
PDE Observer for All-Solid-State Batteries via an Electrochemical
Model

Dong Zhang1, Shu-Xia Tang2, Luis D. Couto3, and Venkatasubramanian Viswanathan1

Abstract— All-solid-state batteries are one of the most
promising candidates for next-generation energy storage devices
capable of delivering high specific energy. Significant effort
has been spent on understanding the degradation mechanisms
associated with dendrite formation, while energy management
and model-based estimation/control for solid-state batteries has
received very limited attention. This paper examines a partial
differential equation (PDE) state estimation scheme for a one-
dimensional electrochemical all-solid-state battery model, using
voltage and current measurements only. The state estimation
framework exploits the active disturbance rejection control
and PDE backstepping techniques, and we rigorously prove
estimation error system stability. Electrochemical model-based
estimator based on PDE models identifies physical variables for
all-solid-state batteries, thus enables high-fidelity monitoring
and optimal control in future battery management systems.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries have revolutionized modern
life by enabling electric vehicles and portable power electron-
ics. However, safety concerns are increasing in the quest for
pushing the performance envelope, leading to unpredictable
circumstances such as overcharging and abuses [1], [2].
Electrification of other sectors such as long-haul trucks [3]
and aviation [4] requires even higher specific energy while
also delivering on other metrics, e.g. specific power and cost.

Among all next-generation battery chemistries, all-solid-
state batteries with a metallic lithium anode offers a sig-
nificant increase in specific energy as well as possibly
better thermal stability [5]. Many practical issues related
to uncontrollable lithium dendrite growth [6] and poor cy-
cling efficiency [7] still linger but are being addressed and
mitigated [8]. The general working principles of solid-state
lithium metal batteries are similar to that of conventional Li-
ion batteries. A major distinction is that the porous electrode
theory in Li-ion batteries [9] is no longer necessary for
lithium metal anode as it involves plating and stripping of
metallic lithium instead of intercalation and de-intercalation.

The majority of research in battery modeling and con-
trol has been centered around conventional Li-ion batteries
with porous composite electrodes [10], [11], [12], [13],
and very few efforts have been dedicated to solid-state
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batteries. Danilov et al. developed a one-dimensional model
to simulate the performance of a Li|Li3PO4 |LiCoO2 cell [14],
accounting for charge transfer kinetics, lithium diffusion
in electrode, and diffusion and migration of ions in solid
electrolyte. Following [14], Kazemi et al. enhances modeling
accuracy at high current by incorporating phase-transition
processes and time-varying diffusion coefficient [15]. Fabre
et al. presented a model for Li|LiPON|LiCoO2 solid-state
thin-film microbattery, along with several electrochemical
experiments used to carry out accurate characterization of
model parameters [16]. Behrou et al. advances solid-state
battery modeling via a finite element framework for electro-
chemical and mechanical interactions with damage evolution
[17]. Phase-field modeling has been used to understand
lithium metal anode morphological instabilities [6].

Nevertheless, many of the aforementioned models are
intricate for real-time control purposes – a barrier often
encountered with electrochemical models. Only recently has
the community begun to seek control-oriented modeling
and/or model reductions. For instance, Kim et al. pro-
posed a Kalman filter (KF) for solid-state battery state of
charge (SOC) estimation [18]. The model explores mul-
tiple reduction scenarios, including neglecting the genera-
tion/recombination of Li-ions in the solid electrolyte. More-
over, a reduced-order electrochemical model was proposed
in [19] thanks to Padé approximation and polynomial ap-
proximations of the concentration distributions.

In this paper, we advance the research field of model-based
all-solid-state battery estimation and control by developing
a partial differential equation (PDE)-based state estimation
framework. Multiple novel theoretical methods are created
and integrated, including PDE disturbance estimator and
backstepping state estimator. The model analysis and esti-
mator designs in this paper are completely performed on the
original PDE system without any prior spatial discretization,
thus retaining the physical significance of the equations
and of the phenomena that they represent. The stability
and asymptotic convergence of the proposed estimators are
mathematically guaranteed and proved, which marks one of
the notable advantages against KF-based estimator designs.

II. SOLID-STATE BATTERY MODELING

The schematic of an all-solid-state Li-ion battery is de-
picted in Fig. 1, which is comprised of three main ele-
ments: anode, cathode, and electrolyte. The anode consists of
metallic lithium. The cathode material is of the conventional
intercalation chemistry, e.g., LiCoO2. The electrodes are
separated by a solid-state electrolyte, shown in this case as
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Fig. 1. A general schematic of a planar all-solid-state Li-ion battery [14].

amorphous Li3PO4. A one-dimensional model that describes
the dynamics of the solid-state battery is adopted from [14].
It is assumed that the charge transfer kinetics are neglected
in the anode since it is made of metallic lithium. A complete
description of model symbols is defined in Table I.

A. Solid Electrolyte

In the electrolyte, the bound lithium, designated as Li0, is
transferred into mobile Li+ through the ionization reaction:

Li0
:A−−−⇀↽−−−
:3

Li+ + n−. (1)

The conductivity of the Li3PO4-based solid electrolyte is
induced by the transport of Li+ ions. The mathematical
model, describing the diffusion–migration process combined
with the generation/recombination (1), can be represented by
the following nonlinear reaction-diffusion PDE system:

m2Li+

mC
(H, C) = 2�Li+�n−

�Li+ + �n−

m22Li+

mH2 (H, C) + A
(
2Li+ (H, C)

)
, (2)

m2Li+

mH
(0, C) = � (C)

2���Li+
, (3)

m2Li+

mH
(!, C) = � (C)

2���Li+
, (4)

with 2Li+ (H, 0) = X2Li+ ,max (H) and H ∈ [0, !]. The charge
carrier generation is given by A

(
2Li+ (H, C)

)
= U22

Li+ +
V2Li+ + W, with U = −:A , V = −:A X22Li+ ,0/(1 − X), and
W = :AX

22Li+ ,0/(1 − X). The total mass-transfer overpotential
across the solid electrolyte, which includes the diffusion and
migration overpotentials, can then be expressed by

[mt =
')

�
ln

[
2Li+ (!, C)
2Li+ (0, C)

]
−

∫ !

0
� (H, C)dH, (5)

where the analytic expression for the electric field is

� (H, C) = ')

�

1
2Li+ (H, C)

(
− � (C)

2���Li+

+ �Li+ − �n−

�Li+ + �n−

[
m2Li+ (H, C)

mH
− � (C)

2���Li+

] )
. (6)

B. Cathode

The electrochemical charge transfer reactions at the cath-
ode can be represented by

LiCoO2 −−−⇀↽−−− Li1−GCoO2 + GLi+ + Ge− (0 ≤ G ≤ 0.5). (7)

TABLE I
SOLID STATE BATTERY MODEL SYMBOL DESCRIPTION

Symbols Description Units Values
� Cell cross sectional area [m2] 1 × 10−4

2Li+ Li+ conc. in electrolyte [mol/m3] [-]
2Li+ ,max Max Li+ conc. in electrolyte [mol/m3] 6.01 × 104

2Lis Li conc. in cathode [mol/m3] [-]
2Lis,max Max Li+ conc. in cathode [mol/m3] 2.33 × 104

�Li+ Li+ Diffusivity in electrolyte [m2/s] 1.76 × 10−15

�n− n− Diffusivity in electrolyte [m2/s] 2.1 × 10−15

�Lis Li Diffusivity in cathode [m2/s] 0.9 × 10−15

� Faraday’s constant [C/mol] 96485
� Applied current [A] [-]
:A Recombination reaction rate [m3/mol-s] 9 × 10−9

:
app
0 Apparent rate constant [m3/mol-s] 5.1 × 10−4

" Cathode thickness [m] 3.2 × 10−7

! Solid electrolyte thickness [m] 1.5 × 10−6

' Universal gas constant [J/mol-K] 8.314
) Temperature [K] 298
C Time [s] [-]

X
Fraction of mobile Li+

in electrolyte in equilibrium [-] 0.18

[mt
Mass-transfer overpotential

across the electrolyte [V] [-]

[ct , [d
Charge transfer/Diffusion
overpotential in cathode [V] [-]

Assuming the migration process can be neglected and Li+

diffusion due to concentration gradient is the primary means
of charge transfer [18], the mass transport of Li-ions inside
the cathode is governed by the Fick’s law of diffusion,

m2Lis
mC
(H, C) = �Lis

m22Lis

mH2 (H, C), (8)

m2Lis
mH
(!, C) = � (C)

���Lis
, (9)

m2Lis
mH
(! + ", C) = 0, (10)

with 2Lis (H, 0) = 2Lis,0 (H). The Butler-Volmer kinetics links
the charge transfer overpotential and the applied current via

� (C) = 80 (C)
(
4
U0�[ct
') − 4

−U2�[ct
')

)
, (11)

where the exchange current density 80 (C) reads [16]

80 (C) = �
[
:0 (2Li+ ,max − 2Li+ (!, C))2Lis (!, C)

] U2
×

[
:2 (2Lis,max − 2Lis (!, C))2Li+ (!, C)

] U0
. (12)

Let \ be the normalized Li concentration in the cathode, i.e.,
\ = 2Lis/2Lis,max. The diffusion overpotential is computed
according to [14], [20],

[3 = �eq (\B (C)) − �eq (\ (C)), (13)

in which �eq denotes the equilibrium potential for the
cathode, whereas \B (C) = \ (!, C) and \ (C) is the normalized
volume-averaged (bulk) Li concentration in the cathode.
Empirical functions of �eq can be obtained via experimental
curve fitting [16], and thermodynamically consistent open-
circuit curves may be found through the Redlish-Kister
formalism [21].
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C. Output Voltage

The total overpotential is represented as

[C = [mt + [ct + [d, (14)

where the respective terms were presented in (5), (11), and
(13). Ultimately, the output voltage is the combined effect
from equilibrium voltage and total overpotential,

+ (C) = �eq (\) + [C = [mt + [ct + �eq (\B). (15)

D. Model Reduction

Assumption 1: Li+ concentration across the solid elec-
trolyte is uniform [16], [18].

Evidently, the contribution of [mt to the total overpotential
[C is negligible in the relatively high SOC end [18]. More
importantly, this assumption allows us to reduce the size
and complexity of the model towards enabling real-time
estimation and control tasks. Ultimately, the dynamics (2)-(4)
are hereafter neglected. However, we introduce the following
model compensation and normalization:

i. The modeling error from Assumption 1 is compensated
by a boundary disturbance in the cathode dynamics.
Namely, an unknown disturbance is artificially injected
at the cathode-electrolyte interface (9), to account for
the neglected electrolyte dynamics.

ii. Since the dynamics within solid electrolyte is ignored,
we now re-position the origin of the spatial coordinate
to be at the cathode-electrolyte interface.

iii. We perform normalization by scaling spatial and tem-
poral coordinates as G = H/", C = �LisC/"2 (Fig. 1).

Henceforth we will drop the bar over the temporal coordinate
to simplify notation when the context is clear. Consequently,
these operations transform the cathode dynamics (8)-(10)
into the following PDE with Neumann boundary conditions:

DC (G, C) = DGG (G, C), (16)
DG (0, C) = * (C) + 3 (C), (17)
DG (1, C) = 0, (18)

with D(G, 0) = D0 (G). Herein, DC = mD/mC, DGG = m2D/mG2,
and D = 2Lis. Further, * (C) = � (C) · "/(���Lis) is the
boundary control. The term 3 (C) is a boundary disturbance
used to compensate the loss of electrolyte dynamics. By
assuming U0 = U2 = 0.5 [18], [22], the output function after
the model reduction can be computed via the nonlinear map

+A (C) = [ct+�eq (\B) =
2')
�

sinh−1
[
� (C)

280 (C)

]
+�eq (\B), (19)

where \B (C) = D(0, C)/2Lis,max. Since lithium concentration
is assumed uniform across the solid electrolyte, exchange
current density can be simplified to

80 (C) = �:app
0

[
D(0, C)

] U2 [
2Lis,max − D(0, C)

] U0
, (20)

where :app
0 is an apparent rate constant for the cathode.

Remark 1: It is expected that the lost contributions to
the voltage after neglecting electrolyte dynamics will be
indirectly recompensed by the boundary disturbance 3 (C)

in (17) at the cathode-electrolyte interface in the reduced-
order model. We will later design a disturbance estimator to
estimate the unknown disturbance 3 (C), such that the voltage
response of the reduced-order model (16)-(20) matches the
voltage of the original full-order model.

III. DISTURBANCE AND STATE ESTIMATORS

The objective of this section is to develop a state estimator
for the lithium concentration profile in the cathode based
on (i) the reduced-order model (16)-(20) and (ii) voltage
of the full-order model (1)-(15). The main steps of the
estimator design are (i) inverting the output function (19) to
obtain “boundary measurement”, (ii) estimating the unknown
boundary disturbance 3 (C) in order to compensate the loss of
electrolyte dynamics, and finally (iii) estimating state D(G, C)
with knowledge of the disturbance estimate.

A. Output Function Inversion
To implement a boundary disturbance/state estimator, we

need \B (C), or D(0, C). Nonetheless, \B (C) is not directly mea-
sured. The only measurable signal (voltage) is related to \B (C)
via the nonlinear map (19). As such, we develop a gradient
algorithm to process \B (C) from voltage measurement + (C)
via the inversion of the output function (19) [22].

First, re-write the output function (19) as +A = ℎ(\B , C).
Next, denote \̂B (C) the outcome from the output function
inversion. Then the error between the true and the inverted
version is \̃B (C) = \B (C) − \̂B (C). With that, re-write

+A (C) = ℎ(\̃B + \̂B , C). (21)

Then, we perform first-order Taylor series approximation
with respect to \̃B around \̃B = 0 to get

+A (C) ≈ ℎ(\̂B , C) +
mℎ

m\B
(\̂B , C) · \̃B . (22)

The approximated output function in the form (22) can be
re-expressed as 4(C) = q(C)\̃B where

4(C) = +A (C) − ℎ(\̂B , C), q(C) = mℎ

m\B
(\̂B , C). (23)

The regressor q(C) depends upon the inversion \̂B (C), and
4(C) is additionally determined by the measured signal. We
adopt the recursive least-squares algorithm with forgetting
factor to update \̂B (C) [23, Chapter 4]:
¤̂\B (C) = %n (C)q(C), \̂B (0) = \̂0

B , (24)

¤%(C) = V%(C) − %(C) q(C)q
> (C)

<2 (C)
%(C), %(0) = %0, (25)

n (C) = 4(C) − q(C)\̂B (C)
<2 (C)

, (26)

<2 (C) = 1 + 2q> (C)q(C), 2 > 0. (27)

Hereafter, \B (C) (whose numerical value is given by \̂B (C))
is regarded as the “pseudo-measurement” of the plant model
dynamics (16)-(18). That is, H(C) = D(0, C).

Remark 2: We have essentially produced an estimate \̂B
for the boundary value \B that is consistent with the measured
(full-order) voltage + (C) through the output function (19) in
the reduced-order model.

53

Authorized licensed use limited to: Texas Tech University. Downloaded on March 19,2024 at 14:45:25 UTC from IEEE Xplore.  Restrictions apply. 



B. Disturbance Estimator Design

In this section, we detail the disturbance estimator design
[24] using the boundary measurement H(C). The objective
of the disturbance estimator is to construct a 3̂ (C), which
asymptotically estimates 3 (C) in the boundary condition (17),
such that system (16)-(18) generates a \B (C) that is equal to
\̂B (C). In this way, the neglected voltage component resulting
from dropping the electrolyte dynamics is fully compensated.

We introduce the following auxiliary system,

EC (G, C) = EGG (G, C), (28)
E(0, C) = H(C), (29)
EG (1, C) = 0. (30)

E-system consists of a copy of the plant model dynamics
(16), and is driven by H(C). Let the estimate for 3 (C) be

3̂ (C) = EG (0, C) −* (C). (31)

System (28)-(31) forms the disturbance estimator. Prior to
proving the convergence, we present the following lemma.

Lemma 1: For any function 5 (G, C) with G ∈ [0, 1] and
C ∈ [0,∞), that is three times continuously differentiable on
G ∈ [0, 1], we have

‖ 5GG (G, C)‖2 ≤ 2 5 2
GG (0, C) + 4‖ 5GGG (G, C)‖2, (32)

where ‖ · ‖ denotes the !2 norm.
Theorem 1: The disturbance estimate 3̂ (C) given by (31)

exponentially converges to 3 (C). Namely, limC→∞ 3̃ (C) = 0,
where 3̃ (C) = 3 (C) − 3̂ (C).

Proof: Let F(G, C) = D(G, C) − E(G, C), which satisfies

FC (G, C) = FGG (G, C), (33)
F(0, C) = 0, (34)
FG (1, C) = 0. (35)

Consider the Lyapunov functional

Ω(C) = 1
2

∫ 1

0
F2dG + 1

2

∫ 1

0
F2
GdG +

1
2

∫ 1

0
F2
GGdG. (36)

The time derivative of Ω(C) is then computed by applying
integral by parts,

¤Ω = F(G)FG (G)
���1
0
− ‖FG ‖2 + FG (G)FC (G)

���1
0
−

∫ 1

0
FCFGGdG

+ FGG (G)FGC (G)
���1
0
−

∫ 1

0
FGCFGGGdG. (37)

Since FC (0) = FGC (1) = FGC (0) = 0, we can conclude

¤Ω = − ‖FG ‖2 − ‖FGG ‖2 − ‖FGGG ‖2

≤ − 1
4
‖F‖2 − 1

4
‖FG ‖2 −

1
4
‖FGG ‖2 ≤ −

1
2
Ω, (38)

where Lemma 1 has been utilized. From (38), the exponential
stability of Ω(C) indicates that ‖F‖, ‖FG ‖, ‖FGG ‖ → 0 when
C →∞. Moreover, according to the fundamental theorem of
calculus and Cauchy-Schwarz Inequality,

FG (0, C) = FG (1, C) −
∫ 1

0
FGGdG ≤ ‖FGG ‖ → 0, (39)

as C →∞. A direct computation shows that

FG (0, C) = DG (0, C) − EG (0, C) = 3 (C) −
[
EG (0, C) −* (C)

]
.

(40)
We can regard 3̂ (C) = EG (0, C) −* (C) as the estimate of 3 (C).

C. State Estimator Design
We now present a state estimator leveraging the distur-

bance estimation to reconstruct the lithium concentration in
the cathode. The estimator is designed by using a copy of
the plant model (16)-(18) with an output error injection:

D̂C (G, C) = D̂GG (G, C) + : (G)
[
D(0, C) − D̂(0, C)

]
, (41)

D̂G (0, C) = * (C) + 3̂ (C) + :1
[
D(0, C) − D̂(0, C)

]
, (42)

D̂G (1, C) = 0, (43)

with D̂(G, 0) = D̂0 (G) ≠ D0 (G). D̂(G, C) represents the estimate
of D(G, C), and : (G) and :1 are, respectively, spatially-
distributed and constant observer gains to be determined to
guarantee the stability of estimation error D̃(G, C) = D(G, C) −
D̂(G, C). Note that the disturbance estimate 3̂ (C) is injected
into the boundary of the state estimator (42), and it has been
previously established that 3̃ (C) = 3 (C)− 3̂ (C) → 0 as C →∞.

Subtracting (41)-(43) from (16)-(18) yields the state esti-
mation error dynamics,

D̃C (G, C) = D̃GG (G, C) − : (G)D̃(0, C), (44)

D̃G (0, C) = 3̃ (C) − :1D̃(0, C), (45)
D̃G (1, C) = 0. (46)

To determine the observer gains : (G) and :1, we adopt the
PDE backstepping approach [25]. We seek a linear Volterra
transformation that transforms the state of D̃ system to a
target state l̃ by making use of the following expression,

l̃(G, C) = D̃(G, C) −
∫ G

0
 (G, I)D̃(I, C)dI, (47)

where  (G, I) is the gain kernel to be designed. The trans-
formation (47) maps D̃-system to the target system

l̃C (G, C) = l̃GG (G, C) + _l(G, C) +  (G, 0)l̃G (0, C)
+  (G, 0) (0, 0)l̃(0, C), (48)

l̃G (0, C) = − @l̃(0, C) + 3̃ (C), (49)
l̃G (1, C) = 0, (50)

in which the parameters _ and @ are to be determined to
ensure stability of l̃-system. To establish kernel function
 (G, I), we differentiate the transformation (47) with respect
to G and C. This yields the kernel PDE

 GG (G, I) −  II (G, I) = _ (G, I), (51)
 G (1, I) = 0, (52)

 (G, G) = _
2
(G − 1), (53)

whose closed-form solution is given by

 (G, I) = −_(1 − I)
�1

(√
_(2 − G − I) (G − I)

)
√
_(2 − G − I) (G − I)

. (54)
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where �1 (·) is the first-order Bessel Function of the first kind.
From the comparison of the target system (48)-(50) with the
original error system (44)-(46), it follows that the observer
gain functions should be chosen to satisfy∫ G

0
: (Z)dZ − : (G) =  I (G, 0), :1 = @ −  (0, 0). (55)

A closed-form solution of : (G) from (55) is given by

: (G) = − I (G, 0) − 4G
∫ G

0
4−g I (g, 0)dg. (56)

Further, it can also be proven that the linear Volterra trans-
formation (47) is invertible [25].

Theorem 2: Let : (G) and :1 be given by (54)-(56). Sup-
pose _ in (48) and @ in (49) are chosen to satisfy

@ ≤ − 1
2W
−
:2

1
2<
− c

2

4
, and _ <

c2

4
− ? + <

2
^, (57)

where W, <, ?, and ^ are user-defined parameters. Since the
disturbance estimate 3̂ (C) converges to 3 (C) asymptotically
(Theorem 1), the equilibrium of the target system (48)-
(50) is asymptotically stable in the sense of !2 norm, i.e.,
limC→∞ ‖l̃‖ = 0.

Proof: Consider the Lyapunov functional

, (C) = 1
2

∫ 1

0
l̃2 (G, C)dG = 1

2
‖l̃‖2. (58)

The time derivative of the Lyapunov functional , (C) along
the trajectory of l̃(G, C) is computed as

¤, =

∫ 1

0
l̃l̃GGdG + _

∫ 1

0
l2dG + l̃G (0)

∫ 1

0
 (G, 0)l̃dG

+  (0, 0)l̃(0)
∫ 1

0
 (G, 0)l̃dG

= @l̃2 (0) − 3̃ (C)l̃(0) −
∫ 1

0
l̃2
GdG + _

∫ 1

0
l2dG

+ 3̃ (C)
∫ 1

0
 (G, 0)l̃dG + :1l̃(0)

∫ 1

0
 (G, 0)l̃dG. (59)

Now, imposing Young’s inequality on the second, fifth, and
sixth term of (59) results in

¤, ≤ @l̃2 (0) + W
2
3̃2 + 1

2W
l̃2 (0) − ‖l̃G ‖2 + _‖l̃‖2 +

1
2?
3̃2

+ ? + <
2

(∫ 1

0
 (G, 0)l̃dG

)2

+
:2

1
2<

l̃2 (0). (60)

Next, we apply the “variation of Wirtinger’s inequality” [25],
‖l̃‖2 ≤ l̃2 (0) + 4‖l̃G ‖2/c2, to the fourth term of (60), and
Cauchy–Schwarz inequality to the seventh term, to deduce

¤, ≤
(
@ + 1

2W
+
:2

1
2<
+ c

2

4

)
l̃2 (0) +

(
1

2?
+ W

2

)
|3̃ |2

−
(
c2

4
− _

)
‖l̃‖2 + ? + <

2
‖l̃‖2

∫ 1

0
 2 (G, 0)dG. (61)

According to the boundedness of the Bessel Function �1 (·),
or equivalently  (G, 0), we have that

∫ 1
0  2 (G, 0)dG ≤ ^ for

some ^ > 0. Furthermore, as per Theorem 1, for any given
� > 0, there exists a C ′ ≥ 0 such that |3̃ (C) | ≤ � when
C ≥ C ′. Now, substituting these properties into (61),

¤, ≤
(
@ + 1

2W
+
:2

1
2<
+ c

2

4

)
l̃2 (0) +

(
1

2?
+ W

2

)
�2

−
(
c2

4
− _ − ? + <

2
^

)
‖l̃‖2. (62)

Let 0 := c2/4 − _ − (? + <)^/2 > 0 and 1 :=
1/(2?) + W/2 > 0. In light of (57), the above inequal-
ity (62) is simplified to ¤, ≤ −20, + 1�2. This implies
limC→∞ ‖l̃‖ ≤

√
1/0� → 0, since � can be arbitrarily small

thanks to Theorem 1.
Since the target system (48)-(50) is asymptotically stable

and the transformation (47) is invertible, we are able to
conclude that the original error system (44)-(46) is asymp-
totically stable: limC→∞ ‖D̃‖ = 0.

IV. SIMULATION RESULTS

We examine the performance of the proposed estimators
via simulations. The numerical study is conducted on a 10
`Ah planar thin-film all-solid-state Li-ion battery. Model
parameters are retrieved from [14], [18], and are enumerated
in Table I. The estimators are initialized at incorrect states
to demonstrate uncertainty in initial conditions.

A 3C constant current discharge cycle is applied to the
full-order model. Fig. 2(a) plots the applied current in terms
of C-rate and the corresponding voltage response. This volt-
age (“measured” output) from the full-order model is then
inverted based on the reduced-order voltage equation (19) as
well as the output function inversion algorithm developed in
Section III-A, and the outcome of the inversion is illustrated
in Fig. 2(b). The accuracy of such an inversion is further
validated by processing the inverted signal \̂B (C) through
the voltage equation (19) in reduced-order model, and the
response is compared with the measured voltage + (C), which
is demonstrated in Fig. 2(c). Despite the initial transient
period in Fig. 2(c), the root mean squared error (RMSE)
between these two voltages is 0.2 mV, indicating a high
accuracy from the output inversion procedure.

Next, the boundary “pseudo-measurement” \̂B (C) is lever-
aged for the disturbance estimator, which is plotted in Fig
2(d). In particular, it is evident from Fig. 2(e) that the
reduced-order model compensated by a disturbance 3 (C)
(whose estimate is 3̂ (C)) performs strongly better than that
without the disturbance, in terms of predicting the measured
battery voltage response. Consequently, by taking _ = 1 and
@ = −10 to satisfy (57), the state estimation error in the sense
of !2 norm is pictured in Fig. 2(f).

V. CONCLUSION

This paper reports the first PDE estimator for all-solid-
state battery electrochemical models. The mathematical
model towards an estimator design adopts the conventional
practice of neglecting electrolyte dynamics in the solid
electrolyte, yet we compensate the resultant voltage loss by
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Fig. 2. State estimator results for a 3C constant current discharge cycle, using full-order model with electrolyte dynamics as truth model.

a boundary disturbance in the reduced-order model. We then
propose a disturbance and state estimation scheme and prove
convergence for the estimators for guaranteed reconstruction
of lithium concentration profile. Results presented here could
be viewed as a stepping stone for future advanced battery
management systems for variations of all-solid-state battery.
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