay. Note that the propagation of first-order hyperbolic
PDE is unidirectional, we can model the time-varying input
delay by a first-order hyperbolic PDE with unfixed boundary,
which is different from the construction given in [11]. The
PDE’s propagation speed is one minus the derivative of the
input delay and the delay can be zero in some interval or
at some points. Then, the backstepping transformation is
presented in detail and a feedback controller is obtained. In
addition, the relationship between backstepping transforma-
tion and predictor is discussed in a theorem.

This paper is organized as follows. Section II formulates
the problem, constructs a coupled system, and designs a
backstepping controller. Section III provides an analysis of
the stability of the closed-loop system. Section IV discusses
the relationship between the predictor and a backstepping
transformation. A numerical example is provided in Section
V to illustrate the results. And a conclusion is drawn in
Section VI.

II. THE CONTROLLER DESIGN

Consider the following linear time-invariant system (LTT)
X(t) = AX (1) +BU(9(t)) (D

where X (1) € R" is the state, A € R™" and B € R"™! are
the corresponding system and control matrices, U(-) is the
control input, and ¢(r) is defined as @(¢r) =t —d(t), d(r)
represents the time-varying delay satisfies 0 < d(¢) < D.
The following two assumptions hold.
Assumption 1: The time delay d(f) is a continuously
differentiable function and satisfies

supd(t) < 1

t>0
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Remark 1. Assumption 1 indicates that the growth rate
of time delay does not exceed that of time itself, and thus
the invertibility of ¢(¢) is guaranteed.

We define
1
* = ——— 2
o infy>0 @(1) @
m =sup(@~' (1) —1) 3)

t>0

According to Assumption 1, we have 75 > 0 and 7} < oo
Assumption 2: The pair (A,B) is stabilizable, namely,
there exists a vector K € R'*” such that A 4 BK is Hurwitz.
When t > ¢~1(0), the delay-input U(¢(¢)) can be modeled
by the following first-order hyperbolic PDE

ug (x,1) = @(1)uy(x,1)

o 20 @
where (x,t) € [0,d(t)] x (¢~ 1(0), +o0). The solution of (4) is
given as

u(x,t) =U(x+ (1))

Consequently, (1) can be transformed into following PDE-
ODE coupled system

X(t) = AX(t) + Bu(0,1)
”t(xvt) = (P(t)ux(x7t) (5)
u(d(t),t) =U(t)

If the system (5) can be stabilized by the input U(s) which
acts at the right end of the PDE, then the system (1) can be
also stabilized by U (t).

The main procedure is to find a state transformation and a
state feedback control law that convert the system (5) into a
stable target system. We employ the following target system:

X(t) = (A+BK)X(t) +Bw(0,1)
wi(x,0) = @(1)wy(x,1) (6)
w(d(t),t) =0

where K is a vector such that A 4+ BK is Hurwitz.
In (6), w(0,t) =0 for any ¢ > ¢~ '(0). Hence, the state
X () satisfies

X(t)=(A+BK)X(r), t> ¢ '(0)

Thus, the plant obeys the nominal closed-loop system after
t = @~ 1(0). The stability with respect to an appropriate norm
will be discussed later.

If ¢(r) =1, that is to say d(¢) is equal to a constant, we
can use the standard backstepping transformation proposed
in [17]. The main difference here is that the speed of
propagation PDE as well as the spatial domain are time-
varying due to the time-varying delay. We propose a new
transformation.

which could convert (5) into the target system (6). ®(x,7)
and I'(x,y,t) are kernels to be determined.

Taking the derivatives of w(x,#) with respect to ¢ and x,
we have

wi(x,1) = Q(t)ux(x, 1) — [P (x,1) + P(x,2)A]X (¢)
= [@(x,1)B = ¢(1)['(x,0,1)]u(0,1)
= [ IEuet) = 9O, et ulrer)ay
— @O (x,x, 1)ulx,1)
where the integration by parts is used, and
wy(x,1) = uy(x,1) — Dy (x,0)X (2)
_ /O "Ly )ua(y,£)dy — T x, ), )

Consider the arbitrariness of X (¢), u(0,¢), and u(z), we obtain
the sufficient conditions for the second equation of (6) to hold
as shown in the following three formulas
D, (x,1) — @(1)Py(x,1) + P(x,1)A=0 ®)
®(x,1)B— p(1)(x,0,1) =0 ©)
(p(t)[rx(xayat)+F}'(xay>t)}7Ft(xayat):0 (10)

To find the boundary condition for (8), let us set x =0 in
the second equation in (7), which gives

u(0,¢) = w(0,1) +®(0,)X (¢) (11
Substituting (11) into the first equation in (5), we get
X(t) = (A+B®(0,1))X(t) + Bw(0,t) (12)

Comparing (12) with the first equation in (6), we have

®(0,r) =K

By characteristic line method for solving first order linear
PDE we can get the solution to (8) and (13) as

“Hrre(n)—1)A

13)

®(x,1) = Kel® (14)
Substituting (14) into (9), we have
1 -1
[(x,0,1) = ——Kel® (te)-0Ap (15)
w00 =50

By characteristic line method for solving first order linear
PDE we get the solution to (10) with the boundary condition
(15) as

1

I'(x,y,t) = - K
W20 = 5T o)
s« @ (o))~ (re()Ag

We can now plug the kernels ®(x,#) and I'(x,y,) into (7) to
get the backstepping transformation as

Consider the backstepping transformation (X,u) — (X,w) X(t)=X()
-1
X =X(0) W) =u(e) Ko OO
{ W(x7t) = u(x,t) —CD(x,t)X(t) - .f(;cr(xayat>u(y7t)dy fO ‘P )+‘P( )))K
(7) xe(q) (x+(p(t)) (y+(P<t)))ABu(y7t)dy
1958
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Setting x =d(t) in (16), we get the control law

1
y+o()))
7)

. a(r)
Ul = Kel® " 0-04x +/ ,
(1) (1) Y

x Kel® (=07 0+ 0DA By (y 1)dy

ITII. STABILITY ANALYSIS OF THE CLOSED-LOOP
SYSTEM

In the stability analysis we will use a Lyapunov con-
struction and the backstepping transformation as well as
its inverse transformation. We introduce the inverse of the
backstepping transformation (X,w) — (X, u)

X(1t)=X(@)
u(x7[) — W()C,l) +Ke<(p71(x+¢(’))*t)(A+BK)X(t)

r e (07 () 9 (1) (A+BK)
+Jo s Toremn K¢

xBw(y,1)dy
(13)

The solving process of transformation (18) is to give the
structural form first, and then to get the kernel function by
the characteristic line method.

The stability result is given by the following theorem.

Theorem 1. Let Assumptions 1 and 2 hold, the initial
condition u(x,0) = ¢o(—x), x € [0,d(0)], and Xo = X(0),
where @o(-) is the initial input of U(-). The closed-loop
system consisting of the plant (5) with the controller (17)
is exponentially stable at the origin in the sense of the norm

d(t)
W(r) = |X(t)|2+/0

Namely, there are positive constant G and p such that

19)

(1) < Ge M (0)

d(0)
:\Xo|2+/ 1 (x,0)dx
0

Proof. First we prove that the origin of the target system
(6) is exponentially stable. Consider a Lyapunov function

where

T a 40 2
V(i) =X (t)PX(t)+§ A e'w(x,t)dx (20)

where P = PT > 0 is the solution to the Lyapunov equation
P(A+BK)+ (A+BK)'P=—-0

for some Q = Q7 > 0, and the parameter a is a positive
constant to be chosen later. We have

we have

: 2
V()< -x"(1)ox (1) + MXT(t)PBBTPX(t)

: d(t)
_ M/ WA (x, 1)dx
2 Jo

T *
Choose a = W, where Amax and A, are the

minimum and maximum eigenvalues of the corresponding
matrices, 7y is defined as in (2). Then

)me( )

V() < — X (1)
Mmax(PBBTP) @
— —A'min(Q) /0 ew(x,1)dx
< —uv(t)

where

. )me(Q) 1
H=mn { 2hr (P) no}

Thus we obtain

V(t) <e MV(0), Vt>0 (21)

Let us now denote
) d(t)
= X+ / W2 (x,1)dx
0
Combining (20) and (22), we have that
Q1) < V() < pQ(r)

(22)

(23)
where
. a
= mm{/xmm(P), 5}
a
0 = max {lmaX(P), EeD}
According to (21) and (23), it follows that

1 —ut —ut
Q) < —Vv() < —v() < L2

o oo ay

Q(0) (24)

Now we consider the norm (19). From the backstepping
transformation (16), we get

d(t) )
/ w=(x,1)dx
0

d(t)
§3/ {uzxt

+/[ y+<p<>>>
2(y,t dy}dx

The function ¢ ~!(-) is strictly increasing since @(-) is strictly

n [Ke«p*wxw(z))fr)AX(,)} ?

2
Keol0 (0(0)—97 b+p(1)A B}

V(r) = —x"(1)0X (t) +2X" (1)PBw(0,1) increasing. We have
om0 -4 [N e pmena 07 v+ 9(1) < 9 (9(1) +d(1) = 97 ()
Since for x € [0,d(t)], and
-1 -1 _
2X7 (1)PBW(0,1) — S p(1)w2(0.1) < —— X7 (1)PB|’ PO+el) 2 97 (0] =1
2 ag(t) for y € [0,x].
1959
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2 0)+ K P 200X (1) 2

|K|262 TP (vir)dy } dx

+IK2ETH X (1)

+/
d(t)

<3 (14D KPP BP) [ iR (nr)ar

+3D[K[ X X (1) P

d(t)
0

where 7} is defined as (3), and
Bi =3 (1+D(m;)* K 1 |BP?)
B = 3D |K|* 25 W

|m2%“wfﬂwm§m

u? (x,1)dx+ B X (1)

Similarly, from the inverse backstepping transformation (18),
we get

d(t) )
/ u”(x,t)dx
J0

gnfmﬁwmm+nmm2
where
1 =3 (1+D(m;)? K A58 )
% =3D |K|2ezn,* |A+BK|

With a few substitutions we obtain that

2 a(t) 2
Q) =X (1) +/ W2 (x, 1) dx
0

<B /Od(t) w?(x,1)dx+ (14 Ba) [X (1)
<max{f,1 +[32}‘P( )

—1X(1)] +/

U]
<n [ W a1 ) O
<max{y, 1 +pn}Q(r)

Wt

~—

where

1
max{y, 1+ %}
0y = max{B;, 1+ B}

Finally, with (24) and (25) we get

o] =

1 Mo Hopo

W) < —0) < 200)< E—2%2y0), wi>0
(9] o101 o0}

Let G = gzgz , we complete the proof of the theorem.

IV. THE RELATIONSHIP BETWEEN PREDICTOR
AND BACKSTEPPING TRANSFORMATION

The controller (17) is given in terms of the transport PDE
state u(x,t). Recall that

u(x,t) =U(x+ (1))

where
(1) €[0,d(0)] x (9~1(0),+20)

Replacing u(y,r) by U(y+ @(¢)) in (17) and setting & =
y+¢(t), we have

U(t) =

i@

Consider the system (1) again. The main premise of the
predictor based design is that one generates the controller

Kel® (- >AX()
e((P’](t)ﬂP"(&)JABU@)dé

(26)

U(p() =KX(1), Yi=¢ '(0) 27)
so that the closed-loop system is
X(1) = (A+BK)X(1), Vi=¢ '(0)

The gain vector K is selected so that A+ BK is Hurwitz.
We now rewrite (27) as

Uit)=KX(o ' (t)), Vt>0

With the variation of constants formula to the model (1), the
quality X(¢~!(z)) for all > 0 is written as

X(*M%%W“)“ﬂ)
" / <¢*1(t)—¢*‘(é)>ABU(§)d<§

(28)

Namely, Substituting this expression into (28), we obtain the predictor
controller (26). That is the controller U (¢) uses the ¢! (¢) —¢
o¥(t) <Q(t) < ¥(1) (25)  (ime units ahead predictor of X.
1960
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Denote

P(6) =X(9p~'(6)),

We have the following theorem.
Theorem 2. The predictor state P(0), for all 6 > ¢(0)
can be described equivalently as

plx,t) = (@ (TeD)-DAx (¢

o) <6<t, Vt>0 (29)

X 1 —1 -1
+/ . 07 M) =07 e DA Ry (y £)dy,
0 B0 0+ e) o

(x,t) €[0,d(t)] x R (30)

Furthermore, the backstepping transformation (16) can be
rewritten as

{ X(t)=X(¢)

Wl t) = ulo) — Kp(r,r) ) € 0O xR (1)

Proof: The function p satisfies the following ODE in x:
1

pa(x,t) = S0 o) (Ap(x,1) +Bu(x,1))  (32)
With initial condition
p(0,1) =X(t) (33)
The solution to (32) and (33) is
p(x,0) =X(@ ' (x+ (1)), (x1)€[0,d)] xR (34)

In order to show this, first note that (34) satisfies the bound-
ary condition (33). Then, the function X (¢! (x+¢(¢))) also
satisfies the ODE (32) in x which follows from the fact that
by (1) one can conclude that for (x,7) € [0,d(¢)] x R*:

X(o7' (x4 9(0))
_ 1 -1 X
= o T ey XK@ (o)

+BU (x+¢(t)))

The result follows from the uniqueness of solution to the
ODE (1), where u(x,t) = U(x+ ¢(¢)) is used. Combining
the fact P(t) = X (@~ '(t)) in (29), as well as P(x+ ¢(t)) =
X(¢~'(x+¢(t))), one can conclude that:

P(x+o(1)) = p(x,1), (x,1) €[0,d(t)] xR"

Performing the change of variables x = 6 — @(¢) for all
() < 6 <t in (30) and using (33), (34), and (35) we arrive
at

(35)

On the other hand, combining (16) and (30) we get (31). The
proof is completed.

Remark 2. Theorem 2 shows that, in the backstepping
transformation, there is a constant-times of the predictor of
the ODE state X (¢) difference between the PDE state u(x,?)
in the original system and the PDE state w(x,7) in the target
system. Further more, the constant is gain vector K.

V. NUMERICAL SIMULATION

In this section, an example is prepared to verify the theory.

Example 1. Consider a one-order example described as
(1), where A=B =1, d(t) = (1+sint)/2, d(¢t) is shown
in Fig. 1. Accordingly, @(f) =t — (1 +sint)/2 and ¢ is
invertible. Taking K = —2, we get the simulation result
shown in Fig. 3.

d(t)

Fig. 1. The input delay
10t -
8t 7
2 6r ’
|f 4
g .
4+ -
Jd
o)
0 RN )
0 2 4 6 8 10
t
Fig. 2. ¢(t) and its inverse ¢! (¢)
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Fig. 3. State signal evolution for Example 1.

Fig. 1 shows that the graph of the delay get to zero
between 4 and 5. In this case, the controller (37) still
applicable. In fact, when d(¢) = 0 the controller get be

U(t) = ke 004x7)
VI. CONCLUSION

This paper provides a new method of designing backstep-
ping controller for ODE with a time-varying input delay.
The derivation employs a transport equation with time-
varying boundary. As a result, the time delay could be
zero in some intervals or points, and the derivations of the
backstepping transformation and its inverse as well as the
stability analysis are given by ¢(¢) rather than using a new
variable “propagation speed function 7(x,#)” in [11]. As a
result, the application range of the controller is extended and
this method could be applied to multiple time-varying delay
systems that we will discuss in future work.

(36)
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