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Abstract
This article presents a result of stabilization of a coupled partial differen-
tial equation (PDE) and ordinary differential equation (ODE) system through
boundary control. The PDE is the Burgers’ equation, which is a widely con-
sidered nonlinear PDE, partially due to its low order and partially due to
its structure analogous to the Navier–Stokes equation, which describes fluid
dynamics. The controller we employ for stabilizing this system was first devel-
oped from the boundary control problem of the corresponding linearized system,
based on an infinite-dimensional backstepping transformation. The stabiliza-
tion result is achieved using only one boundary measurement and one boundary
control. Numerical simulations show the boundary control law can be used to
stabilize the system.
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1 INTRODUCTION

Engineering problems, due to the complex nature, are in general described by coupled systems. In recent year, coupled
PDE-ODE systems have been an active area of research. Extensive examples can be found, to name just a few, in model of
flexible cable in an overhead crane,1 automated managed pressure drilling from floating vessels,2,3 cancer cell invasion,4
and thermal-electrochemical model in battery management systems.5,6 This article addresses control and estimation of
a coupled Burgers’ PDE-ODE system. The nonlinearity in the Burgers’ equation added complexity in the estimation and
control design.

Burgers’ equation is usually considered as a one-dimensional Navier–Stokes equation. The equation contains a
nonlinear term and it is the simplest equation for which the solutions can develop shock waves. Using the Hopf-Cole trans-
formation,7 one can change the equation into a linear parabolic equation. Therefore, the solution do not exhibit chaotic
features like sensitivity with respect to initial condition. The Burgers’ equation is used in many areas of mathematical
physics such as nonlinear acoustic, gas dynamics, and traffic flow. It takes the following form

ut(x, t) = 𝜖uxx(x, t) − u(x, t)ux(x, t), (1)

where 𝜖 > 0 is called the viscosity coefficient, due to its application in fluid dynamics. Burgers’ equation is an example
of a semilinear PDE combining both nonlinear propagation and diffusive effects. Early research on control of Burgers’
equation can be found in References 8–13, where its numerical simulation are presented in References 9,14,15. In the
former references, the authors derived the nonlinear boundary control laws that achieve global asymptotic stability using
the Lyapunov method. Furthermore, for some of the control laws that would require measurements in the interior of
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the domain, an observer-based control was developed. In Reference 16, the unstable shock-like equilibrium profile of
the viscous Burgers’ equation was stabilized using control at the boundaries. The explicit nonlinear full-state control law
achieved exponential stability. Recent results on control of Burgers’ equation can be found in Reference 17–19. Some real
applications of Burgers’ equation in fluid-particle system can be found in References 20 and 21, while its well-posedness
problem has been discussed in Reference 22 and 23.

Stabilization of PDE systems with boundary control was considered as a challenging topic until the past two decades.
With the introduction of the infinite-dimensional backstepping, a systematic method for control design and estimation
of PDEs, it becomes an emerging research area.24 The infinite-dimensional backstepping method has been successfully
used for control and estimation for many PDEs, such as the Korteweg-de Vries equation,25 Benjamin–Bona–Mahony
equation,26 Schrodinger equation,27 Ginzburg-Landau equation,28 parabolic PDEs,29 and 2×2 linear hyperbolic PDEs.30,31

In engineering problems, the backstepping method has found several applications, such as to find an optimal oil rate
under gas coning condition,32 flow control in porous media,33 stabilization of slugging in drilling,34 and lost circulation
and kick control.35 While most of the early efforts focus on linear PDE systems and coupled systems of a linear PDE
and a linear ODE, for example,36,37 there are only a few working on the systems with nonlinearity. Indeed, until now the
infinite-dimensional backstepping is limited to Volterra nonlinearities.38,39 Despite of this limitation, local stabilization of
nonlinear PDE systems has shown promising results in recent years. For example, feedback control design of nonlinear
PDEs was presented in Reference 40, which uses the backstepping technique and achieved local stabilization for a coupled
system of two heterodirectional hyperbolic PDEs, called a 2×2 quasilinear hyperbolic system.

In Reference 41, a stabilizing boundary controller and an observer for a coupled heat PDE—linear ODE have been
designed using the backstepping method. Since the heat equation can be considered as a linearized Burgers’ equation,
in this article we employ the controller for the coupled heat PDE—linear ODE. In Reference 42, a linear coupled hyper-
bolic PDE-ODE system has also been studied using the bakstepping method. Here, the ODE state was considered as
a disturbance source for the hyperbolic PDE. It was shown that the control law is able to attenuate the disturbance.
Together with the observer, they solve the output-feedback regulation problems. Other works in control of coupled
PDE-ODE systems include control with Neumann interconnections,43 delay systems,44–46 coupled ODE-Schrodinger
equation,47 and adaptive control of PDE-ODE cascade systems with uncertain harmonic disturbances.48 Furthermore,
a coupled system of nonlinear ODE—linear PDE has been also studied.49,50 However, to the best knowledge of the
authors, the only existing result for stabilizing coupled systems of a linear ODE and a nonlinear PDE was presented
in Reference 51, which studied the observer design for a coupled system consisting of a linear ODE and a semilinear
hyperbolic PDE.

This article presents stabilization problem for a coupled system of a (viscous) Burgers’ PDE and an ODE. A prelim-
inary version of the boundary stabilization part was presented in Reference 52. Based on the linear feedback Volterra
transformation and the related controller which exponentially stabilizes the linearized Burger’s PDE-ODE system in spa-
tial H1 norm, we employ a strict Lyapunov functional and show the controller locally stabilizes the nonlinear Burgers’
PDE-ODE system in the sense of the H2 norm with exponential decay rate. An observer is designed for the nonlinear sys-
tem using only a boundary measurement. The boundary observer together with the state feedback controller are used in
the output feedback regulation.

The article begins with a problem statement in Section 2, which is followed by a presentation of some preliminary
control results for the corresponding linearized system in Section 3. A state feedback control for the coupled Burgers’
PDE-ODE system is presented in Section 4, while an observer is presented in Section 5. The state feedback and state
observer are used in the output feedback regulation and is presented in Section 6. To demonstrate the design, numerical
simulations are presented in Section 7. Finally, we present the conclusions in Section 8.

We first establish some definitions and notations. For a vector Z = (zi)i=1,n ∈ Rn, denote its 1-norm as |Z| = |z1| +
· · · + |zn|. For a real-valued function f (x, t), where x ∈ [0, 1] and t ∈ [0,∞), we define the following norms

||f ||∞ = sup
x∈[0,1]

|f |, (2)

||f ||L1 =

1

∫
0

|f | dx, (3)
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||f ||L2 =
⎛
⎜
⎜
⎝

1

∫
0

f 2 dx
⎞
⎟
⎟
⎠

1
2

, (4)

||f ||Hi =
i∑

k=0

⎛
⎜
⎜
⎝

1

∫
0

(
𝜕

if
𝜕xi

)2

dx
⎞
⎟
⎟
⎠

1
2

, i = 1, … ,n. (5)

For f ∈ H2([0, 1]), the following inequalities hold40

||f ||L1 ≤ a1||f ||L2 ≤ a2||f ||∞, (6)

||f ||∞ ≤ a3 (||f ||L2 + ||fx||L2) ≤ a4||f ||H1 , (7)

||fx||∞ ≤ a5 (||fx||L2 + ||fxx||L2) ≤ a6||f ||H2 , (8)

where ai, i = 1, 6, are positive constants.

2 PROBLEM STATEMENT

Consider the following boundary control problem of a coupled Burgers’ PDE-ODE system

̇X(t) = AX(t) + Bu(0, t), (9)

ut(x, t) = 𝜖uxx(x, t) − u(x, t)ux(x, t) + CX(t), (10)

ux(0, t) = 0, (11)

u(1, t) = U(t), (12)

where X(t) ∈ Rn is the ODE state, and the pair (A,B), with A ∈ Rn×n
,B ∈ Rn, is assumed to be stabilizable; u(x, t) ∈ R

is the PDE state, and C⊺ ∈ Rn is a constant vector; U(t) is the scalar control input to the entire system. The viscos-
ity coefficient 𝜖 ≥ 0, due to the general application of this equation to the fluid dynamics, is typically referred to as
viscosity. When 𝜖 = 0, the Burgers’ equation becomes the inviscid Burgers’ equation. It is an example of nonlinear con-
servative equation, which has a solution in the form of shock waves. Control of the inviscid Burgers’ equation is a
challenging problem and will not be discussed here. In this article, we consider the viscous case, that is, 𝜖 > 0, when
the open-loop PDE presents a dissipative characteristic. Without loss of generality, we set 𝜖 = 1. System (9)–(12) can be
used to model electro-hydrodynamic model in plasma physics, where CX(t) represents the forcing term.53 If C depends
on the spatial variable x, then a completely different approach needs to be taken since (17) may not exist for such
systems.

In the coupled system, the ODE state has a uniform influence on the PDE, as seen from (9); while on the
other hand, the PDE boundary state u(0, t) can also be considered as a force acting on the ODE. The block dia-
gram in Figure 1 shows clearly the control structure, especially the bidirectional influences between the PDE and
the ODE.

The objective of this article is to develop the state control input U(t) to stabilize the entire coupled Burgers’ PDE-ODE
system (9)–(12). Furthermore, assuming we able to measure u(0, t), we develop an anticollocated Luenberger observer
to estimate the PDE and ODE state. The state estimations are used in the control input as the output feedback control.
Note that further investigation regarding the existence of shock-like unstable equilibrium solutions for (9)–(12) need to
be conducted before designing a state feedback controller for such problems. If such a solution exists, one may consider
using the same approach as in Reference 16. However, one problem that may arise is that the composite transformation
can lead to an unsolvable target system.
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Linear ODE
u(1, t )

U(t) X (t)u(x, t )
u(0, t ) X (t)

u(x, t )

F I G U R E 1 Control of a coupled Burgers’ PDE-ODE system

3 CONTROL DESIGN FOR THE COUPLED LINEARIZED BURGERS’
PDE- ODE SYSTEM

The corresponding linearized system of (9)–(12) around the zero equilibrium (u,X)⊺ = (0, 0)⊺ is given by

̇X(t) = AX(t) + Bu(0, t), (13)

ut(x, t) = uxx(x, t) + CX(t), (14)

ux(0, t) = 0, (15)

u(1, t) = U(t). (16)

Boundary stabilization by output feedback for (13)–(16) has been presented in Reference 41 and, since some of the results
are used in Section 4, is highlighted in this section. The nonlinear convection term uux in (10) causes the shock-like unsta-
ble profile, which for some initial conditions cannot be stabilized by the boundary controller presented in Reference 41,
that is, the controller for the linear system is only achieved local stabilization.

3.1 State feedback controller design

Following Reference 41, we use the transformation

w(x, t) = u(x, t) −

x

∫
0

q(x, y)u(y, t) dy − 𝛾(x)X(t), (17)

to map (13)–(16) into the following system

̇X(t) = (A + BK)X(t) + Bw(0, t), (18)

wt(x, t) = wxx(x, t), (19)

wx(0, t) = 0, (20)

w(1, t) = 0, (21)

where K is chosen such that A + BK is Hurwitz. The transformation kernels in (17), that is, q(x, y) and 𝛾(x), satisfy the
following system

qxx(x, y) = qyy(x, y), (22)

q(x, x) = 0, (23)
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qy(x, 0) = −𝛾(x)B, (24)

𝛾

′′ (x) = 𝛾(x)A + C

x

∫
0

q(x, y) dy − C, (25)

𝛾(0) = K, (26)

𝛾

′(0) = 0, (27)

where (x, y) ∈ 𝒯 = {(x, y) ∶ 0 ≤ y ≤ x ≤ 1}. Solving (22)–(24), the solution for the kernel q(x, y) is given by

q(x, y) =

x−y

∫
0

𝛾(𝜉)B d𝜉. (28)

Substituting (28) into (25), we have

𝛾

′′ (x) = 𝛾(x)A + C

x

∫
0

x−y

∫
0

𝛾(𝜉)B d𝜉 dy − C. (29)

The solution for this equation with boundary conditions (26)–(27) is given by

𝛾(x) = ΛeDxE, (30)

where

Λ =
(

K 0 KA − C 0
)

, (31)

D =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 BC
I 0 0 0
0 I 0 A
0 0 I 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (32)

E =
(

I 0 0 0
)⊺
. (33)

Thus, we obtain

q(x, y) =

x−y

∫
0

ΛeD𝜉EB d𝜉. (34)

The inverse of the transformation (17) is given by

u(x, t) = w(x, t) +

x

∫
0

p(x, y)w(y, t) dy + 𝜅(x)X(t), (35)

where the inverse transformation kernels p(x, y) and 𝜅(x) satisfy

pxx(x, y) = pyy(x, y), (36)

p(x, x) = 0, (37)
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HASAN and TANG 5817

py(x, 0) = −𝜅(x)B, (38)

𝜅

′′(x) = 𝜅(x) (A + BK) − C, (39)

𝜅(0) = K, (40)

𝜅

′(0) = 0, (41)

where (x, y) ∈ 𝒯 . The solution 𝜅(x) is given by

𝜅(x) =
(

K − C(A + BK)−1)G(x) + C(A + BK)−1
, (42)

where

G(x) =
(

I 0
)

eHx

(
I
0

)

, (43)

H =

(
0 (A + BK)
I 0

)

. (44)

Thus, p(x, y) is given by

p(x, y) =

x−y

∫
0

((
K − C(A + BK)−1)G(𝜉) + C(A + BK)−1)B d𝜉. (45)

From (16), (17), and (21), the control law U is given by

U(t) =

1

∫
0

q(1, y)u(y, t) dy + 𝛾(1)X(t). (46)

Substituting (30) and (34) into (46), we have

U(t) =

1

∫
0

⎛
⎜
⎜
⎝

1−y

∫
0

ΛeD𝜉 d𝜉
⎞
⎟
⎟
⎠

EBu(y, t) dy + ΛeDEX(t). (47)

The coupled X-subsystem (18) and the w-subsystem (19)–(21) can be easily proven to be exponentially stable by using
the following Lyapunov functional

V1(t) = X(t)⊺PX(t) + a
2
||w(⋅, t)||2

L2 +
1
2
||w(⋅, t)||2

H1 , (48)

where P = P⊺ > 0 is the unique solution to the Lyapunov equation

P (A + BK) + (A + BK)⊺ P = −Q, (49)

for some positive definite matrix Q, and the parameter a is chosen such that a >

8|PB|2

𝜆min(Q)
+ 2.

Lemma 1. Consider the system (13)–(16) with initial data X(0) ∈ Rn and u0(x) ∈ H1([0, 1]) compatible with the control
law (47). The system has a unique classical solution and is exponentially stabilized in the sense of the norm

‖(X(t),u(⋅, t))‖2 = |X(t)|2 + ||u(⋅, t)||2
H1 . (50)
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3.2 Observer design

Let us assume that only u(0, t) is available for measurement. An anticollocated observer for (13)–(16) is designed as follows

̇
̂X(t) = A ̂X(t) + Bu(0, t) + P0ũ(0, t), (51)

ût(x, t) = ûxx(x, t) + C ̂X(t) + p1(x)ũ(0, t), (52)

ûx(0, t) = 0, (53)

û(1, t) = U(t), (54)

where ũ(x, t) = u(x, t) − û(x, t). The observer gains P0 and p1 are to be determined later. Defining the ODE state error
̃X(t) = X(t) − ̂X(t), we have

̇
̃X(t) = A ̃X(t) − P0ũ(0, t), (55)

ũt(x, t) = ũxx(x, t) + C ̃X(t) − p1(x)ũ(0, t), (56)

ũx(0, t) = 0, (57)

ũ(1, t) = 0. (58)

We use transformation

w̃(x, t) = ũ(x, t) − Θ(x) ̃X(t), (59)

to transform (55)–(58) into the following target system

̇
̃X(t) = (A − P0Θ(0)) ̃X(t) − P0w̃(0, t), (60)

w̃t(x, t) = w̃xx(x, t), (61)

w̃x(0, t) = 0, (62)

w̃(1, t) = 0. (63)

If we assume the pair (A,Θ(0)) is stabilizable, then the target system (60)–(63) is exponentially stable if the gain vector P0
is chosen such that the matrix A − P0Θ(0) is Hurwitz and the gain function p1(x) = Θ(x)P0. Furthermore, the row vector
Θ(x) needs to satisfy

Θ′′(x) = Θ(x)A − C, (64)

Θ′(0) = 0, (65)

Θ(1) = 0. (66)

According to Reference 41, the solution to the above two-point-boundary-value problem exists and is unique if A has no
eigenvalues of the form −(2k + 1)2𝜋2∕(4l2) for k ∈ N, and the unique solution is given by

Θ(x) = Γ(x)eJx

(
I
0

)

, (67)
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where

J =

(
0 A
I 0

)

, (68)

Γ(x) =
(

Θ(0) 0
)

−

x

∫
0

(

0 C
)

e−J𝜉 d𝜉, (69)

Θ(0) =

1

∫
0

(

0 C
)

e−J𝜉 d𝜉 ⋅ eJIo
(

I⊺o eJIo
)−1

, (70)

Io =

(
I
0

)

. (71)

Lemma 2. Assume that A has no eigenvalues of the form −(2k + 1)2𝜋2∕4 for k ∈ N. If the pair (A,Θ(0)) is stabilizable
and the gain function p1(x) = Θ(x)P0, where P0 is chosen such that A − P0Θ(0) is Hurwitz, then the observer error (55)–(58)
exponentially converges to zero in the sense of the norm

‖
‖
‖

(
̃X(t), ũ(⋅, t)

)‖
‖
‖

2
= | ̃X(t)|2 + ||ũ(⋅, t)||2

H1 . (72)

3.3 Output feedback controller design

We employ the following continuous and invertible transformation

ŵ(x, t) = û(x, t) −

x

∫
0

q(x, y)û(y, t) dy − 𝛾(x) ̂X(t), (73)

then (51)–(54) is transformed into the following system

̇
̂X(t) = (A + BK) ̂X(t) + Bŵ(0, t) + (B + P0)

(
w̃(0, t) + Θ(0) ̃X(t)

)
, (74)

ŵt(x, t) = ŵxx(x, t) + p1(x)
(

w̃(0, t) + Θ(0) ̃X(t)
)
, (75)

ŵx(0, t) = 0, (76)

ŵ(1, t) = 0, (77)

where

p1(x) = p1(x) − 𝛾(x)(B + P0) −

x

∫
0

q(x, y)p1(y) dy. (78)

Replacing the state in (47) with its estimate (û, ̂X) obtained from the designed observer (51)–(54), the output feedback
control law is given by

U(t) =

1

∫
0

⎛
⎜
⎜
⎝

1−y

∫
0

ΛeD𝜉 d𝜉
⎞
⎟
⎟
⎠

EBû(y, t) dy + ΛeDE ̂X(t). (79)
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5820 HASAN and TANG

The detailed proof for stabilization using output feedback is omitted here and can be referred to Reference 41. The
idea is to use the following Lyapunov functional

V2(t) = ̂X(t)⊺ ̂P ̂X(t) + â
2

1

∫
0

ŵ2(x, t) dx + 1
2

1

∫
0

ŵ2
x(x, t) dx

+ d
⎛
⎜
⎜
⎝

̃X(t)⊺ ̃P ̃X(t) + ã
2

1

∫
0

w̃2(x, t) dx + 1
2

1

∫
0

w̃2
x(x, t) dx

⎞
⎟
⎟
⎠

, (80)

where the matrices ̂P = ̂P⊺ > 0 and ̃P = ̃P⊺ > 0 are the solutions to the Lyapunov functionals

̂P (A + BK) + (A + BK)⊺ ̂P = − ̂Q, (81)

̃P (A − P0Θ(0)) + (A − P0Θ(0))⊺ ̃P = − ̃Q, (82)

for some ̂Q = ̂Q⊺
> 0 and ̃Q = ̃Q⊺

> 0, respectively.

Lemma 3. Assume that A has no eigenvalues of the form −(2k + 1)2𝜋2∕4 for k ∈ N. For any initial data X(0), ̂X(0) ∈ Rn

and u0(x),û0(x) ∈ H1([0, 1]) compatible with the control law (79), the closed-loop system consisting of the plant (13)–(16),
the controller (79), and the observer (51)–(54) has a unique classical solution and is exponentially stabilized in the sense of
the norm

‖
‖
‖

(
X ,u, ̂X ,û

)‖
‖
‖

2
= |X|2 + ||u||2

H1 + | ̂X|2 + ||û||2
H1 . (83)

4 STATE FEEDBACK CONTROL OF THE COUPLED BURGERS’ PDE- ODE
SYSTEM

The solution of (9) is given by

X(t) = eAtX(0) +

t

∫
0

eA(t−𝜏)Bu(0, 𝜏) d𝜏. (84)

The idea is to apply the control law (47) to stabilize the coupled Burgers’ PDE-ODE system. Substituting (84) into (10)
and substituting (47) into (12), respectively, the closed-loop Burgers’ PDE-ODE system is given by

ut(x, t) = uxx(x, t) − u(x, t)ux(x, t) + C
⎛
⎜
⎜
⎝

eAtX(0) +

t

∫
0

eA(t−𝜏)Bu(0, 𝜏) d𝜏
⎞
⎟
⎟
⎠

, (85)

ux(0, t) = 0, (86)

u(1, t) =

1

∫
0

⎛
⎜
⎜
⎝

1−y

∫
0

ΛeD𝜉 d𝜉
⎞
⎟
⎟
⎠

EBu(y, t) dy + ΛeDEX(t), (87)

for which the following theorem holds.

Theorem 1. Consider the closed-loop system (85)–(87) with initial data X(0) ∈ Rn and u0(x) ∈ H2([0, 1]) compatible with
the control law (47). There exists 𝛿 > 0 such that, if ||u0||H2 + |X(0)| ≤ 𝛿, the closed-loop system has a unique classical solution
and is exponentially stabilized in the sense of the norm

‖(X(t),u(⋅, t))‖2 = |X(t)|2 + ||u(⋅, t)||2
H2 . (88)
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HASAN and TANG 5821

In order to prove Theorem 1, we first define the following functionals

[f ] = f (x, t) −

x

∫
0

q(x, y)f (y, t) dy, (89)

[f ] = f (x, t) +

x

∫
0

p(x, y)f (y, t) dy, (90)

1[f ] = −q(x, x)f (x, t) +

x

∫
0

qy(x, y)f (y, t) dy, (91)

1[f ] = p(x, x)f (x, t) +

x

∫
0

px(x, y)f (y, t) dy. (92)

Since the kernels in both the direct and inverse transformations are 2(𝒯 ) functionals, they satisfy the following
inequalities for any (x, t) ∈ 𝒯

|[f ]| ≤ b1 (|f | + ||f ||L1) , (93)

|[f ]| ≤ b2 (|f | + ||f ||L1) , (94)

|1[f ]| ≤ b4 (|f | + ||f ||L1) , (95)

|1[f ]| ≤ b3 (|f | + ||f ||L1) , (96)

where bi, i = 1, 4, are positive constants.

4.1 Preliminary lemmas

The following lemmas are used to prove Theorem 1.

Lemma 4. The transformation (17) maps the system (9)–(12) into the following system

̇X(t) = (A + BK)X(t) + Bw(0, t), (97)

wt(x, t) = wxx(x, t) − F[w(x, t),wx(x, t),X(t)], (98)

wx(0, t) = 0, (99)

w(1, t) = 0, (100)

where

F[w,wx,X] =  [
([w] + 𝜅(x)X)

(
wx + 1[w] + 𝜅

′(x)X
)]

. (101)

Lemma 5. There exists 𝛿0 > 0 such that, if ||w||∞ ≤ 𝛿0 the functional F = F[w,wx,X] satisfies

|F| ≤ c1 (|w| + ||w||L2) (|wx| + ||wx||L2) + c2
(
|w|2 + ||w||2

L2

)
+ c3 (|wx| + ||wx||L2) |X(t)| + c4|X(t)|2, (102)

where ci, i = 1, 4, are positive constants.

Proofs for Lemmas (4) and (5) are given in the Appendix.
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5822 HASAN and TANG

4.2 Proof of Theorem 1

Utilizing Lemmas 4 and 5, we can now prove Theorem 1. The proof is divided into four steps. The first and the second
step are to analyze the growth of |X(t)|2 + ||w(⋅, t)||2

L2 and |X(t)|2 + ||wt(⋅, t)||2
L2 , respectively. The results will be used to

proof the stability in the third step.

4.2.1 Analyzing the growth of |X(t)|2 + ||w(⋅, t)||2
L2

Consider the following Lyapunov functional for the transformed system (97)–(100)

V3(t) = X(t)⊺PX(t) + a
2

1

∫
0

w2(x, t) dx, (103)

where P = P⊺ > 0 is the unique solution to the Lyapunov equation

P (A + BK) + (A + BK)⊺P = −Q, (104)

for some positive definite matrix Q. Computing the time derivative of V3(t), we have

̇V 3(t) = −X(t)⊺QX(t) + 2X(t)⊺PBw(0, t) − a

1

∫
0

w2
x(x, t) dx − a

1

∫
0

w(x, t)F[w(x, t),wx(x, t),X(t)] dx. (105)

Using Young’s inequality, the second term can be estimated as follows

2X(t)⊺PBw(0, t) ≤ 𝜆min(Q)
2

|X(t)|2 + 2|PB|2

𝜆min(Q)
w(0, t)2. (106)

The last term can be analyzed as follows

|
|
|
|
|
|
|

1

∫
0

w(x, t)F[w(x, t),wx(x, t),X(t)] dx
|
|
|
|
|
|
|

≤ d1

1

∫
0

|w(x, t)||F[w(x, t),wx(x, t),X(t)]| dx, (107)

where d1 > 0. From Lemma 5, there exists a constant 𝛿1 > 0, such that for ||w||∞ < 𝛿1, it holds that

1

∫
0

|w(x, t)||F[w(x, t),wx(x, t),X(t)]| dx ≤ d2
(
||wx||∞||w||2L2 + ||w||∞||w||2L2 + ||wx||∞||w||L2 |X(t)| + ||w||∞|X(t)|2

)

≤ d3
(
||wx||∞

(
||w||2

L2 + |X(t)|2
)
+ ||w||∞

(
||w||2

L2 + |X(t)|2
))

≤ d4

(

||wx||∞V3(t) + V3(t)
3
2

)

, (108)

where di, i = 2, 4 are positive constants. Here, the second line uses (6) and (102), and the third line is obtained using
Young’s inequality, that is,

||w||L2 |X(t)| ≤ 1
2
||w||2

L2 +
1
2
|X(t)|2. (109)

The last line is obtained from

||w||∞ ≤ d5

(

||wx||∞ + V3(t)
1
2

)

, (110)
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HASAN and TANG 5823

for a positive constant d5, which follows from (6) and (7). Thus, we have

̇V 3(t) ≤ −𝜆min(Q)
2

|X(t)|2 −
(

a − 8|PB|2

𝜆min(Q)

)

||wx||
2
L2 + e1

(

||wx||∞V3(t) + V3(t)
3
2

)

, (111)

for e1 > 0. Furthermore, for a >

8|PB|2

𝜆min(Q)
+ 2, we have

̇V 3(t) ≤ −𝜆1V3(t) + C1

(

||wx||∞V3(t) + V3(t)
3
2

)

, (112)

where

𝜆1 = min
{

𝜆min(Q)
2𝜆max(P)

,

1
2
− 4|PB|2

a𝜆min(Q)

}

> 0, (113)

and C1 > 0. Note that the right hand side of (112) contains ||wx||∞. According to (8), this term is bounded by ||wxx||L2 , thus
higher regularity is needed. In what follows, we show a relation between ||wt||L2 and ||wxx||L2 under the assumption that
||w||∞ is small enough.

4.2.2 Analyzing the growth of |X(t)|2 + ||wt(⋅, t)||2
L2

Let us denote v = wt and Y = ̇X . Differentiating (97)–(100) with respect to t, we get

̇Y (t) = (A + BK)Y (t) + Bv(0, t), (114)

vt(x, t) = vxx(x, t) − ([w] + 𝜅(x)X(t)) vx − F1[w(x, t),wx(x, t), v(x, t),X(t),Y (t)], (115)

vx(0, t) = 0, (116)

v(1, t) = 0, (117)

where

F1[w(x, t),wx(x, t), v(x, t),X(t),Y (t)] = 1[([w] + 𝜅(x)X(t)) v] +[([v] + 𝜅(x)Y (t))wx]

+ q(x, 0) ([w(0, t)] + 𝜅(0)X(t)) v(0, t) +

x

∫
0

q(x, y)
(y[w] + 𝜅

′(y)X(t)
)

v dy

+[([v] + 𝜅(x)Y (t))1[w]] +[([w] + 𝜅(x)X(t))1[v]]
+[([v] + 𝜅(x)Y (t)) 𝜅′(x)X(t)] +[([w] + 𝜅(x)X(t)) 𝜅′(x)Y (t)]. (118)

Similar to the proof of Lemma 5, this functional can be estimated as follows

|F1| ≤ f1 (|w| + ||w||L2) (|v| + ||v||L2) + f2 (|wx| + ||wx||L2) (|v| + ||v||L2)
+ f3 (|w(0, t)||v(0, t)| + |X||v(0, t)|) + f4 (|v| + ||v||L2 ) |X| + f5 (|wx| + ||wx||L2) |Y |

+ f6 (|w| + ||w||L2) |Y | + f7|X||Y |, (119)

where fi, i = 1, 7 are positive constants. Consider the following Lyapunov functional

V4(t) = Y (t)⊺PY (t) + a
2

1

∫
0

v2(x, t) dx. (120)
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5824 HASAN and TANG

Computing its first order partial derivative with respect to time, we have

̇V 4(t) = −Y (t)⊺QY (t) + 2Y (t)⊺PBv(0, t) − a

1

∫
0

v2
x(x, t) dx + a

2
([w(0, t)] + 𝜅(0)X(t)) v2(0, t)

+ a
2

1

∫
0

(x[w] + 𝜅

′(x)X(t)
)

v2 dx − a

1

∫
0

v(x, t)F1[w,wx, v,X(t),Y (t)] dx. (121)

Since 𝜅

′ is bounded and from (96), the fifth term of the right hand side can be estimated as follows

|
|
|
|
|
|
|

1

∫
0

(x[w] + 𝜅

′(x)X(t)
)

v2 dx
|
|
|
|
|
|
|

≤
1

∫
0

|
|
|

(
wx + 1[w] + 𝜅

′(x)X(t)
)|
|
|
|v|2 dx

≤ d6

1

∫
0

(|wx| + |w| + ||w||L2 + |X(t)|) |v|2 dx

≤ d7

(

||wx||∞V4(t) + V3(t)
1
2 V4(t)

)

, (122)

for some positive constants di, i = 6, 7. Thus, proceeding similarly with calculation for ̇V 3(t), we have from (119)–(122)
that

̇V 4(t) ≤ −𝜆2V4(t) + C2

(

||wx||∞V4(t) + V3(t)
1
2 V4(t)

)

. (123)

Now, from (98), we have

v(x, t) = wxx(x, t) − F[w(x, t),wx(x, t),X(t)]. (124)

From (102), we compute the L2 norm of wxx as follows

||wxx(x, t)||L2 ≤ ||v(x, t)||L2 + ||F[w(x, t),wx(x, t),X(t)]||L2

≤ ||v(x, t)||L2 + d8||w||∞||wx(x, t)||L2 + d9|X(t)|||wx(x, t)||L2 + d10|X(t)|2, (125)

where di, i = 8, 10 are positive constants. From (8), we know that ||wx(x, t)||L2 is bounded by ||wxx(x, t)||L2 . Thus, if we
choose ||w||∞ < min

{

𝛿1,
1

2d8

}

and |X(t)| < min
{

1
2d9

,

√
1

d10

}

, that is, ||w||∞ and |X(t)| are sufficiently small enough, we
have

||wxx(x, t)||L2 ≤ d11||v(x, t)||L2 , (126)

where d11 > 0 is a sufficiently large number. Therefore, from (8), (126), and the definition of V4(t), we have ||wx||∞ ≤
d12V4(t)

1
2 for d12 > 0.

4.2.3 Proof of stability

Let us define S(t) = V3(t) + V4(t). From (112) and (123), we have

̇S(t) ≤ −𝜆S(t) + CS(t)
3
2 , (127)

for some positive 𝜆 and C. Then, for any 𝜆0 such that 0 < 𝜆0 < 𝜆, we have
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HASAN and TANG 5825

CS(t)
3
2 ≤ (𝜆 − 𝜆0) S(t), ∀S(t) ≤

(
𝜆 − 𝜆0

C

)2

, (128)

which implies that

̇S(t) ≤ −𝜆0S(t), ∀S(t) ≤
(
𝜆 − 𝜆0

C

)2

. (129)

Then, we have S(t) → 0 exponentially. Since | ̇X|2 ≤ M
(
|X|2 + ||wxx||L2

)
for some M > 0 and S(t) is equivalent to |X|2 +

||wxx||L2 when ||w||∞ and |X| are sufficiently small, and the norm |X|2 + ||wxx||L2 is equivalent to the norm |X(t)|2 +
||w(⋅, t)||H2 , then the (w,X)-system is locally exponentially stable in the sense of the norm

|X(t)|2 + ||w(⋅, t)||2
H2 . (130)

We note that the (w,X) system and the (u,X) system are equivalent through the backstepping transformation (17).

4.2.4 Proof of existence of the closed-loop solution

There are extensive results regarding the existence of a solution for the coupled Burgers’ PDE-ODE system (85)–(87), for
example,.54,55 Since we assume the pair (A,B) is stabilizable, the forcing term CX(t) is bounded, that is, CX(t) ∈ L∞(0,∞).
Following theorem 3.1 in Reference 56, if we further assume the initial condition u0(x) ∈ L∞, then there exists a unique
solution that satisfy the coupled Burgers’ PDE-ODE system (85)–(87).

5 OBSERVER DESIGN OF THE COUPLED BURGERS’ PDE- ODE SYSTEMS

Let us assume that only u(0, t) is available for measurement. An anticollocated Luenberger observer is designed as follows

̇
̂X(t) = A ̂X(t) + Bu(0, t) + P0ũ(0, t), (131)

ût(x, t) = ûxx(x, t) − û(x, t)ûx(x, t) + C ̂X(t) + p1(x)ũ(0, t), (132)

ûx(0, t) = 0, (133)

û(1, t) = U(t), (134)

where p1(x) = Θ(x)P0 and P0 is chosen such that A − P0Θ(0) is Hurwitz. Let ̃X = X − ̂X and ũ = u − û, the error equation
is given by

̇
̃X(t) = A ̃X(t) − P0ũ(0, t), (135)

ũt(x, t) = ũxx(x, t) − u(x, t)ux(x, t) + û(x, t)ûx(x, t) + C ̃X(t) − p1(x)ũ(0, t), (136)

ũx(0, t) = 0, (137)

ũ(1, t) = 0. (138)

The exponential stability of this error system is proved in Section 6. We define the following pair of direct and inverse
transformations

ŵ(x, t) = û(x, t) −

x

∫
0

q(x, y)û(y, t) dy − 𝛾(x) ̂X(t), (139)
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5826 HASAN and TANG

û(x, t) = ŵ(x, t) +

x

∫
0

p(x, y)ŵ(y, t) dy + 𝜅(x) ̂X(t), (140)

then the following lemma holds for the resulting transformed (w̃,
̃X)-system.

Lemma 6. If the observer gain is given by p1(x) = Θ(x)P0, where P0 is chosen such that A − P0Θ(0) is Hurwitz and Θ(x) is
given by (67), then the transformations (59) and (140) map (135)–(138) into the following system

̇
̃X(t) = (A − P0Θ(0)) ̃X(t) − P0w̃(0, t), (141)

w̃t(x, t) = w̃xx(x, t) −H[ŵ, ŵx, ̂X(t), w̃, w̃x, ̃X(t)], (142)

w̃x(0, t) = 0, (143)

w̃(1, t) = 0, (144)

where

H[ŵ(x, t), ŵx(x, t), ̂X(t), w̃(x, t), w̃x(x, t), ̃X(t)] =
([ŵ(x, t)] + 𝜅(x) ̂X(t)

) (
w̃x(x, t) + Θ′(x) ̃X(t)

)

+
(

w̃(x, t) + Θ(x) ̃X(t)
)
(ŵx(x, t) + 1[ŵ(x, t)]

+𝜅′(x) ̂X(t) + w̃x(x, t) + Θ′(x) ̃X(t)
)
. (145)

Lemma 6 is proved in the Appendix. The stability of the error system (141)–(144) is proved simultaneously with the
output feedback control given in the next section. The proof requires an estimate for the functional H, which is given in
Lemma 7. Lemma 7 is proved in the Appendix.

Lemma 7. There exists a positive constant 𝛿2 such that, if ||ŵ||∞ + ||w̃||∞ < 𝛿2 then the functional H satisfies

|H| ≤ s1 (|ŵ| + ||ŵ||L2) (|w̃x| + ||w̃x||L2) + s2 (|ŵ| + ||ŵ||L2) | ̃X(t)|
+ s3 (|w̃x| + ||w̃x||L2) | ̂X(t)| + s4| ̂X(t)|| ̃X(t)| + s5 (|w̃| + ||w̃||L2) (|ŵx| + ||ŵx||L2)
+ s6 (|w̃| + ||w̃||L2) (|ŵ| + ||ŵ||L2) + s7 (|w̃| + ||w̃||L2) | ̂X(t)|
+ s8 (|ŵx| + ||ŵx||L2) | ̃X(t)| + s9 (|ŵ| + ||ŵ||L2) | ̃X(t)| + s10| ̂X(t)|| ̃X(t)|
+ s11 (|w̃| + ||w̃||L2) (|w̃x| + ||w̃x||L2) + s12 (|w̃| + ||w̃||L2) | ̃X(t)| + s13 (|w̃x| + ||w̃x||L2) | ̃X(t)| + s14| ̃X(t)|2, (146)

where si, i = 1, 14 are positive constants.

6 OUTPUT FEEDBACK CONTROL OF THE COUPLED BURGERS’ PDE- ODE
SYSTEMS

To proof the output feedback stabilization problem, first we consider a transformed system of the observer equation
(131)–(134) as follows.

Lemma 8. The transformations (59) and (139) map (131)–(134) into the following system

̇
̂X(t) = (A + BK) ̂X(t) + Bŵ(0, t) + (B + P0)

(
w̃(0, t) + Θ(0) ̃X(t)

)
, (147)

ŵt(x, t) = ŵxx(x, t) − ̂F[ŵ(x, t), ŵx(x, t), ̂X(t)] + p1(x)
(

w̃(0, t) + Θ(0) ̃X(t)
)
, (148)

ŵx(0, t) = 0, (149)

ŵ(1, t) = 0, (150)

where p1(x) is given by (78), and
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̂F[ŵ, ŵx, ̂X] =  [([ŵ] + 𝜅(x) ̂X
) (

ŵx + 1[ŵ] + 𝜅

′(x) ̂X
)]

. (151)

Lemma 8 is proved in the Appendix. Replacing the state in (47) with its estimate (û, ̂X) obtained from the designed
observer (131)–(134), an output feedback control law is given by (79) for which the following theorem holds.

Theorem 2. Assume that A has no eigenvalues of the form −(2k + 1)2𝜋2∕(4l2) for k ∈ N. For any initial data X(0), ̂X(0) ∈
Rn and u0(x),û0(x) ∈ H2([0, 1]) compatible with the control law (79), there exists 𝛿 > 0 such that if ||u0||H2 + ||û0||H2 +
|X(0)| + | ̂X(0)| ≤ 𝛿, then the closed-loop system consisting of the plant (9)–(12), the controller (79), and the observer
(131)–(134) has a unique classical solution and is exponentially stabilized in the sense of the norm

‖
‖
‖

(
X ,u, ̂X ,û

)‖
‖
‖

2
= |X|2 + ||u||2

H2 +
|
|
|
̂X|
|
|

2
+ ||û||2

H2 . (152)

Proof. First, for system (141)–(144) and (147)–(150), we employ the following Lyapunov functional

U1(t) = ̂X(t)⊺ ̂P ̂X(t) + â
2

1

∫
0

ŵ2(x, t) dx + d
⎛
⎜
⎜
⎝

̃X(t)⊺ ̃P ̃X(t) + ã
2

1

∫
0

w̃2(x, t) dx
⎞
⎟
⎟
⎠

, (153)

where the matrices ̂P = ̂P⊺ > 0 and ̃P = ̃P⊺ > 0 are the solutions to the Lyapunov functionals (81) and (82), respectively.
The parameters â, ã, and d are to be determined later. Computing the first derivative of U1 with respect to t, we have

̇U1(t) = − ̂X(t)⊺ ̂Q ̂X(t) + 2 ̂X(t)⊺ ̂P
(

Bŵ(0, t) + (B + P0)
(

w̃(0, t) + Θ(0) ̃X(t)
))
− â

1

∫
0

ŵ2
x(x, t) dx

+ â𝜌

1

∫
0

ŵ(x, t)
(

w̃(0, t) + Θ(0) ̃X(t)
)

dx − â

1

∫
0

ŵ(x, t) ̂F[ŵ(x, t), ŵx(x, t), ̂X(t)] dx

− d ̃X(t)⊺Q ̃X(t) − 2d ̃X(t)⊺PP0w̃(0, t) − dã

1

∫
0

w̃2
x(x, t) dx − dã

1

∫
0

w̃(x, t)H[ŵ, ŵx, ̂X , w̃, w̃x, ̃X] dx, (154)

where 𝜌 = maxx∈[0,1] p1(x). Following the proof for Theorem 1, we consider a positive constant 𝛿2 that satisfies Lemma 7.
If we assume that ||ŵ||∞ + ||w̃||∞ < 𝛿2, then the fifth and ninth terms on the right hand side of (154) can be estimated as
follows

|
|
|
|
|
|
|

1

∫
0

ŵ(x, t) ̂F[ŵ(x, t), ŵx(x, t), ̂X(t)] dx
|
|
|
|
|
|
|

≤ r1
(
||ŵx||∞

(
||ŵ||2

L2 + | ̂X(t)|2
)
+ ||ŵ||∞

(
||ŵ||2

L2 + | ̂X(t)|2
))

, (155)

|
|
|
|
|
|
|

1

∫
0

w̃(x, t)H[ŵ, ŵx, ̂X , w̃, w̃x, ̃X] dx
|
|
|
|
|
|
|

≤ r2
(
||w̃x||∞||w̃||L2 ||ŵ||L2 + ||w̃||L2 ||ŵ||L2 | ̃X(t)| + ||w̃x||∞||w̃||L2 | ̂X(t)|

)

+ r3
(
||w̃||L2 | ̂X(t)|| ̃X(t)| + ||ŵx||∞||w̃||2L2 + ||ŵ||L2 ||w̃||2

L2

)

+ r4
(
||w̃||2

L2 | ̂X(t)| + ||ŵx||∞||w̃||L2 | ̃X(t)| + ||ŵ||L2 ||ŵ||L2 | ̃X(t)|
)

+ r5
(
||w̃||L2 | ̂X(t)|| ̃X(t)| + ||w̃x||∞||w̃||2L2 + ||w̃||2

L2 | ̃X(t)|
)

+ r6
(
||w̃x||∞||w̃||L2 | ̃X(t)| + ||w̃||2

L2 | ̃X(t)|2
)
, (156)

where ri, i = 1, 6 are positive constants. Thus, using Poincare’s, Agmon’s, and Young’s inequalities, (154) can be estimated
as follows

̇U1(t) ≤ −
(
𝜆min( ̂Q)

2
− c| ̂P(B + P0)|2

)

| ̂X(t)|2 −
(

â
2
− 1

2
− 16

| ̂PB|2

𝜆min( ̂Q)

)

||ŵx||
2
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−
(
𝜆min( ̃Q)

2
d −

(
1
c
+ 4â𝜌2

)

|Θ(0)|2
)

| ̃X(t)|2 − d
(

ã − 8
| ̃PP0|

2

𝜆min( ̃Q)

)

||w̃x||
2

+
(

16
| ̂P(B + P0)|2

𝜆min( ̂Q)
+ 16â𝜌2

)

||w̃x||
2 + U1(t)

3
2 + (||w̃x||∞ + ||ŵx||∞)U1(t), (157)

where 0 < c <

𝜆min( ̂Q)
2| ̂P(B+P0)|2

. Furthermore, we can choose successively

â > 32
| ̂PB|2

𝜆min( ̂Q)
+ 1, (158)

d >

2
𝜆min( ̃Q)

(
1
c
+ 4â𝜌2

)

|Θ(0)|2, (159)

ã > 8
| ̃PP0|

2

𝜆min( ̃Q)
+ 1

d

(

16
| ̂P(B + P0)|2

𝜆min( ̂Q)
− 16â𝜌2

)

, (160)

such that

̇U1(t) ≤ −𝜆3U1(t) + C3

(

(||w̃x||∞ + ||ŵx||∞)U1(t) + U1(t)
3
2

)

.

Let us denote v̂ = ŵt, ̂Y = ̇
̂X , ṽ = w̃t, ̃Y = ̇

̃X . Differentiating (141)–(144) with respect to t, we have

̇
̃Y (t) = (A − P0Θ(0)) ̃Y (t) − P0ṽ(0, t), (161)

ṽt(x, t) = ṽxx(x, t) −H1[ŵ(x, t), ŵx, v̂, ̂X ,
̂Y , w̃, w̃x, ṽ, ̃X ,

̃Y ],
ṽx(0, t) = 0, (162)

ṽ(1, t) = 0. (163)

Furthermore, differentiating (147)–(150) with respect to t, we have

̇
̂Y (t) = (A + BK) ̂Y (t) + Bv̂(0, t) + (B + P0)

(
ṽ(0, t) + Θ(0) ̃Y (t)

)
, (164)

v̂t(x, t) = v̂xx(x, t) −
([ŵ] + 𝜅(x) ̂X(t)

)
v̂x − ̂F1[ŵ(x, t), ŵx(x, t), v̂(x, t), ̂X(t), ̂Y (t)] + p1(x)

(
ṽ(0, t) + Θ(0) ̃Y (t)

)
, (165)

v̂x(0, t) = 0, (166)

v̂(1, t) = 0. (167)

Here we denote H1 = Ht and ̂F1 = ̂Ft, respectively. We employ the second Lyapunov functional

U2(t) = ̂Y (t)⊺ ̂P ̂Y (t) + â
2

1

∫
0

v̂2(x, t) dx + d
⎛
⎜
⎜
⎝

̃Y (t)⊺ ̃P ̃Y (t) + ã
2

1

∫
0

ṽ2(x, t) dx
⎞
⎟
⎟
⎠

. (168)

Following the same argument as in Section 4.2 step 2, the first derivative of U2 with respect to t is given by

̇U2(t) ≤ −𝜆4U2(t) + C4

(

(||w̃x||∞ + ||ŵx||∞)U2(t) + U1(t)
1
2 U2(t)

)

.

Defining T(t) = U1(t) + U2(t), and following the same argument as in Section 4.2.3, completes the proof. ▪
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F I G U R E 2 Value of the control gains

F I G U R E 3 Uncontrolled and controlled case using state feedback

7 NUMERICAL SIMULATIONS

7.1 Control law performance

Consider the coupled Burgers’ PDE-ODE system (85)–(87). In this simulation, we use the following data

A =

(
−1 3
0 −4

)

, B =

(
1
1

)

, and C =
(

1 1
)

. (169)

The coupled system is discretized using a finite difference method with Δt = 0.001 and Δx = 0.05. The
space discretization leads to a state vector of dimension n = 20, which is sufficient to guarantee the gains
and the solutions to converge. Before evaluating the controller U(t) given by (47), first the control gains 𝛾(1)
and q(1, y) are calculated using (30) and (34), respectively. The control gains can be seen in Figure 2. Here,
the value of 𝛾(1) =

(
−0, 4271 −0, 8433

)
. Furthermore, K = 𝛾(0) =

(
0 1

)
and the eigenvalues of A + BK is −1

and −3.
To evaluate the performance of the controller, we compare two cases. In the first case, we set U(t) = 0, which means

no control applies. In this case, we would expect the system will not converge to its equilibrium. In the second case, we
use the controller (47) to stabilize the coupled system. The results can be seen in Figure 3.

There was a significant difference between the two cases. After 5 s, we can observe with zero control input the system
have a steady state error. When the controller is used, it compensates the error to zero. The controller could be seen in
Figure 4A, while the performance of the controller could be seen from the value of the ||u||2

L2 -norm of the closed loop
system in Figure 4B.
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F I G U R E 6 Output feedback control

The ODE states can be seen in Figure 5. It can be observed in the controlled case the values go to zero after t = 5 s,
while in the uncontrolled case the values go to nonzero equilibrium.

Relying on measurement only at x = 0, the error between the observer and the real system converges to zero, as can
be seen in Figure 6A. The estimation from the observer is used in the controller as an output feedback for the system, as
can be seen in Figure 6B.

7.2 Effect of viscosity coefficient

In this simulation, we set the viscosity coefficient 𝜖 = 1. If the viscosity coefficient is smaller, that is, 𝜖 = 0.01, the control
law will be affected. In this case, the convergence rate is slower, as can be seen in Figure 7.
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F I G U R E 7 Comparison of the control law performance with different viscosity coefficient

F I G U R E 8 Stabilization of Burgers’ PDE-ODE system

7.3 Control of an unstable system

In the previous examples, the ODE equation is stable, that is, all eigenvalues of A are located in the left half plane. If A is
given by

A =

(
− 1 3
0 1

)

, (170)

then the eigenvalues of A are −1 and 1. In this case, we choose K =
(
−0.1 −1

)
, such that A + BK is Hurwitz. Figure 8

shows the comparison between no control setting and output feedback control of the Burgers’ PDE-ODE system. Without
control, the solution becomes unstable after t = 3 s, while using the output feedback controller the solution goes to its
equilibrium.

8 CONCLUSIONS

We present local boundary stabilization of a coupled Burgers’ PDE-ODE system with actuation only at one end of the
spatial interval. The full-state feedback controller is developed from the stabilization problem of the linearized system,
for which H2 local exponential stability is achieved for the resulting closed-loop coupled Burgers’ PDE-ODE system. An
observer is developed for the coupled Burgers’ PDE-ODE system using only one boundary measurement. Together with
the controller, the observer is used in the output feedback regulation. Numerical simulations show the performance of
the output feedback controller satisfactorily.
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APPENDIX A. PROOF OF THE LEMMAS

A.1 Proof of Lemma 4
Calculating the first and the second order derivatives of (17) with respect to x, we have

wx(x, t) = ux(x, t) − q(x, x)u(x, t) −

x

∫
0

qx(x, y)u(y, t) dy − 𝛾

′(x)X(t), (A1)
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wxx(x, t) = uxx(x, t) − (q(x, x))′u(x, t) − q(x, x)ux(x, t) − qx(x, x)u(x, t) −

x

∫
0

qxx(x, y)u(y, t) dy − 𝛾

′′(x)X(t). (A2)

Furthermore, calculating the first order derivative of (17) with respect to t, we get

wt(x, t) = uxx(x, t) − u(x, t)ux(x, t) + CX(t) − q(x, x)ux(x, t) + q(x, 0)ux(0, t) + qy(x, x)u(x, t) − qy(x, 0)u(0, t)

−

x

∫
0

qyy(x, y)u(y, t) dy −

x

∫
0

q(x, y)CX(t) dy − 𝛾(x) (AX(t) + Bu(0, t)) +

x

∫
0

q(x, y)u(y, t)uy(y, t) dy. (A3)

Thus, we have

wt(x, t) = wxx(x, t) − u(x, t)ux(x, t) +

x

∫
0

q(x, y)u(y, t)uy(y, t) dy, (A4)

where the kernel equations (22)–(27) are used. In view of (90), (92), and the inverse transformation (35), we have

u(x, t) = [w(x, t)] + 𝜅(x)X(t), (A5)

ux(x, t) = wx(x, t) + 1[w(x, t)] + 𝜅

′(x)X(t). (A6)

Therefore, from (89), we obtain (101). Furthermore, from (9), (17), and (26), we have

̇X(t) = AX(t) + B (w(0, t) + KX(t)) . (A7)

The boundary condition (99) is derived from (A1), (15), (23), and (27), and the boundary condition (100) is derived from
(17), (12), and (47). Thus, this completes the proof.

A.2 Proof of Lemma 5
The functional F can be written as

F[w,wx,X] =  [[w]wx] + [[w]1[w]] + [[w]𝜅′(x)X]
+ [𝜅(x)Xwx]

+ [𝜅(x)X1[w]] + [
𝜅(x)X𝜅

′(x)X
]
. (A8)

The first term, with the help of Cauchy–Schwarz inequality, (94), and the fact that the kernel q(x, y) is bounded, can be
estimated as follows

| [[w]wx] | ≤ |[w]wx| +
|
|
|
|
|
|
|

x

∫
0

q(x, y)[w]wy dy
|
|
|
|
|
|
|

≤ |[w]wx| + g1

√
√
√
√
√

x

∫
0

q(x, y)2(|w| + ||w||L1)2 dy

√
√
√
√
√

x

∫
0

||wy||
2
L2 dy

≤ g2 (|w| + ||w||L2) |wx| + g3||w||L2 ||wx||L2 , (A9)

where gi, i = 1, 3 denote positive constants and (6) is used in the last line. Similarly, the second term can be estimated as
follows

| [[w]1[w]] | ≤ |[w]1[w]| +
|
|
|
|
|
|
|

x

∫
0

q(x, y)[w]1[w] dy
|
|
|
|
|
|
|
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≤ |[w]1[w]| + g4

√
√
√
√
√

x

∫
0

q(x, y)2(|w| + ||w||L1)4 dy

≤ g5(|w| + ||w||L2)2 + g6||w||2L2 , (A10)

where gi, i = 4, 6 are suitable positive constants. Since 𝜅(x) and 𝜅

′(x) are bounded, the third term is estimated as

| [[w]𝜅′(x)X]
| ≤ |[w]𝜅′(x)X| +

|
|
|
|
|
|
|

x

∫
0

q(x, y)[w]𝜅′(y)X dy
|
|
|
|
|
|
|

≤ |[w]𝜅′(x)X| + g7|X|

√
√
√
√
√

x

∫
0

q2(|w| + ||w||L1)2 dy

≤ g8 (|w| + ||w||L2) |X| + g9|X|||w||L2 , (A11)

where gi, i = 7, 9 are positive constants. The forth term can be estimated as

| [𝜅(x)Xwx] | ≤ |𝜅(x)Xwx| +
|
|
|
|
|
|
|

x

∫
0

q(x, y)𝜅(y)Xwy dy
|
|
|
|
|
|
|

≤ |𝜅(x)Xwx| +

√
√
√
√
√

x

∫
0

q(x, y)2𝜅(y)2|X|2 dy

√
√
√
√
√

x

∫
0

w2
y dy

≤ g10|X||wx| + g11|X|||wx||L2 , (A12)

where gi, i = 10, 11 denote positive constants. The fifth term is estimated similarly to the third term. Finally the last term
can be estimated as follows

| [
𝜅(x)X𝜅

′(x)X
]
| ≤ |𝜅(x)X𝜅

′(x)X| +
|
|
|
|
|
|
|

x

∫
0

q(x, y)𝜅(y)X𝜅

′(y)X dy
|
|
|
|
|
|
|

≤ |𝜅(x)X𝜅

′(x)X| +

√
√
√
√
√

x

∫
0

q(x, y)2𝜅(y)2|X|2 dy

√
√
√
√
√

x

∫
0

𝜅
′(x)2|X|2 dy

≤ g12|X|2, (A13)

where g12 denote a positive constant. Adding all terms completes the proof.

A.3 Proof of Lemma 6
Plugging (59) into (135) yields

̇
̃X(t) = A ̃X(t) − P0

(
w̃(0, t) + Θ(0) ̃X(t)

)
. (A14)

Thus, we have (141). Computing the derivatives of (59) with respect to x and t, we have

w̃x(x, t) = ũx(x, t) − Θ′(x) ̃X(t), (A15)

w̃xx(x, t) = ũxx(x, t) − Θ′′(x) ̃X(t), (A16)

w̃t(x, t) = ũxx(x, t) − u(x, t)ux(x, t) + û(x, t)ûx(x, t) + (Θ(x)P0 − p1(x)) ũ(0, t) − (Θ(x)A − C) ̃X(t). (A17)
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Subtracting (A17) by (A16), we have

w̃t(x, t) = w̃xx(x, t) − û(x, t)ũx(x, t) − ũ(x, t)ûx(x, t) − ũ(x, t)ũx(x, t), (A18)

where (64) is used. From (140), (94), and (96), we have

û(x, t) = [ŵ(x, t)] + 𝜅(x) ̂X(t), (A19)

ûx(x, t) = ŵx(x, t) + 1[ŵ(x, t)] + 𝜅

′(x) ̂X(t). (A20)

Substituting the above equations into (A18) yields (142). The boundary conditions (143) and (144) are obtained from
(A15) and (59), with the help of (65)–(66), evaluated at x = 0 and x = 1, respectively.

A.4 Proof of Lemma 7
Lemma 7 is proved similarly to Lemma 5. First, the functionals  and 1 are calculated using (90) and (92), respectively.
Afterward, using Cauchy–Schwarz inequality, each of the terms can be proven to be bounded.

A.5 Proof of Lemma 8
Plugging (59) and (139) into (131) yields

̇
̂X(t) = A ̂X(t) + B (ŵ(0, t) + KX(t)) + (B + P0)

(
w̃(0, t) + Θ(0) ̃X(t)

)
. (A21)

Thus, we have (147). Computing the derivatives of (139) with respect to x, we have

ŵx(x, t) = ûx(x, t) − q(x, x)û(x, t) −

x

∫
0

qx(x, y)û(y, t) dy − 𝛾

′(x) ̂X(t), (A22)

ŵxx(x, t) = ûxx(x, t) − (q(x, x))′û(x, t) − q(x, x)ûx(x, t) − qx(x, x)û(x, t) −

x

∫
0

qxx(x, y)û(y, t) dy − 𝛾

′′(x) ̂X(t). (A23)

Furthermore, calculating the first order derivative of (139) with respect to t, we get

ŵt(x, t) = ûxx(x, t) − û(x, t)ûx(x, t) + C ̂X(t) − q(x, x)ûx(x, t) + q(x, 0)ûx(0, t) + qy(x, x)û(x, t) − qy(x, 0)û(0, t)

−

x

∫
0

qyy(x, y)û(y, t) dy −

x

∫
0

q(x, y)C ̂X(t) dy − 𝛾(x)
(

A ̂X(t) + Bû(0, t)
)

+

x

∫
0

q(x, y)û(y, t)ûy(y, t) dy + (p1(x) − 𝛾(x)(B + P0)) ũ(0, t) +

x

∫
0

q(x, y)p1(y) dyũ(0, t). (A24)

Arranging the terms and following the same steps as proving Lemma 4 completes the proof.
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