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a b s t r a c t

Accurate Lithium-ion (Li-ion) battery internal temperature information enables high-fidelity monitor-
ing and safe operation in battery management systems, thus prevents thermal faults that could cause
catastrophic failures. This paper proposes an online temperature estimation scheme for cylindrical
Li-ion batteries based on a one-dimensional semilinear parabolic partial differential equation (PDE)
model subject to in-domain and output uncertainties, using temperature measurements at the battery
surface only. The thermal state observer design exploits PDE backstepping method, with a mild
assumption on the Lipschitz continuity of the nonlinear heat generation rate. A sufficient condition on
the Lipschitz constant to achieve exponential convergence is derived. Furthermore, when the thermal
system uncertainties are present, an analytic bound on the temperature estimation error is formulated
in the sense of spatial L2 norm, in terms of Lipschitz constant, design parameters, and bounds on
system uncertainties. Simulation studies on various practical current profiles are demonstrated to
illustrate the effectiveness of the proposed thermal estimation framework on a commercial cylindrical
Li-ion battery cell.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the penetration of the electric vehicles (EV) and con-
umer electronics, lithium-ion (Li-ion) batteries are ubiquitous.
he reason for this widespread penetration is that Li-ion bat-
eries possess one of the best energy-to-weight ratios, exhibit
o memory effect, and have low self-discharge when not in
peration (Chaturvedi, Klein, Christensen, Ahmed, & Kojic, 2010).
owever, as batteries insert themselves more and more into our
ociety, their operation is becoming increasingly safety critical,
eaning that any battery failure can have an increasingly impor-

ant impact upon systems of increasing size (Kim & Shin, 2011).
ne of the existing challenges that substantially impacts the bat-
ery safety and performance is its thermal instability. In particu-
ar, many cases of thermal runaways leading to fire and explosion
f Li-ion batteries have been previously reported in Wang, Ping,
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Zhao, Chu, Sun, and Chen (2012). As well as safety issues, thermal
effects have also been shown to be key factors in the rate of
battery degradation (Broussely, Biensan, Bonhomme, Blanchard,
Herreyre, Nechev, & Staniewicz, 2005; Wang, Liu, Hicks-Garner,
Sherman, Soukiazian, Verbrugge, Tataria, Musser, & Finamore,
2011). Hence, in order to improve battery safety and longevity, it
is crucial to develop thermal management strategies to alleviate
the effects of temperature and prevent the drastic failure of the
battery from happening. Moreover, recent work in Yang, Liu,
and Wang (2021) demonstrates improved battery power and fast
charging ability for Lithium-Iron Phosphate (LFP) cells operated
at 60◦C ambient condition. This high temperature is closer to a
thermal runaway regime and the hot spots need to be monitored
carefully. In light of the above concerns and recent advancements,
this work proposes an online model-based algorithm for battery
internal temperature estimation based on a high-fidelity semi-
linear thermal partial differential equation (PDE) model, using
battery surface temperature measurements only.

Modeling of battery thermal performance has been exten-
sively studied in the literature (Doughty, Butler, Jungst, & Roth,
2002). Comprehensive high-dimensional thermal models, e.g.,
Chen, Wan, and Wang (2005), Kim, Pesaran, and Spotnitz (2007)
and Song and Evans (2000), provide an accurate and thorough
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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nderstanding of the cell temperature behavior from an electro-
hemical point of view. Nevertheless, since these high-
imensional models are too complicated and demand a great
mount of computational power, their application to real-time es-
imation and control in a battery management system (BMS) will
ot be feasible for applications outside of industrial/stationary
torage (Dey, Biron, Tatipamula, Das, Mohon, Ayalew, & Pisu,
016). To balance physical relevance and model structural sim-
licity, reduced-order PDE thermal models have been proposed
Al Hallaj, Maleki, Hong, & Selman, 1999; Gu & Wang, 2000; Mu-
atori, Canova, & Guezennec, 2012). A few other finite-
imensional approaches for battery thermal modeling stand out,
nd one such model is a two-state thermal model that predicts
he surface and core temperature of a cylindrical battery cell (Park
Jaura, 2003; Zhang, Couto, Park, Gill, & Moura, 2020b). A

umped thermal model has also been proposed by Smith et al.
n Smith and Wang (2006). Note that battery thermal behavior
xhibits certain nonlinearity that are originated from resistive
eat generation rate, reversible entropic heat, and enthalpy of
eactions, etc.

Catastrophic thermal failures stimulate numerous works on
he development of thermal management strategies. Previous
tudies on battery state estimation can be categorized into two
ain groups, i.e., the equivalent circuit model-based estima-

ion (Hu & Yurkovich, 2012; Plett, 2004; Zhang, Dey, Perez,
Moura, 2017, 2019b) and the electrochemical model-based

stimation (Dey, Ayalew, & Pisu, 2015; Klein, Chaturvedi, Chris-
ensen, Ahmed, Findeisen, & Kojic, 2013; Moura, Argomedo, Klein,
irtabatabaei, & Krstic, 2017; Tang, Camacho-Solorio, Wang, &
rstic, 2017; Zhang, Dey, Couto, & Moura, 2019a). The existing
MS generally uses a thermal sensor attached to the surface
f the cell to measure surface temperature. As such, in Lin,
erez, Siegel, Stefanopoulou, Li, Anderson, Ding, and Castanier
2013), an adaptive observer for battery core temperature es-
imation was designed for a two-state thermal model using
urface measurements. As well as estimation, studies on thermal
ault diagnosis, e.g., the detection and isolation of the faults
hat influence the surface and core temperature in the two-state
hermal model (Dey et al., 2016) and a PDE observer based fault
etection (Dey, Perez, & Moura, 2019), have also demonstrated
enefits. A dual Kalman filter based temperature distribution
stimation for cylindrical batteries under unknown cooling, based
n a reduced radially distributed one-dimensional thermal mod-
ling, was proposed in Kim, Mohan, Siegel, Stefanopoulou, and
ing (2014). More work on cylindrical cell internal temperature
istribution estimation by combining measured electrochemi-
al impedance and surface temperature, relying on a combined
hermal-impedance model is introduced in Richardson, Ireland,
nd Howey (2014). However, these methodologies suffer from
ne or more of the following drawbacks: (i) Early lumping ap-
roaches, where the thermal PDE models are discretized and
pproximated by systems of ordinary differential equations (ODE)
priori, are used to design the observers. This leads to the loss of
he physical significance of the PDE models and of the phenomena
hat they represent, and the state estimates from the discretized
ystems may not always converge to the true states; (ii) Only
small portion of these works provide theoretically certified

onvergence properties for the proposed estimation scheme;
iii) Last but not the least, most of these works do not consider the
nherent nonlinearity of battery thermal model. Hence, this paper
ttempts to collectively address these challenges and research
aps by proposing a provably convergent observer directly on the
igh-fidelity nonlinear thermal PDE model.
Methods for control/estimation of linear parabolic PDEs with

ate lumping have been well studied. The stabilization of unsta-

le heat equations using boundary observation was addressed

2

in Nambu (1984) by means of an auxiliary functional observer.
Smyshlyaev et al. apply the backstepping method to controller
design for a model with space-dependent diffusivity or time-
dependent reactivity (Smyshlyaev & Krstic, 2005). The techniques
introduced in Smyshlyaev and Krstic (2010) provide a thorough
analysis of the stability of adaptive control for linear parabolic
PDEs with spatially varying coefficients. However, extending
these results from linear to nonlinear PDEs require a more in-
tricate analysis, with only few attempts so far. For instance, an
extended Luenberger observer is developed for a class of semi-
linear parabolic PDEs in Meurer (2013). It verifies the exponential
stability of the linearized observer error dynamics, in which the
design extends the well-known backstepping method (Krstic &
Smyshlyaev, 2008) to include the Volterra transformation with a
time-dependent kernel function. A series of studies by Vazquez
et al. discuss the control design for a 1-D parabolic PDE with
Volterra nonlinearities (Vazquez & Krstic, 2008a, 2008b). Bound-
ary controller have also been designed towards Burgers’ equa-
tion (Krstic, 1999). Additionally, designs based upon the plant
models with modeling and parametric uncertainties, have also
been explored. Cheng considers the stabilization of the heat
equation with parameter variation and boundary uncertainties by
designing a sliding mode controller (Cheng, Radisavljevic, & Su,
2011). Parabolic PDEs that are subject to in-domain and bound-
ary parameter uncertainties are examined in Ahmed-Ali, Giri,
Krstic, Burlion, and Lamnabhi-Lagarrigue (2016), Zhang, Tang,
and Moura (2019c). However, none of the aforementioned works
discuss observer design for semilinear parabolic PDE systems
simultaneously subjected to Lipschitz nonlinearity and model
uncertainties.

In this context, we advance the aforementioned works by
developing a provably convergent PDE observer for Li-ion battery
thermal estimation, with the only measurement from the battery
cell surface. The thermal dynamics for a cylindrical battery in the
radial direction can be described by a one-dimensional semilinear
parabolic PDE with a mixture of Neumann and Robin boundary
conditions. Provided that the nonlinear in-domain heat genera-
tion rate is Lipschitz continuous, this work marks one of the first
to simultaneously consider PDE model nonlinearity, in-domain
modeling uncertainty, and boundary measurement uncertainty
within a single observer design framework, which addresses sev-
eral key practical challenges often faced within EV applications
(i.e., in-situ modeling and measurement uncertainties). This prob-
lem is challenging because the conventional PDE backstepping
control and estimation techniques (Krstic & Smyshlyaev, 2008)
are well suited for linear PDEs without modeling uncertainties.
This paper meets these challenges by deriving an analytical ex-
pression for the nonlinear estimation error in the sense of L2
norm in terms of observer gains, Lipschitz constant, and bounds
on the uncertainties, and further proposing an optimization prob-
lem to achieve robust estimation by minimizing the size of the
derived bound. In this paper, we choose to adopt the PDE back-
stepping method due to its unique feature to eliminate in-domain
destabilizing terms using control and observations only on the
boundary. This makes it a suitable method for battery internal
temperature distribution estimation from surface temperature
measurements only. It is further noted that although the ob-
server design for a general nonlinear PDE remains an unsolved
problem, this paper offers a new and different perspective on
state observer for a class of semilinear PDE subject to Lipschitz
continuous nonlinearity with respect to Meurer (2013). The pro-
posed state estimation approach does not require an extended
linearization with respect to the estimated state during observer
design and convergence analysis. The design is unique, since it
exploits fundamental thermal dynamic properties and adopts a
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igh-fidelity thermal model for the purpose of battery temper-
ture monitoring, which ultimately enhances battery safety and
ongevity in EV applications.

The remainder of the paper is organized as follows.
ection 2 formulates the one-dimensional semilinear thermal PDE
odel with nonlinear Lipschitz continuous heat generation rate.
ection 3 presents the state estimation scheme based on the
receding model without the in-domain and output uncertainties,
nd the corresponding stability analysis of the estimation error
ynamics. Section 4 proposes the strategies for observer gain se-
ection. Section 5 develops a robust state estimation for the plant
odel with in-domain and output uncertainties. The performance
f the observers is demonstrated via simulations in Section 6. The
onclusions and future works are discussed in Section 7.

otation. Throughout the manuscript, T (x, t) denotes the plant’s
tate variable, which depends on nondimensionalized space x and
ime t . The x and t subscripts represent partial derivatives with
espect to the notated variable: ut = ∂u/∂t , ux = ∂u/∂x, and
xx = ∂2u/∂x2. The dot symbol denotes derivative with respect
o time t , e.g., u̇ = du/dt . The spatial L2 norm is defined as

T (·, t)∥ =

√∫ 1

0
T 2(x, t)dx.

2. Distributed parameter thermal model

This section presents the development of a one-dimensional
nonlinear PDE thermal model for batteries, oriented towards state
estimation design.

2.1. One-dimensional thermal model

For a sufficiently long cylindrical battery cell, the heat transfer
resistance of spirally wound in the axial direction is significantly
smaller than that in the radial direction, which allows to model
the thermal dynamics using radial heat transfer only (Al Hal-
laj et al., 1999; Evans & White, 1989). Furthermore, the Biot
number in the radial direction is sufficiently large such that the
temperature gradients are not negligible. As such, the following
one-dimensional thermal model for the radially distributed tem-
perature profile of a cylindrical battery cell is adopted from Al
Hallaj et al. (1999). By assuming that heat is generated uni-
formly throughout the cell, the cell can be treated as a thermally
homogeneous body:

1
α

∂T
∂t

(r, t) =
∂2T
∂r2

(r, t) +
1
r
∂T
∂r

(r, t) +
Q̇ (r, t)

k
, (1)

∂T
∂r

(0, t) = 0, (2)

∂T
∂r

(Rc, t) =
h

k
(T∞ − T (Rc, t)), (3)

ym(t) = T (Rc, t), (4)

where T (r, t) is the battery temperature distribution with respect
to radial position and time. r ∈ [0, Rc] represents the radial
coordinate, Rc is the battery radius, and t ∈ R+ is time. T∞ is am-
ient temperature, and Q̇ denotes the volumetric heat generation
ate. Moreover, parameters k and h are the thermal conductivity
nd effective surface heat transfer coefficient of the battery cell,
espectively. Convective cooling through the battery surface is
odeled by a Robin boundary condition in (3). In addition, α =

k/(DCp) is the thermal diffusivity, where D is the mass density
nd Cp denotes the specific heat capacity. Furthermore, in (4), it

is assumed that the only temperature measurements are from the
3

battery surface (system boundary). This is a standard practice as
the cell internal temperature measurement is intractable and may
lead to danger.

A coordinate transformation and normalization is now per-
formed to simplify the structure of the model and translate it into
a form for which an observer can be derived. First, we transform
the system (1)–(4) from the cylindrical to Cartesian coordinates
with spatial variable x. The coordinates and parameters are then
normalized by defining x = x/Rc , t = αt/R2

c , k = k/R2
c , h = h/Rc ,

(x, t) = T (r, t) to give the following PDE system:

∂T
∂t

(x, t) =
∂2T
∂x2

(x, t) +
Q̇ (x, t)

k
, (5)

with boundary conditions
∂T
∂x

(0, t) = 0, (6)

∂T
∂x

(1, t) = δ(T∞ − T (1, t)), (7)

where x ∈ [0, 1] and δ = h/k. The surface temperature measure-
ment signal in the transformed coordinate becomes

ym(t) = T (1, t). (8)

The formula for computing heat generation rate proposed by
Bernardi, Pawlikowski, and Newman (1985) is employed fre-
quently in its simplified form (Dey et al., 2019; Forgez, Do,
Friedrich, Morcrette, & Delacourt, 2010):

Q̇ (x, t) = I2(t)Rs(T (x, t), z(t)) − I(t)T (x, t)
∂Voc

∂T
, (9)

where I(t) is the applied current, z(t) represents battery state
of charge (SOC), and Voc denotes open circuit voltage. Symbol Rs
stands for volumetric battery internal resistance and is generally
dependent on battery temperature and SOC (Lin et al., 2013;
Samad, Siegel, & Stefanopoulou, 2014). The term Rs(T (x, t), z(t))
can be characterized experimentally, e.g., see Fig. 6 in Samad
et al. (2014) for an illustrative example. For the heat generation
rate expression in (9), the first term is the heat generated from
resistive dissipation, which is always positive. The second term is
the reversible entropic heat Keyser, Pesaran, Li, Santhanagopalan,
Smith, Wood, Ahmed, Bloom, Dufek, Shirk, et al. (2017), Thomas
and Newman (2003). The entropic coefficient (∂Voc/∂T ) varies
with SOC and can be determined by offline experimental studies,
e.g., see Forgez et al. (2010).

Remark 1. It is worth noting that tabs in cylindrical cells could
lead to heterogeneity in current distribution and hence tempera-
ture under high current density. The thermal model (1)–(9) does
not specifically consider this effect, because the unsteady-state
one-dimensional (radial direction) thermal model with lumped
properties are sufficient for modeling purposes under normal
conditions of battery use (Al Hallaj et al., 1999). Besides, the
choice of the one-dimensional thermal model intelligently strikes
a balance between modeling accuracy and tractability towards
state observer design. Furthermore, exemplified by the develop-
ment of Tesla’s forthcoming tabless 4860 cells, it is expected that
the thermal gradient will be less severe than current cell designs.
As such, the restrictiveness of the assumption to neglect the heat
generation around the tabs may be less severe in future battery
packs (Tranter, Timms, Shearing, & Brett, 2020).

2.2. Model reduction and analysis

In this work, the heat generation rate formulation (9) is simpli-
fied by neglecting the entropic heat generation in the subsequent
discussions as the entropic coefficient (∂V /∂T ) is significantly
oc
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mall for certain types of cell chemistry, e.g., LFP cell (Forgez
t al., 2010). The simplified heat generation rate is adopted, which
s used to strike a balance between the need for a model of
ufficient accuracy yet is simple enough to enable observer design
ith convergence guarantees. Furthermore, the simplified heat
eneration rate is considered to be sufficient for electric vehicle
nd portable electronics applications (Du, Hu, Xie, Hu, Zhang, &
in, 2020), and its dependence on temperature and SOC further
nhances the prediction accuracy for cells over a wide range of
perational conditions (for instance, various current rates and
ifferent temperatures).

emark 2. As noted in Käbitz, Gerschler, Ecker, Yurdagel, Em-
ermacher, André, Mitsch, and Sauer (2013), Liaw, Roth, Jungst,
agasubramanian, Case, and Doughty (2003) and Lin et al. (2013)
he behavior of Rs due to the variation in temperature should
early follow an Arrhenius type relationship:

s(T , z) = M(z) · Rs,ref exp
[
Ea
R

(
1
T

−
1
Tref

)]
, (10)

here Tref is a given reference temperature, Ea is activation en-
rgy, R denotes universal gas constant, and Rs,ref = Rs(Tref).
(z) > 0 is usually a nonlinear function. Such a monotoni-
ally decreasing Arrhenius expression is retrieved from Lin et al.
2013). Function M(z) characterizes the nonlinear dependence on
OC (Lin, Perez, Mohan, Siegel, Stefanopoulou, Ding, & Castanier,
014). Observe that the gradient of Rs with respect to T is

dRs

dT
= −M(z) · Rs,ref

Ea
RT 2 exp

[
Ea
R

(
1
T

−
1
Tref

)]
< 0. (11)

Li-ion battery manufacturers specify safety restrictions on allow-
able operation temperature range, which is generally between
−30 ◦C (243.15 K) and 60 ◦C (333.15 K) for typical Li-ion battery
operation (Koniak & Czerepicki, 2017). Within this temperature
range, the function dRs/dT in (11) is monotonically increasing
with respect to T . Hence, suppose the maximum and minimum
temperature regulated by an application are Tmax and Tmin, we
have
dRs

dT
(Tmin, z) ≤

dRs

dT
(T , z) ≤

dRs

dT
(Tmax, z) < 0, (12)

for all z ∈ [0, 1].

Consequently, the modeling error from the aforementioned
reductions on heat generation is compensated by an in-domain
uncertainty ν(x, t), i.e.,

Q̇ (x, t) = I2Rs(T (x, t), z(t)) + ν(x, t), (13)

where ν(x, t) is upper and lower bounded, and these bounds can
be numerically retrieved by experiments. Hence, substituting the
reduced-order heat generation rate (13) into the dynamics (5)
yields the plant model under consideration in the subsequent
studies:

∂T
∂t

(x, t) =
∂2T
∂x2

(x, t) + f (T (x, t), z(t))+ ε(x, t), (14)

where ε(x, t) = ν(x, t)/k and

f (T (x, t), z(t)) =
1
k
I2Rs(T (x, t), z(t)), (15)

with Rs given by (10). The boundary conditions are

∂T
∂x

(0, t) = 0, (16)

∂T
∂x

(1, t) = δ(T∞ − T (1, t)). (17)
4

The initial condition of the plant model is T (x, 0) = T0(x). For the
design of the state observer, the temperature at the surface of the
battery is measured:

y(t) = T (1, t) + µ(t), (18)

where we impose output uncertainty µ(t) to account for distur-
bances from ambient environment and thermal sensor inaccu-
racies. Let U = L2(Tmin, Tmax) denote the state space of T (x, t).
According to (10), Rs(T , z) is C1 in T , for all z ∈ [0, 1] and T ∈ U .
Furthermore, since function f (T , z) satisfies (15), f (T , z) is also C1

in T . The next theorem establishes Lipschitz continuity of function
f (T , z).

Theorem 1 (Lipschitz Continuity). The nonlinear function f : U ×

[0, 1] → U is Lipschitz continuous with respect to T in the range
T ∈ [Tmin, Tmax]. That is, for all T1, T2 ∈ U , there exists a positive
constant Γ = Γ (z) such that

∥f (T1, z)− f (T2, z)∥ ≤ Γ (z) · ∥T1 − T2∥ (19)

holds for all z ∈ [0, 1] and t ∈ [0,∞). Moreover, let γ =

maxz(Γ (z)) > 0 which is independent of z, then γ can be regarded
as the Lipschitz constant for function f (T , z).

Practically, a candidate for the Lipschitz constant may be ob-
tained by computing the infinity norm of (df /dT ). According to
(15) and Remark 2,

γ =

 df
dT


∞

=
1
k

|I|2max

⏐⏐⏐⏐dRs

dT
(T , z)

⏐⏐⏐⏐
max

= σ · exp
[
Ea
R

(
1

Tmin
−

1
Tref

)]
, (20)

where σ = |M(z)|max |I|2max Rs,refEa/(kRT 2
min). Herein, |·|max denotes

the absolute maximum value.

Theorem 2. Theorem 1 guarantees the existence and uniqueness of
a classical solution to the PDE system (14)–(17).

Proof. It is observed from (9) and (13) that ν (or equivalently
ε) is globally Lipschitz continuous with respect to T in the range
T ∈ [Tmin, Tmax]. Hence, the function F := f + ε is also glob-
ally Lipschitz continuous with respect to T in the range T ∈

[Tmin, Tmax]. According to Meurer (2013, Assumption 1) and Pazy
(2012, Theorem 6.1.5), the existence and uniqueness of a classical
solution can be ensured.

Assumption 1. The in-domain uncertainty ε(x, t) is finite and
bounded by ε(x, t) ≤ ε, ∀(x, t) ∈ [0, 1] × [0,∞), where ε ≥ 0.
The disturbance µ(t) in the output equation is finite and bounded
by µ(t) ≤ µ, ∀t ∈ [0,∞), where µ ≥ 0. We further assume that
µ(t) is continuously differentiable with respect to time t .

Our objective is to design a provably convergent observer to
estimate battery radially distributed temperature profile T (x, t)
by utilizing only cell’s surface temperature measurements y(t) =

T (1, t). As such, in Section 3, we first present an observer design
and the corresponding observer convergence analysis based on
the uncertainty-free plant model, i.e., ε(x, t) = 0 and µ(t) = 0,
∀x ∈ [0, 1] and t ∈ [0,∞). Furthermore, in Section 5, we
develop a robust state estimation scheme based on the plant
model with uncertainties, i.e., ε(x, t) ̸= 0 and µ(t) ̸= 0, in the
sense of minimizing the estimation error via optimal observer
gain scheduling.
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. State estimation for uncertainty-free plant model

In this section, the following uncertainty-free thermal plant
odel, namely ε(x, t) = 0 and µ(t) = 0, for all x ∈ [0, 1] and

t ∈ [0,∞), is considered:

Tt (x, t) = Txx(x, t) + f (T (x, t), z(t)), (21)

Tx(0, t) = 0, (22)

Tx(1, t) = δ(T∞ − T (1, t)), (23)

T (x, 0) = T0(x), (24)

y(t) = T (1, t). (25)

An observer for reconstructing the spatial and temporal evolution
of cell temperature is proposed in the subsequent sections.

3.1. State observer structure

A distributed parameter state observer system is designed by
using a copy of the plant model with output error injection,

T̂t (x, t) = T̂xx(x, t) + f (̂T (x, t), z(t))

+ p1(x)
[
y(t) − T̂ (1, t)

]
, (26)

Tx(0, t) = 0, (27)

Tx(1, t) = δ(T∞ − T̂ (1, t)) + p10
[
y(t) − T̂ (1, t)

]
, (28)

T̂ (x, 0) = T̂0(x) ̸= T0(x), (29)

where T̂ (x, t) denotes the estimation of T (x, t), and T̂ (1, t) is
the boundary state estimate. Symbols p1(x) and p10 are spatially
varying and constant observer gains to be designed to guarantee
the stability of the estimation error T̃ (x, t) := T (x, t) − T̂ (x, t).

Remark 3. In this paper, we assume that the SOC of the battery
is either known or can be reliably estimated in real time by
algorithms developed in, e.g., Dey et al. (2015), Hu and Yurkovich
(2012), Klein et al. (2013), Moura et al. (2017), Plett (2004), Tang
et al. (2017) and Zhang et al. (2019a, 2017, 2019b). The estimated
SOC is then used to evaluate function f in the observer dynamics
(26).

Subtracting (26)–(29) from (21)–(24) yields the estimation
error dynamics:

T̃t (x, t) = T̃xx(x, t) + φ(x, t) − p1(x)̃T (1, t), (30)

Tx(0, t) = 0, (31)

Tx(1, t) = −(δ + p10 )̃T (1, t), (32)

T̃ (x, 0) = T (x, 0) − T̂ (x, 0), (33)

where

φ(x, t) := f (T (x, t), z(t)) − f (̂T (x, t), z(t)). (34)

Although the explicit dependence of φ(x, t) on T (x, t) and T̂ (x, t)
is suppressed in the notation above, this explicit dependence
remains, and is crucial, in the subsequent error system stability
analysis.

3.2. Backstepping transformation

To determine the appropriate observer gains, we adopt the
backstepping approach (Krstic & Smyshlyaev, 2008). We seek a
linear backstepping transformation, i.e., a Volterra integral trans-
formation, that transforms the state of the error system T̃ (x, t) to
a target state ω(x, t), by making use of the following expression
with kernel function K (x, y):

T (x, t) = ω(x, t) −

∫ 1

K (x, y)ω(y, t)dy, (35)

x
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which maps the error system (30)–(32) to the target system

ωt (x, t) = ωxx(x, t) + ψ(x, t) − cω(x, t), (36)

ωx(0, t) = 0, (37)

ωx(1, t) = −(c1 + δ)ω(1, t), (38)

where constants c and c1 are parameters to be designed. More-
over, ψ(x, t) is the transformed function from φ(x, t) by the same
backstepping transformation structure in (35) Cheng et al. (2011),
as follows,

φ(x, t) = ψ(x, t) −

∫ 1

x
K (x, y)ψ(y, t)dy. (39)

To explicitly determine the kernel function K (x, y) we differen-
tiate both sides of the transformation in (35) with respect to x
and t and take the target system dynamics (36)–(38) into account.
An example of a similar procedure can be retrieved in Krstic and
Smyshlyaev (2008, Chapter 4). The computation reveals that the
kernel function K (x, y) must satisfy the following Klein–Gordon
PDE,

Kxx(x, y) − Kyy(x, y) = −cK (x, y), (40)

Kx(0, y) = 0, (41)

K (x, x) = −
c
2
x, (42)

in which the boundary condition (41) emerges from evaluating
(35) together with the boundary conditions (31)–(32). A unique
and closed-form analytic solution exists for the PDE (40)–(42):

K (x, y) = −cy
I1
(√

c(y2 − x2)
)√

c(y2 − x2)
, (43)

here I1(·) is the modified Bessel function of the first kind.
olution (43) is derived by converting the PDE (40)–(42) into an
ntegral equation and applying the method of successive approx-
mations. Moreover, the observer gains are computed as

1(x) = −Ky(x, 1) − (c1 + δ)K (x, 1), (44)

p10 = c1 − K (1, 1) = c1 +
c
2
. (45)

herefore, the observer gains (44)–(45) can be determined offline
tilizing the kernel PDE solution (43).

emark 4. The fact that ψ(x, t) is the transformed version of
(x, t) under the same backstepping transformation used for esti-
ation error state transformation makes the kernel PDE

40)–(42) to exhibit the same structure as that of the linear
ase, e.g., Krstic and Smyshlyaev (2008, Chapter 4). The challenge
ereafter lies in the stability verification of the target system
36)–(38).

Additionally, it is necessary to verify the existence and unique-
ess of the inverse backstepping transformation, so that the sta-
ility of the target system implies the stability of the original error
ystem. Consider the inverse backstepping transformation (Krstic
Smyshlyaev, 2008),

(x, t) = T̃ (x, t) +

∫ 1

x
ℓ(x, y)̃T (y, t)dy, (46)

ith the kernel function ℓ(x, y). Similarly, differentiating both
ides of the inverse backstepping transformation with respect to
and t yields the kernel PDE for ℓ(x, t):

xx(x, y) − ℓyy(x, y) = cℓ(x, y), (47)

ℓx(0, y) = 0, (48)

ℓ(x, x) = −
c
x, (49)
2
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hich has an analytic solution of the form

(x, y) = −cy
J1
(√

c(y2 − x2)
)√

c(y2 − x2)
, (50)

where J1(·) is the Bessel function of the first kind.

3.3. Stability of the target system

Based on the analysis in Section 3.2, the analytic solutions
for the backstepping and inverse backstepping kernel functions
K (x, y) and ℓ(x, y) exist and are unique. Therefore, the stability
properties of the target system (36)–(37) imply the stability of
the original error system (30)–(32). In this section, we perform
Lyapunov analysis to establish the stability of the target system
in the sense of spatial L2 norm. Prior to that, we first present and
prove the following lemma.

Lemma 1. The nonlinear function ψ(x, t) in the target system (36)
verifies the following inequality for all t ∈ [0,∞),

∥ψ(·, t)∥ ≤ κ(c; γ ) ∥ω(·, t)∥ , (51)

with κ(c; γ ) := γ [1 + ρ(c)][1 + η(c)], where

ρ(c) :=

√∫ 1

0

∫ 1

x
ℓ2(x, y; c)dydx, (52)

η(c) :=

√∫ 1

0

∫ 1

x
K 2(x, y; c)dydx, (53)

and c is the design variable of the target system in (36).

Proof. The inverse backstepping transformation from ψ(x, t) to
φ(x, t) specified by the kernel function ℓ(x, y) in (50) is written
as

ψ(x, t) = φ(x, t) +

∫ 1

x
ℓ(x, y)φ(y, t)dy. (54)

Applying the triangle inequality produces

∥ψ(x, t)∥ ≤ ∥φ(x, t)∥ +

 ∫ 1

x
ℓ(x, y)φ(y, t)dy


= ∥φ(x, t)∥ +

√∫ 1

0

(∫ 1

x
ℓ(x, y)φ(y, t)dy

)2

dx

≤ ∥φ(x, t)∥ +

√∫ 1

0

(∫ 1

x
ℓ2(x, y)dy

∫ 1

x
φ2(y, t)dy

)
dx

≤ ∥φ(x, t)∥ +

√∫ 1

0

(∫ 1

x
ℓ2(x, y)dy

)
∥φ(y, t)∥2dx

=

⎛⎝1 +

√∫ 1

0

∫ 1

x
ℓ2(x, y)dydx

⎞⎠ ∥φ(x, t)∥

≤ γ

⎛⎝1 +

√∫ 1

0

∫ 1

x
ℓ2(x, y)dydx

⎞⎠ ∥̃T (x, t)∥, (55)

where the second inequality originates from the Cauchy–Schwarz
inequality, and the last inequality stems from the Lipschitz con-
tinuity of function f in Theorem 1. A similar computation can
be performed based on the forward backstepping transformation
(35) to conclude

∥̃T (x, t)∥ ≤

⎛⎝1 +

√∫ 1

0

∫ 1

x
K 2(y, t)dydx

⎞⎠ ∥ω(x, t)∥. (56)
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Therefore, in view of (55) and (56), function ψ(x, t) verifies the
inequality ∥ψ(·, t)∥ ≤ κ(c; γ )∥ω(·, t)∥.

Through Lemma 1, the stability of the error system (30)–(34)
in terms of the L2 norm can then be established via the stability
of the target system.

Theorem 3 (Convergence of State Observer). Consider the observer
error dynamics (30)–(34), and let the observer gains p1(x) and p10
be as in (44) and (45). Given Lipschitz constant γ , if the design
parameters c and c1 are chosen such that

c > κ(c; γ ) −
1
4
, c1 ≥

1
2

− δ, (57)

hen the origin of the error dynamics T̃ (x, t) = 0 is exponentially
table in the sense of L2 norm, without the presence of the in-
omain uncertainty and the output uncertainty, i.e., ε(x, t) = 0 and
(t) = 0 for all x ∈ [0, 1] and t ∈ [0,∞).

roof. Consider the Lyapunov functional candidate for system
36)–(39):

1(t) =
1
2

∫ 1

0
ω2(x, t)dx =

1
2
∥ω(x, t)∥2. (58)

The time derivative of the Lyapunov function W1(t) along the
tate trajectory can be computed as

˙ 1 =

∫ 1

0
ω(x, t)ωt (x, t)dx

=

∫ 1

0
ωωxxdx +

∫ 1

0
ωψdx − c

∫ 1

0
ω2dx. (59)

pplying the integration by parts to the first term, and Cauchy–
chwarz inequality to the second term at the right-hand side of
59) result in

˙ 1 ≤ −(c1 + δ)ω2(1, t) − ∥ωx∥
2
+ ∥ψ∥∥ω∥ − c∥ω∥

2. (60)

pplying Poincaré inequality, −∥ωx∥
2

≤
1
2ω

2(1) −
1
4∥ω∥

2, to the
econd term at the right-hand side of (60), and substituting the
hird term with (51), yields

˙ 1 ≤ −

(
c1 + δ −

1
2

)
ω2(1) −

[
c +

1
4

− κ(c; γ )
]
∥ω∥

2. (61)

f the design parameters are chosen such that c1 ≥
1
2 − δ and

c > κ(c; γ ) −
1
4 , (61) is simplified to

d
dt

∥ω∥ ≤ −

[
c +

1
4

− κ(c; γ )
]
∥ω∥, (62)

hich confirms the exponential stability of ω(x, t), as well as
(x, t), in the sense of L2 norm.

emark 5. The state observer design imposes a simple linear out-
ut error injection for a nonlinear plant model, without having to
erform linearization and compute time-varying kernel functions
s in Meurer (2013). However, its limitation is analogous to that
f observer design for Lipschitz nonlinear ODE system (Rajamani,
998), which will be discussed in the next section.

. Numerical selection of design parameters

The design criteria (57) for the stability of the origin of the
rror system enforces c1 to be greater than a fixed constant
1/2−δ), and an affine function of c to be greater than a nonlinear
unction κ(c; γ ). It should be highlighted that for a Lipschitz
onstant γ , κ(c; γ ) increases near exponentially with respect to
since the backstepping kernel function K (x, y) is dependent
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n the modified Bessel function I1(·). The conditions in (57)
ssentially require a linear function to dominate an exponential
unction, no matter that the argument of function I1(·) in (43) is
square root of c. Satisfaction of the condition in (57) is then
ntirely dependent upon the Lipschitz bound of the nonlinearity
. A numerical study is now presented to explore the space of γ
or which a feasible solution to the inequality of (57) exists.

Fig. 1 provides the visualization for the affine function (c +

/4) and the nonlinear function κ(c; γ ) with respect to c . As an
llustrative example, when γ < γ ∗, κ(c; γ ) (the black solid line)
ntersects with (c + 1/4) (the blue solid line) at two distinct
oints, namely c = c and c = c. Hence, under this scenario,

(c+1/4) > κ(c; γ ) if and only if c < c < c. With an increasing γ ,
he position of κ(c; γ ) shifts towards the up-left direction, and the
pan on the c-axis between c = c and c = c shrinks accordingly.
t the critical point when γ = γ ∗, the straight line (c + 1/4) is

tangential to κ(c; γ ) (the black dashed line) and they intersect
at a single point c = c∗. Ultimately, when γ > γ ∗, κ(c; γ ) will
never intersect with (c + 1/4) for any values of c. Thus, when
γ < γ ∗, there always exists a c such that (c+1/4) > κ(c; γ ) stays
valid. Using a bisection method, the critical value of the Lipschitz
constant is γ ∗

≈ 1.053.

5. State estimation for uncertain plant model

In the previous section, a state observer as well as its con-
vergence properties for an uncertainty-free thermal plant model
was proposed and analyzed. In this section, the plant model
with in-domain and output uncertainties, emerged from the heat
generation rate model reduction and temperature measurement
noise, is under examination. We employ the same observer struc-
ture as in (26)–(29) for the uncertain plant model (14)–(17), and
investigate the boundedness of the estimation error in the sense
of L2 norm.

Subtracting (26)–(29) from (14)–(17) produces the observer’s
error dynamics:

T̃t (x, t) = T̃xx(x, t) + φ(x, t) − p1(x)̃T (1, t)

− p1(x)µ(t) + ε(x, t), (63)

Tx(0, t) = 0, (64)

Tx(1, t) = − (δ + p10 )̃T (1, t) − p10µ(t), (65)

The analysis in this scenario is different from the traditional
backstepping procedure where the boundary conditions and dy-
namics are uncertainty-free. It is noteworthy that the system of
interest here, (63)–(65), imposes not only a nonlinearity but also
modeling uncertainties.

5.1. Backstepping transformation

The backstepping transformation (35) maps the error system
(63)–(65) to a target system

ωt (x, t) = ωxx(x, t) + ψ(x, t) − cω(x, t)

+ r(x)µ(t) + ζ (x, t), (66)

ωx(0, t) = 0, (67)

ωx(1, t) = − (c1 + δ)ω(1, t) − p10µ(t), (68)

where r(x) is an unknown function to be determined and ψ(x, t)
satisfies (39). The term ζ (x, t) is the transformed function from
ε(x, t) by the backstepping transformation with kernel function
K (x, y):

ε(x, t) = ζ (x, t) −

∫ 1

x
K (x, y)ζ (y, t)dy. (69)
7

Fig. 1. An illustration of design parameter selection to guarantee observer
convergence. As γ increases, the function κ(c; γ ) shifts towards the upper-left
direction and the span between c = c and c = c shrinks accordingly. When
γ < γ ∗

≈ 1.053, it is ensured that there always exists a design parameter c
such that the conditions in (57) hold. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Remark 6. The backstepping transformation (69) for the uncer-
tain terms facilitates the construction of a target system of the
form (66)–(68), which is a key enabling step to integrate the in-
domain uncertainty into the target system. Moving forward, since
r(x) is unknown, the challenge is to determine the functional form
f r(x) such that there exists a unique analytic solution to the
nverse backstepping transformation kernel function ℓ(x, y), and
that the target system (66)–(68) is stable.

Similarly, to explicitly determine K (x, y) and r(x), we differ-
ntiate both sides of the backstepping transformation (35) with
espect to x and t and take into account the target system dy-
namics (66)–(68). This direct computation leads to (70) which
is given in Box I, and note that (70) has to hold for all (x, t) ∈

[0, 1] × [0,∞). Hence, the kernel function K (x, y) exhibits the
same structure as that in (40)–(42) from the uncertainty-free
case. Moreover, the observer gains also remain unchanged from
those in (44) and (45). Finally, in view of the third term in (70),
the function r(x) has to verify ∆(x) = 0 with

∆(x) := r(x) −

∫ 1

x
K (x, y)r(y)dy + p1(x) + p10K (x, 1). (71)

The closed-form expression of r(x) will be derived in the forth-
coming sections with the aid of the inverse backstepping trans-
formation.

5.2. Inverse backstepping transformation

We adopt the same inverse backstepping transformation (46)
which was used for the uncertainty-free case. Differentiating both
sides of (46) with respect to x and t produces (72) given in Box I.
Again, (72) has to hold for all (x, t) ∈ [0, 1]×[0,∞). Interestingly,
in this case, the inverse backstepping kernel ℓ(x, y) still satisfies
the kernel PDE (47)–(49), whose analytic solution is given by (50).
Now, define the following:

(⋆) := p1(x) + ℓy(x, 1) + (δ + p10)ℓ(x, 1)

+

∫ 1

x
ℓ(x, y)p1(y)dy, (73)

⋆⋆) := r(x) + p1(x) + p10ℓ(x, 1) +

∫ 1

ℓ(x, y)p1(y)dy. (74)

x
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H

∫ 1

x
ω(y, t)

[
Kxx(x, y) − Kyy(x, y) + cK (x, y)

]
dt + ω(1, t)

[
p1(x) + Ky(x, 1) + (c1 + δ) K (x, 1)

]
+ µ(t)

[
r(x) −

∫ 1

x
K (x, y)r(y)dy + p1(x) + p10K (x, 1)

]
− ω(x, t)

[
2
∂

∂x
K (x, x) + c

]
= 0. (70)

∫ 1

x
T̃ (y, t)

[
−ℓxx(x, y) + ℓyy(x, y) + cℓ(x, y)

]
dt − T̃ (1, t)

[
p1(x) + ℓy(x, 1) + (δ + p10) ℓ(x, 1) +

∫ 1

x
ℓ(x, y)p1(y)dy

]
− µ(t)

[
r(x) + p1(x) + p10ℓ(x, 1) +

∫ 1

x
ℓ(x, y)p1(y)dy

]
− T̃ (x, t)

[
2
∂

∂x
ℓ(x, x) + c

]
= 0. (72)

Box I.
T

ence, a sufficient condition for (72) to hold for all (x, t) ∈ [0, 1]×
[0,∞) is (⋆) = 0 and (⋆⋆) = 0.

Proposition 4. Let (⋆) and (⋆⋆) be as in (73) and (74). Then (⋆) = 0
and (⋆⋆) = 0 for all x ∈ [0, 1], if and only if

r(x) = ℓy(x, 1) + δℓ(x, 1). (75)

We prove Proposition 4 with the assistance of the following
Lemma.

Lemma 2. For K (x, y) and ℓ(x, y), which are the kernel functions
for the backstepping and the inverse backstepping transformations,
it holds from Krstic and Smyshlyaev (2008) and Meurer (2013) that

ℓ(x, y) = K (x, y) +

∫ y

x
K (x, ξ )ℓ(ξ, y)dξ (76)

= K (x, y) +

∫ y

x
ℓ(x, ξ )K (ξ, y)dξ . (77)

We are now positioned to provide the proof for Proposition 4
utilizing Lemma 2.

Proof. Differentiate both sides of (77) with respect to y, and
evaluate at y = 1:

ℓy(x, 1) = Ky(x, 1) + ℓ(x, 1)K (1, 1) +

∫ 1

x
ℓ(x, ξ )Ky(ξ, 1)dξ . (78)

Next, we substitute Ky(x, 1) and K (1, 1) from (44)–(45) into (78):

ℓy(x, 1) = − p1(x) − (c1 + δ)K (x, 1) + ℓ(x, 1)(c1 − p10)

−

∫ 1

x
ℓ(x, ξ ) [p1(ξ ) + (c1 + δ)K (ξ, 1)] dξ . (79)

Re-arranging terms in (79) yields

(⋆) = −(c1 + δ)
[
K (x, 1) − ℓ(x, 1) +

∫ 1

x
ℓ(x, ξ )K (ξ, 1)dξ

]
. (80)

In addition, note from (77) that

ℓ(x, 1) = K (x, 1) +

∫ 1

x
ℓ(x, ξ )K (ξ, 1)dξ . (81)

In view of (80) and (81), we have (⋆) = 0. Moreover,

(⋆) − (⋆⋆) = ℓy(x, 1) + δℓ(x, 1) − r(x). (82)

Hence, (⋆⋆) = 0 if and only if r(x) verifies (75). Finally, we must
check if the proposed r(x) in (75) satisfies ∆(x) = 0. First, notice
from (76) that

ℓy(x, 1) = Ky(x, 1) + ℓ(1, 1)K (x, 1) +

∫ 1

K (x, ξ )ℓy(ξ, 1)dξ . (83)

x
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Substitute r(x) from (75), p1(x) in (44), and p10 from (45), alto-
gether into (71), and we arrives at (84) which is given in Box II, in
which the second equality stems from substituting ℓy(x, 1) using
(83), and the last equality is obtained by (76).

5.3. Stability of the target system

The disturbance µ(t) that appears in the target system via
the boundary condition (68) becomes problematic when proving
the stability of the target system, due to cross terms involving
uncertainty µ and state ω if L2 norm is employed as the Lya-
punov functional candidate. To tackle this issue, we utilize the
following invertible transformation ω(x, t) ↦→ z(x, t) to transfer
the boundary uncertainties into the in-domain dynamics:

ω(x, t) = z(x, t) −
1
2
p10µ(t)(x2 − 1). (85)

The second term at the right-hand side of (85) is leveraged to can-
cel the uncertainty term in the boundary condition of the target
system. It is also worth noting that this transformation preserves
z(1, t) = ω(1, t). Differentiating the above transformation with
respect to x and t yields the dynamics for z(x, t):

zt (x, t) = zxx(x, t) + ψ(x, t) − cz(x, t)

+ eµ(x, t) + ζ (x, t), (86)

where eµ(x, t) is a term associated with the uncertainty, given by

eµ(x, t) = [r(x) − p10]µ(t) +
p10
2

(x2 − 1)[cµ(t) + µt (t)]. (87)

he boundary conditions for z(x, t) is given by

zx(0, t) = ωx(0, t) = 0, (88)

zx(1, t) = ωx(1, t) + p10µ(t) = −(c1 + δ)z(1, t), (89)

from which we could observe that the uncertainty µ is no longer
at the boundary conditions in the z-system. We provide the
estimation error stability in the sense of L2 norm through the
analysis of the transformed system (86)–(89).

Theorem 5 (Convergence of Robust Observer). Consider the ob-
server error dynamics (63)–(65), and let the observer gains p1(x)
and p10 be as in (44) and (45). Given Lipschitz constant γ , if the
design parameters c and c1 are selected such that (57) is satisfied,
then in the presence of the in-domain uncertainty and the output
uncertainty, i.e., ε(x, t) ̸= 0 and µ(t) ̸= 0, the estimation error
remains bounded in the sense of L2 norm denoted by

̃T (·, t) ≤

RB(c, c1) as t → ∞, where

RB(c, c1) := [1 + η(c)] ·

[
β(c, c1)

+ λ(c, c1)
]
. (90)
α(c)
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∆(x) = ℓy(x, 1) + δℓ(x, 1) − Ky(x, 1) − (c1 + δ)K (x, 1) +

(
c1 +

c
2

)
K (x, 1) −

∫ 1

x
K (x, ξ )

[
ℓy(ξ, 1) + δℓ(ξ, 1)

]
dξ

= δ

[
ℓ(x, 1) − K (x, 1) −

∫ 1

x
K (x, ξ )ℓ(ξ, 1)dξ

]
≡ 0. (84)

Box II.
W
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∥
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pecifically,

α(c) := c − κ(c; γ ) +
1
4
, (91)

(c, c1) := κ(c; γ )λ(c, c1) + ∥r(x) − p10∥µ

+

√
2
15

|p10|U + (1 + ρ(c))ε, (92)

λ(c, c1) :=

√
2
15

|p10|µ, (93)

here U = maxt{cµ(t) + µ̇(t)}.

roof. Consider the Lyapunov functional candidate,

2(t) =
1
2

∫ 1

0
z2(x, t)dx =

1
2
∥z(x, t)∥2. (94)

The time derivative of the Lyapunov function W2(t) along the
trajectory of z(x, t) can be computed as

Ẇ2(t) =

∫ 1

0
z(x, t)zt (x, t)dx

=

∫ 1

0
zzxxdx +

∫ 1

0
zψdx − c

∫ 1

0
z2dx

+

∫ 1

0
zeµdx +

∫ 1

0
zζdx. (95)

Applying the integration by parts to the first term, and Cauchy–
Schwarz inequality to the second, fourth, fifth, and sixth term at
the right-hand side of (95) results in

Ẇ2(t) ≤ − (c1 + δ)z2(1) − ∥zx∥2
− c∥z∥2

+ (∥ψ∥ + ∥eµ∥ + ∥ζ∥)∥z∥. (96)

Now consider the transformation (85) and apply triangular in-
equality to conclude

∥ω∥ ≤ ∥z∥ +
1
2
∥p10µ(t)(1 − x2)∥ ≤ ∥z∥ + λ(c, c1), (97)

o that the upper bound of ∥ψ∥ given by (51) is explicitly ex-
ressed in terms of state in z system:

ψ∥ ≤ κ(c; γ )∥z∥ + κ(c; γ )λ(c, c1). (98)

urthermore, from (87), the following upper bound is imposed on
µ,

eµ∥ ≤ ∥r(x) − p10∥µ+

√
2
15

|p10|U . (99)

inally, by recognizing the inverse backstepping transformation
(x, t) ↦→ ε(x, t),

ζ (x, t) = ε(x, t) +

∫ 1

x
ε(y, t)ℓ(x, y)dy, (100)

similar strategy as that in Lemma 1 and (55) can be employed to
derive an upper bound on ∥ζ (·, t)∥:

∥ζ (·, t)∥ ≤ [1 + ρ(c)]ε. (101)
 t

9

Substituting (97)–(99) and (101) into the right-hand side of (96),
and applying the Poincaré inequality, −∥zx∥2

≤
1
2 z

2(1) −
1
4∥z∥

2,
to the second term on the right-hand side of (96), yields

Ẇ2 ≤ −

(
c1 + δ −

1
2

)
z2(1) − α(c)∥z∥2

+ β(c, c1)∥z∥. (102)

If c1 is chosen such that c1 ≥ 1/2−δ and α(c) > 0, or equivalently
c > κ(c; γ )−1/4, the comparison principle (Khalil, 1996) applied
to (102) gives

∥z(·, t)∥ ≤
β(c, c1)
α(c)

+

[
∥z(·, 0)∥ −

β(c, c1)
α(c)

]
e−α(c)t . (103)

Since the inverse transformation z(x, t) ↦→ ω(x, t) is unique,

z(x, t) = ω(x, t) +
1
2
p10µ(t)(x2 − 1), (104)

and the backstepping transformation (35) is invertible, an upper
bound of ∥̃T (·, t)∥ is computed via the sequence of inequalities
leveraging (56) and (97):

∥̃T (·, t)∥ ≤ [1 + η(c)] · [∥z(·, t)∥ + λ(c, c1)] . (105)

hen t → ∞, the exponential terms at the right-hand side of
105) decays to zero. Under this scenario,

T̃ (·, t)∥ ≤ [1 + η(c)] ·

[
β(c, c1)
α(c)

+ λ(c, c1)
]
. (106)

his completes the proof.

emark 7. The estimation error bound RB is characterized
y the observer gains, Lipschitz constant, and bounds on the
ncertainties. For a given Lipschitz constant γ < γ ∗, one can
inimize the size of the error ball RB to achieve robust estimation
y formulating and solving the optimization problem

min
c,c1

RB(c, c1)

s.t. κ(c; γ ) − c −
1
4
< 0

− c1 +
1
2

− δ ≤ 0

c > 0

(107)

. Simulation studies

In this section, we present simulation studies to demonstrate
he performance of the proposed thermal observer on a com-
ercial Lithium-Iron Phosphate (LFP) A123 26650 cylindrical cell
ith rated capacity of 2.3 Ah. In this study, the one-dimensional
hermal model (14)–(18) is used as the plant model. The model
arameters have been previously identified in Dey et al. (2019)
nd Liao, Zuo, Ma, Chen, An, Gao, and Yin (2012) using exper-
mental data, and are enumerated in Table 1. The calculation
everaging the formula in (20) using these parameters yields

= 0.0072 |I|2max. Hence, the analysis in Section 4 indicates that,
o guarantee the sufficient conditions of observer convergence,

| |
he absolute maximum value of the applied current is I max
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Table 1
Model Parameters for a commercial LFP A123
26650 cylindrical Cell.
Symbols Values Units

Tref 298.15 K
Tamb 298.15 K
Rs,ref 15 m�
Ea 33.8 kJ/mol
k 0.61 W/(m K)
h 69.89 W/(m2 K)
R 8.314 J/(mol K)
D 2118 kg/m3

cp 711 J/(kg K)
Cbatt 2.26 Ah

Fig. 2. The plant model response under a 4C constant current. Plant model initial
ondition: T0(x) = Tamb = 298.15 K for all x ∈ [0, 1].

=
√
γ ∗/0.0072 ≈ 12A (equivalently 5.4C). This current rate is

generally well beyond the operating current limits of a cylindrical
LFP cell — reaffirming the applicability of the proposed observer
even under extreme practical conditions. Let the premises in
Assumption 1 hold, we evaluate the effectiveness of the observer
with and without the presence of in-domain and output uncer-
tainties. For the purpose of demonstrating the estimation results,
the state estimates are initialized with incorrect values to imitate
uncertainty in initial conditions. Furthermore, we quantify the
performance of the observers in terms of L2 estimation error
onvergence time, defined as the time spent to reach within ±0.2
band of zero starting from a non-zero initial condition.

.1. No in-domain and output uncertainties

We first encapsulate the performance of the proposed temper-
ture estimation approach under no uncertainties, i.e., ε(x, t) = 0

and µ(t) = 0, ∀(x, t) ∈ [0, 1] × [0,∞). A 4C constant current,
hown in Fig. 2(a), is applied to the plant model to generate bat-
ery thermal responses. The simulation time is t ∈ [0, 800 s], and
he spatial domain is r ∈ [0, 0.013 m], i.e., x ∈ [0, 1]. The finite
10
Fig. 3. Observer results for a 4C constant current. Observer initial condition:
T (x, 0) = T0(x) + 10 K for all x ∈ [0, 1]. The estimation error converges to zero
xponentially in the sense of L2 spatial norm, thus confirming the conclusion
rom Theorem 3.

ifference method is employed to numerically discretize the plant
odel. More precisely, the plant model is discretized spatially
ith 100 grid points. The left and right boundary conditions are
andled by the second-order forward and backward approxima-
ions, respectively. The simulation is numerically implemented in
ATLAB R⃝. Suppose the battery cell has been in resting prior to

he simulation onset such that the initial condition of the plant
odel is uniformly set to the ambient temperature, i.e., T0(x) =

amb = 298.15 K for all x ∈ [0, 1]. As such, the measured
boundary signals and the spatially distributed temperature profile
are sketched in Fig. 2(b) and Fig. 2(c), respectively. Further, the
absolute maximum current in this specific case is |I|max = 4C.
With this, the expression in (20) provides the numerical value of
the Lipschitz constant for the nonlinearity function f with respect
to T in the plant model, i.e., γ = 0.59 < γ ∗. This guarantees
the existence of a design parameter c such that the observer
convergence conditions presented in Theorem 3 are fulfilled. In
fact, the feasible ranges for the design parameters in this case are
0.49 < c < 13.5 and c1 ≥ −0.53. With the choice of c = 8
and c1 = 2, the in-domain observer gain p1(x) and the boundary
observer gain p10 can be computed with the assistance of back-
stepping kernels as well as (44) and (45). Ultimately, Fig. 3(a)
presents the observer state, whereas Fig. 3(b) shows exponential
convergence of L2 norm of temperature estimation error to zero,
despite incorrect initial conditions (̂T0(x) = T0(x) + 10 K for all
x ∈ [0, 1]). The estimates T̂ converge to the true value T within
100 s. The numerical simulation results confirm our analysis in
Theorem 3. It additionally demonstrates promising estimation
performance under high-rate operating modes which are suitable
for various battery fast charging applications.

Next, we apply an electric vehicle charge/discharge cycle. This
input current profile shown in Fig. 4(a) is generated from concate-
nating two Federal Urban Driving Schedule (FUDS) drive cycles
referenced in Xing, He, Pecht, and Tsui (2014). The absolute
maximum C-rate is scaled to 5.3C — confirming the existence
of a design parameter c such that the observer convergence
conditions in Theorem 3 are verified. From a simple computation,
this current profile would roughly cause 50.1% change in battery
SOC. In particular, the boundary measurements and temperature
responses are plotted in Fig. 4(b) and Fig. 4(c). It can be ob-
served that this dynamic current profile produces less aggressive
temperature variations across spatial and temporal domains. This
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Fig. 4. The plant model response under a FUDS drive cycle. Plant model initial
ondition: T0(x) = Tamb = 298.15 K for all x ∈ [0, 1].

Fig. 5. Observer results for a FUDS drive cycle. Observer initial condition:
T (x, 0) = T0(x) + 5 K for all x ∈ [0, 1]. The estimation error converges to zero
xponentially within 120 s in the sense of L2 norm.

s because unlike the high-rate constant current input from the
revious study, this dynamic cycle is characterized mostly by
on-sustained C-rates. To further emulate real-world scenarios
nd evaluate the observer’s robustness with respect to parametric
ncertainty in the surface heat transfer coefficient h, we inject
0% error in parameter h used in the observer simulation. Con-
equently, regardless of an incorrect initialization, the observer
onverges exponentially in the sense of L2 norm after the initial
ransient (∼110 s), as visualized in Fig. 5(b). Moreover, the simu-
lation reported in Fig. 5 demonstrates no apparent estimation bias
from the uncertainty in parameter h, highlighting the observer’s
obustness against the imperfection in h values.
11
Fig. 6. The plant model response under a UDDS drive cycle. Plant model initial
condition: T0(x) = Tamb + 1 K = 299.15 K for all x ∈ [0, 1]. Gaussian noise
with 0.3 K variance and zero mean, i.e., µ(t) ∼ N (0, 1), is injected to the
boundary measurement signal y(t). Uniformly distributed random noise ε(x, t)
is introduced into the plant model (14).

6.2. With in-domain and output uncertainties

Finally, we demonstrate simulation results for the robust ob-
server acting on the plant model with uncertainties. Gaussian
noises with 0.3 K variance and zero mean, i.e., µ(t) ∼ N (0, 0.3),
is manually injected to the boundary measurement signal T (1, t)
(see Eq. (18)). Further, a uniformly distributed random noise
ε(x, t) is introduced to the plant model (14). The trajectory of the
applied current, which is extracted from the Urban Dynamometer
Driving Schedule (UDDS) driving cycle, is shown in Fig. 6(a). The
choice of UDDS is to imitate a practical electric vehicle driving
pattern. The noise-corrupted boundary measurement y(t) and
the spatially distributed temperature profile T (x, t) are plotted in
Fig. 6(b) and Fig. 6(c), respectively. Notice that the same observer
gains p1(x) and p10 as those from the uncertainty-free case are
utilized. Once again, the observer is initialized uniformly to an
incorrect value, and the L2 norm of the estimation error quickly
converges to a ball of radius RB around the equilibrium point
∥̃T∥ = 0, as can be seen in Fig. 7(b). Recall that Theorem 5
only guarantees boundedness of estimation error, in the sense
of L2 norm. These results are generated by setting c = 0.5 and
c1 = 1/2 − δ = −0.99, and the numerical value of RB(c, c1)
computed by (90) is also provided in Fig. 7(b) to illustrate the
effectiveness of the derived estimation error bounds. Notably,
the convergence time is within 540 s, whereas RB tightly bounds
the estimation error for all t ≥ 390 s. The enabling step for
the proposed robust observer approach is to solve the nonlinear
optimization problem in Remark 7 to minimize the magnitude of
RB. Herein, it is also highlighted that RB expands monotonically
with respect to parameter c , whereas the observer convergence
rate becomes faster as c increases. There is then a trade-off
between observer convergence rate and the allowable magnitude
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Fig. 7. Observer results for a UDDS cycle, subject to in-domain and output
ncertainties. Observer initial condition: T̂ (x, 0) = T0(x) + 5 K for all x ∈ [0, 1].
he estimation error converges to a ball of radius RB around the equilibrium
oint T̃ = 0 in the sense of L2 norm, thus justifying the conclusion from
heorem 5.

f RB. The choice of parameter c for this simulation study was
arefully calibrated such that convergence rate and derived error
ound simultaneously remain reasonable.

. Conclusion and future works

The knowledge of real-time battery internal temperature in-
ormation enables safe and reliable operations. In this regard,
n infinite-dimensional PDE boundary observer is proposed for a
ne-dimensional battery thermal model subject to in-domain and
utput uncertainties. The estimation error system is converted
o a prescribed stable target system, from which the exponential
tability of the error dynamics is mathematically derived without
he presence of system uncertainties, thanks to the Lipschitz
ontinuous nonlinearity. In the presence of system uncertainties,
e transfer the bounded uncertainties in the boundary conditions
f the target system into the in-domain dynamics, and the cor-
esponding estimation error converges to an error ball around
he equilibrium point, which can be explicitly characterized by
ncertainty bounds, observer parameters, and model parameters.
This scheme is regarded as a leap forward in the effort to de-

ign estimation algorithms for battery high-fidelity thermal mod-
ls, without relying on prior spatial discretization of the PDEs. It
s also one of the first to simultaneously consider PDE model non-
inearity, modeling uncertainty, and measurement uncertainty
ithin a single observer design framework.
Certain model reductions are made in this study, and their re-

axation incentivizes future research directions. This includes ex-
ending the proposed estimation algorithm to high-dimensional
hermal PDE models, and exploring less conservative necessary
nd sufficient conditions to ensure observer’s exponential con-
ergence. One could also consider coupling thermal effects with
attery electrochemical models (Zhang, Couto, & Moura, 2020a).
esides, optimal thermal control and sensor placement could be
xplored in battery packs (Couto, Zhang, Aitio, Moura, & Howey,
020).
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