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Abstract We consider the problem of stabilizing the bilayer Saint-Venant model, which is
a coupled system of two rightward and two leftward convecting transport partial differential
equations (PDEs). In the stability proofs, we employ a Lyapunov function in which the
parameters need to be successively determined. To the best of the authors’ knowledge, this
is the first time this kind of Lyapunov function is employed, and this result is the first one
on the stabilization of the linearized bilayer Saint-Venant model. Numerical simulations of the
bilayer Saint-Venant problem are also provided to verify the result.

Keywords: Backstepping control; Bilayer Saint-Venant model; State feedback stabilization;
State-varying coefficients; coupled PDEs.

1. INTRODUCTION

In this paper, the 1D two-layer Saint-Venant model that
consists of the superposition of two immiscible fluids with
different constant densities is presented. The derivation of
the bilayer model can be found in Audusse et al. (2011)
and Bouchut and Morales (2008). One can also find some
results on mathematical analysis of the related problem
in Narbona-Reina and Zabsonre (2009) and Munoz-Ruiz
et al. (2003). The two-layer model is often used to describe
transcritical regime of shallow-water flow and sediment
dynamics Majd and Sanders (2014); Savary et al. (2006)
which may occur when a transition from subcritical to
supercritical low regime is incorporated into the well
known Saint-Venant Exner model Diagne et al. (2016).
An analysis of the dynamics of the two-layers model is
proposed in Kim and LeVeque (2008) for the analysis of
tsunamis generated by an underwater landslide.

PDE backstepping control approach has been successfully
employed for the feedback stabilization of various classes
of PDEs Di Meglio et al. (2013); Krstic and Smyshlyaev
(2008). In the present work, a general system, which con-
sists of m rightward and n leftward transport PDEs with
spatially varying coefficients, is exponentially stabilized by
m boundary input backstepping controllers. Our backstep-
ping controller design idea can be referred to Hu et al.
(2015), in which the stabilization problem for the general
coupled heterodirectional system of hyperbolic types with
an arbritrary number of equations convecting in both
directions is definitely solved. In our stability proofs, we
employ a Lyapunov function in which the parameters need

to be successively determined. Then, applying this general
stabilization result to the 1D bilayer Saint-Venant prob-
lem with (n = m = 2), we achieve exponential stabilization
with two boundary input controllers.

2. PROBLEM STATEMENT

2.1 The 1D nonlinear bilayer Saint-Venant model

The 1D two-layer Saint-Venant model is governed by the
following equations
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In (1), the index 1 refers to the upper layer and the index
2 to the lower one, as depicted in Figure 2.1. The unknown
state variables Hi, Ui and B represent the thickness of the
i-th layer, the velocity and the height of the sediment layer,
respectively. Each layer is assumed to have a constant
density ρi, i = 1, 2 (ρ1 < ρ2). The system contains
the source terms due to the bottom topography and the

friction term. The quantities Sf
1 and Sf

2 stand as the
friction between the two layers, and they are given by
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1. INTRODUCTION

In this paper, the 1D two-layer Saint-Venant model that
consists of the superposition of two immiscible fluids with
different constant densities is presented. The derivation of
the bilayer model can be found in Audusse et al. (2011)
and Bouchut and Morales (2008). One can also find some
results on mathematical analysis of the related problem
in Narbona-Reina and Zabsonre (2009) and Munoz-Ruiz
et al. (2003). The two-layer model is often used to describe
transcritical regime of shallow-water flow and sediment
dynamics Majd and Sanders (2014); Savary et al. (2006)
which may occur when a transition from subcritical to
supercritical low regime is incorporated into the well
known Saint-Venant Exner model Diagne et al. (2016).
An analysis of the dynamics of the two-layers model is
proposed in Kim and LeVeque (2008) for the analysis of
tsunamis generated by an underwater landslide.

PDE backstepping control approach has been successfully
employed for the feedback stabilization of various classes
of PDEs Di Meglio et al. (2013); Krstic and Smyshlyaev
(2008). In the present work, a general system, which con-
sists of m rightward and n leftward transport PDEs with
spatially varying coefficients, is exponentially stabilized by
m boundary input backstepping controllers. Our backstep-
ping controller design idea can be referred to Hu et al.
(2015), in which the stabilization problem for the general
coupled heterodirectional system of hyperbolic types with
an arbritrary number of equations convecting in both
directions is definitely solved. In our stability proofs, we
employ a Lyapunov function in which the parameters need

to be successively determined. Then, applying this general
stabilization result to the 1D bilayer Saint-Venant prob-
lem with (n = m = 2), we achieve exponential stabilization
with two boundary input controllers.

2. PROBLEM STATEMENT

2.1 The 1D nonlinear bilayer Saint-Venant model

The 1D two-layer Saint-Venant model is governed by the
following equations

∂H1

∂t
+

∂(H1U1)

∂x
= 0, (1a)

∂U1

∂t
+ U1

∂U1

∂x
+ g

∂H1

∂x
+ g

∂H2

∂x
+ g

∂B

∂x
= Sf

1 ,

(1b)

∂H2

∂t
+

∂(H2U2)

∂x
= 0, (1c)

∂U2

∂t
+ U2

∂U2

∂x
+ g

∂H2

∂x
+ g

ρ1
ρ2

∂H1

∂x
+ g

∂B

∂x
= Sf

2 . (1d)

In (1), the index 1 refers to the upper layer and the index
2 to the lower one, as depicted in Figure 2.1. The unknown
state variables Hi, Ui and B represent the thickness of the
i-th layer, the velocity and the height of the sediment layer,
respectively. Each layer is assumed to have a constant
density ρi, i = 1, 2 (ρ1 < ρ2). The system contains
the source terms due to the bottom topography and the

friction term. The quantities Sf
1 and Sf

2 stand as the
friction between the two layers, and they are given by
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different constant densities is presented. The derivation of
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ping controller design idea can be referred to Hu et al.
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to be successively determined. Then, applying this general
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with two boundary input controllers.
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In (1), the index 1 refers to the upper layer and the index
2 to the lower one, as depicted in Figure 2.1. The unknown
state variables Hi, Ui and B represent the thickness of the
i-th layer, the velocity and the height of the sediment layer,
respectively. Each layer is assumed to have a constant
density ρi, i = 1, 2 (ρ1 < ρ2). The system contains
the source terms due to the bottom topography and the

friction term. The quantities Sf
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Figure 1. Bilayer shallow water flows.

Sf
1 = −Cf |U1 − U2|(U1 − U2) (2)

and

Sf
2 = rCf |U1 − U2|(U1 − U2). (3)

Define a vector W = [H1, U1, H2, U2]
T
, a ratio r =

ρ1
ρ2

and a map

F (W ) =




H1U1

U2
1

2
+ g(H1 +H2)

H2U2

U2
2

2
+ g(H2 + rH1)




(4)

then we could recast equation (1) under the form of

∂W

∂t
+

∂F (W )

∂x
= S(x,W ), (5)

where

S(x,W ) =

(
0 Sf

1 − g
∂B

∂x
0 Sf

2 − g
∂B

∂x

)T

. (6)

By considering the Jacobian matrix A from (5), we could
rewrite the equation (5) into a quasi-linear form as

∂W

∂t
+A(W )

∂W

∂x
= S(x,W ), (7)

where

A(W ) =



U1 H1 0 0
g U1 g 0
0 0 U2 H2

rg 0 g U2


 (8)

Simple and exact analytical expression of the four eigenval-
ues of A is not obvious. Complicate expression can be ob-
tained tediously by applying the Cardano-Vieta method.
For the case of r ≈ 1 and U1 ≈ U2, a first order approx-
imation of the eigenvalues is given in Nieto et al. (July
2011); Abgrall and Karni (2009).

In this work, we consider the case where r � 1, namely,
when the bottom fluid is much thicker than the upper
fluid. Moreover, recall that our problem is to consider the
boundary controller design to stabilize (7).

2.2 Linearization of the Saint-Venant model

We denote the steady-state associated to the system (7)
by W ∗ = (H∗

1 , U
∗
1 , H

∗
2 , U

∗
2 ), which satisfies the following

equation of a compact form:

A(W ∗)∂xW
∗ = S(x,W ∗). (9)

To obtain a constant steady-state, we work in the sequel
with a flat bathymetry (∂xB = 0). A constant steady-

state of the two-layer Saint-Venant equations can be
characterized by:



H∗
1U

∗
1 = constant, H∗

2U
∗
2 = constant,

U∗2
1

2
+ g(H∗

1 +H∗
2 ) = −Cf |U∗

1 − U∗
2 |(U∗

1 − U∗
2 ),

U∗2
2

2
+ g(H∗

2 + rH∗
1 ) = rCf |U∗

1 − U∗
2 |(U∗

1 − U∗
2 ).

(10)

In order to linearize the governing equations around the
steady state, we define the deviation (h1, u1, h2, u2) of
the state (H1, U1, H2, U2) with respect to the steady-state
(H∗

1 , U
∗
1 , H

∗
2 , U

∗
2 ) by:{

h1 = H1 −H∗
1 , u1 = U1 − U∗

1 ,
h2 = H2 −H∗

2 , u2 = U2 − U∗
2 .

(11)

Then, the linearized version of (7) can be written in a
matrix form as

∂tU+A∗∂xU = Sl(U), (12)

where

U = (h1, u1, h2, u2)
T , A∗ = A(W ∗),

and

Sl(U) = [0 − αf
s (u1 − u2) 0 rαf

s (u1 − u2)]
T

with
αf
s = 2Cf |U∗

1 − U∗
2 |.

We consider a constant steady state here for the sake of
readability and simplicity in the presentation of the linear
model.

2.3 Linearized Saint-Venant model in Riemann coordinates

We are to explore the system eigenstructure of the linear
form (12) in this subsection. The characteristic equation
derived from the matrix A∗ is

Θ = rg2H∗
1H

∗
2 , (13)

where

Θ =
(
(λ− U∗

1 )
2 − gH∗

1

)(
(λ− U∗

2 )
2 − gH∗

2

)
. (14)

For the case r = 0, straightforward calculations lead to
the following real eigenvalues for A∗:

λ1 = U∗
1 −

√
gH∗

1 , λ2 = U∗
1 +

√
gH∗

1 ,

λ3 = U∗
2 −

√
gH∗

2 , λ4 = U∗
2 +

√
gH∗

2 .
(15)

We notice that the eigenvalues in this case are those corre-
sponding to each layer separately. Following the results in
Schijf and Schonfeld (Sept. (1953), the eigenvalues for the
system (7) in the case of r � 1 i.e ρ1 � ρ2 approach to
those given in (15). From (15), the internal and external
characteristics travel at different speeds, and indeed, the
lower layer characteristics moves much slower than the
upper ones in the case of r � 1. Let us now recast the
equation (12) into a diagonal form. For a given eigenvalue
λk (k = 1, 2, 3, 4) of the matrix A∗, the associated right
eigenvector is expressed by

Vk =




1
λk − U∗

1

H∗
1

(λk − U∗
1 )

2 − gH∗
1

gH∗
1

(λk − U∗
2 )((λk − U∗

1 )
2 − gH∗

1 )

gH∗
1H

∗
2




(16)
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Some computations lead to the associated left eigenvector
Lk, k ∈ {1, 2, 3, 4}:

Lk = −


 ∏

i∈{1,2,3,4}/{k}




−1 [
lk,1 lk,2 lk,3 lk,4

]T
,

(17)

where

lk,1 = U∗3
1 − (tr(A∗)− λk)(U

∗2
1 + gH∗

1 ) + fk

+ 3gH∗
1 − det(A∗)

λk
, (18)

lk,2 = 3H∗
1U

∗2
1 − 2H∗

1U
∗
1 (tr(A

∗)− λk)

+H∗
1 (fk + gH∗

1 ), (19)

lk,3 = gH∗
1 (7U

∗
1 − λk), lk,4 = gH∗

1H
∗
2 . (20)

Here and in the sequel, T , tr and det denote the transpose,
trace and determinant, respectively. The quantities fk are
defined by:

f1 = (λ3 + λ2)λ4 + λ2λ3, f2 = (λ3 + λ1)λ4 + λ1λ3, (21)

f3 = (λ2 + λ1)λ4 + λ1λ2, f4 = (λ1 + λ2)λ3 + λ1λ2. (22)

We are to express the linear version (12) of the governing
equations in term of the characteristic coordinates or
Riemann Invariants. Multiplying the equation (12) by the
left eigenvectors Lk (each for a given eigenvalue λk) of
the matrix A∗, we get that the characteristic coordinates
(Riemann Invariants) ξk are:

ξk = LT
k U = −


 ∏

i∈{1,2,3,4}/{k}




−1

×
[
lk,1h1 + lk,2u1 + lk,3h2 + lk,4u2

]
. (23)

Therefore, we can express the variables h1, u1, h2 and u2

in term of the Riemann Invariants:


h1 = ξ1 + ξ2 + ξ3 + ξ4,
u1 = γ1ξ1 + γ2ξ2 + γ3ξ3 + γ4ξ4,
h2 = β1ξ1 + β2ξ2 + β3ξ3 + β4ξ4,
u2 = α1ξ1 + α2ξ2 + α3ξ3 + α4ξ4,

(24)

where

γk =
λk − 1

H∗
1

, (25)

βk =
1

gH∗
1

(
U∗2
1 + 2(λk − 1)U∗

1 − λ2
k + gH∗

1

)
, (26)

and

αk =
1

gH∗
1H

∗
2

(
(gH∗

1βk − 2λ2
k)U

∗
2 + 3U∗3

1

+7(λk − 1)U∗2
1 + 2(gH∗

1 − 2λ2
k)U

∗
1

+λ2
k(tr(A

∗)− λk) + gH∗
1 (λk + 2)

)
. (27)

We introduce the following more compact notations:

ξ = (ξ1 ξ2 ξ3 ξ4)
T
, (28)

and

Λ = diag{λ1, λ2, λ3, λ4}. (29)

Using the characteristic coordinates, we recast the equa-
tion (12) into the following form:

∂tξ +Λ∂xξ = Mξ, (30)

where

M(W ∗) =
(
0, αf

s , 0, −rαf
s

)T
× (α1 − γ1, α2 − γ2, α3 − γ3, α4 − γ4) . (31)

We consider the case where both layers have a subcritical
flow regime. Define the state vectors

u(t, x) = (ξ2, ξ4)
T, v(t, x) = (ξ1, ξ3)

T,

and introduce the transport speed matrices

Λr = diag{λ2, λ4}, −Λl = diag{λ1, λ3}.
Then, the system (30) can be rewritten as

∂tu(t, x) + Λr∂xu(t, x) = Sru(t, x) + Slv(t, x), (32)

∂tv(t, x)− Λl∂xv(t, x) = 0, (33)

where

Sr =

[
αf
s (α1 − γ1) αf

s (α2 − γ2)
rαf

s (γ1 − α1) rαf
s (γ2 − α2)

]
, (34)

Sl =

[
αf
s (α3 − γ3) αf

s (α4 − γ4)
rαf

s (γ3 − α3) rαf
s (γ4 − α4)

]
. (35)

To close the writing of the system (32)-(33), we enclose to
it the following boundary and initial conditions:

u(t, 0) = Q0v(t, 0) and v(t, 1) = R1u(t, 1) + U(t), (36)

u(0, x) = u0(x) and v(0, x) = v0(x), (37)

where Q0, R1 ∈ M2,2(R), and U(t) consists of the bound-
ary controllers we need to design.

3. CONTROLLER DESIGN OF A GENERAL SYSTEM

In this section, we consider the backstepping controller
design of a more general system, which could includes the
Saint-Venant model as a special case. While solving our
problem with the Saint-Venant model, it is also worth
noting that the result derived in this section could be
treated as a full theoretical result by itself.

3.1 A more general control system

The more general system discussed in this section is

∂tu(t, x)+Λr(x)∂xu(t, x)=Sr(x)u(t, x)+Sl(x)v(t, x) (38)

∂tv(t, x)− Λl(x)∂xv(t, x) = So(x)u(t, x), (39)

where

u(x, t) = [u1(x, t), u2(x, t), . . . , un(x, t)] , (40)

v(x, t) = [v1(x, t), v2(x, t), . . . , vm(x, t)] (41)

are the systems states. The matrices

Λr(x) = diag [λr
1(x) , λ

r
2(x) , · · · , λr

n(x)] , (42)

Λl(x) = diag
[
λl
1(x) , λ

l
2(x) , · · · , λl

m(x)
]
, (43)

subject to the restriction

0 < λr
1(x) < λr

2(x) < · · · < λr
n(x), (44)

0 < λl
m(x) < λl

2(x) < · · · < λl
1(x), (45)

and the in-domain parameters are given as

Sr(x) = {Sr
ij(x)}1≤i≤n,1≤j≤n, (46)

Sl(x) = {Sl
ij(x)}1≤i≤n,1≤j≤m, (47)

So(x) = {So
ij(x)}1≤i≤n,1≤j≤m. (48)

The system is also equipped with the following boundary
and initial conditions:

u(t, 0) = Q0v(t, 0) and v(t, 1) = R1u(t, 1) + U(t), (49)

u(0, x) = u0(x) and v(0, x) = v0(x), (50)

where the boundary parameters Q0, R1 ∈ Mm,n(R) are
given as

R1 = {rij}1≤i≤m,1≤j≤n. (51)

Q0 = {qij(x)}1≤i≤n,1≤j≤m, (52)

and U(t) denotes the boundary controllers.
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Riemann Invariants. Multiplying the equation (12) by the
left eigenvectors Lk (each for a given eigenvalue λk) of
the matrix A∗, we get that the characteristic coordinates
(Riemann Invariants) ξk are:
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k U = −


 ∏

i∈{1,2,3,4}/{k}


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×
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Therefore, we can express the variables h1, u1, h2 and u2
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where
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H∗
1
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gH∗
1
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U∗2
1 + 2(λk − 1)U∗

1 − λ2
k + gH∗

1

)
, (26)

and
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1

gH∗
1H

∗
2

(
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1βk − 2λ2
k)U

∗
2 + 3U∗3

1

+7(λk − 1)U∗2
1 + 2(gH∗

1 − 2λ2
k)U
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1
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k(tr(A
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. (27)

We introduce the following more compact notations:

ξ = (ξ1 ξ2 ξ3 ξ4)
T
, (28)

and

Λ = diag{λ1, λ2, λ3, λ4}. (29)

Using the characteristic coordinates, we recast the equa-
tion (12) into the following form:

∂tξ +Λ∂xξ = Mξ, (30)

where

M(W ∗) =
(
0, αf
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s

)T
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We consider the case where both layers have a subcritical
flow regime. Define the state vectors
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T,

and introduce the transport speed matrices
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Then, the system (30) can be rewritten as
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∂tv(t, x)− Λl∂xv(t, x) = 0, (33)

where

Sr =

[
αf
s (α1 − γ1) αf

s (α2 − γ2)
rαf

s (γ1 − α1) rαf
s (γ2 − α2)

]
, (34)

Sl =

[
αf
s (α3 − γ3) αf

s (α4 − γ4)
rαf

s (γ3 − α3) rαf
s (γ4 − α4)

]
. (35)

To close the writing of the system (32)-(33), we enclose to
it the following boundary and initial conditions:

u(t, 0) = Q0v(t, 0) and v(t, 1) = R1u(t, 1) + U(t), (36)

u(0, x) = u0(x) and v(0, x) = v0(x), (37)

where Q0, R1 ∈ M2,2(R), and U(t) consists of the bound-
ary controllers we need to design.

3. CONTROLLER DESIGN OF A GENERAL SYSTEM

In this section, we consider the backstepping controller
design of a more general system, which could includes the
Saint-Venant model as a special case. While solving our
problem with the Saint-Venant model, it is also worth
noting that the result derived in this section could be
treated as a full theoretical result by itself.

3.1 A more general control system

The more general system discussed in this section is

∂tu(t, x)+Λr(x)∂xu(t, x)=Sr(x)u(t, x)+Sl(x)v(t, x) (38)

∂tv(t, x)− Λl(x)∂xv(t, x) = So(x)u(t, x), (39)

where

u(x, t) = [u1(x, t), u2(x, t), . . . , un(x, t)] , (40)

v(x, t) = [v1(x, t), v2(x, t), . . . , vm(x, t)] (41)

are the systems states. The matrices

Λr(x) = diag [λr
1(x) , λ

r
2(x) , · · · , λr

n(x)] , (42)

Λl(x) = diag
[
λl
1(x) , λ

l
2(x) , · · · , λl

m(x)
]
, (43)

subject to the restriction

0 < λr
1(x) < λr

2(x) < · · · < λr
n(x), (44)

0 < λl
m(x) < λl

2(x) < · · · < λl
1(x), (45)

and the in-domain parameters are given as

Sr(x) = {Sr
ij(x)}1≤i≤n,1≤j≤n, (46)

Sl(x) = {Sl
ij(x)}1≤i≤n,1≤j≤m, (47)

So(x) = {So
ij(x)}1≤i≤n,1≤j≤m. (48)

The system is also equipped with the following boundary
and initial conditions:

u(t, 0) = Q0v(t, 0) and v(t, 1) = R1u(t, 1) + U(t), (49)

u(0, x) = u0(x) and v(0, x) = v0(x), (50)

where the boundary parameters Q0, R1 ∈ Mm,n(R) are
given as

R1 = {rij}1≤i≤m,1≤j≤n. (51)

Q0 = {qij(x)}1≤i≤n,1≤j≤m, (52)

and U(t) denotes the boundary controllers.
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3.2 Target system

First, we construct a backstepping transformation to map
the system (38)-(39) into a target system with desirable
stability property, which follows from the one constructed
in Hu et al. (2015). Consider the following target system

∂tε(t, x) + Λr(x)∂xε(t, x) = Sr(x)ε(t, x) + Sl(x)β(t, x)

+

∫ x

0

Cr(x, ξ)ε(ξ)dξ +

∫ x

0

C l(x, ξ)β(ξ)dξ (53)

∂tβ(t, x)− Λl(x)∂xβ(t, x) = ∆(x)β(0, t) (54)

with the following boundary conditions

ε(t, 0) = Q0β(t, 0) and β(t, 1) = 0, (55)

where

∆(x) =




0 · · · · · · 0

δ2,1(x)
. . .

. . .
...

...
. . .

. . .
...

δm,1(x) · · · δm,m−1(x) 0


 , (56)

and Cr, C l are matrices of functions defined on the
triangular domain

T =
{
(x, ξ) ∈ R2| 0 ≤ ξ ≤ x ≤ 1

}
.

Here, ∆(x), Cr, C l are all to be determined by introducing
a backstepping transformation later.

3.3 Backstepping controller design

In order to map the system (38)-(39) into the desired
target system (53)-(55), we consider the following back-
stepping transformation(

ε(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)

−
∫ x

0

(
0 0

G21(x, ξ) G22(x, ξ)

)(
u(t, ξ)
v(t, ξ)

)
dξ. (57)

Here, the to-be-determined kernel functions G21 and G22

are defined on the domain T. From the system equations
(38)–(50) and (53)–(55) and through some calculations
and integration by parts, it follows that G21 and G22 need
to satisfy the following system of equations:

∂ξG21(x, ξ)Λ
r(ξ)−Λl(x)∂xG21(x, ξ)

=−G21(x, ξ)
dΛr(ξ)

dξ
−G21(x, ξ)S

r(ξ)−G22(x, ξ)S
o(ξ) (58)

∂ξG22(x, ξ)Λ
r(ξ) +Λl(x)∂xG22(x, ξ)

= −G22(x, ξ)
dΛr(ξ)

dξ
+G21(x, ξ)S

l(ξ), (59)

and the following boundary conditions:

G21(x, x)Λ
r(x) +Λl(x)G21(x, x) = −So(x), (60)

G22(x, x)Λ
l(x)−Λl(x)G22(x, x) = 0, (61)

G21(x, 0)Λ
r(0)Q0 −G22(x, 0)Λ

l(0) = −∆(x). (62)

The existence, uniqueness and regularity of the backstep-
ping transformation (57) could be guaranteed similarly
as Hu et al. (2015), by adding some artificial boundary
conditions, for which the proof is omitted here, and then
the continuity of the kernels guarantees the existence of

a unique inverse transformation. We write the inverse
transformation as

(
u(t, x)
v(t, x)

)
=

(
ε(t, x)
β(t, x)

)

−
∫ x

0

(
0 0

G(x, ξ) H(x, ξ)

)(
ε(t, ξ)
β(t, ξ)

)
dξ, (63)

then we could derive from (57) and (63) that the kernels
G(x, ξ),H(x, ξ) need to satisfy

0 = G(x, ξ) + G(x, ξ)−
∫ x

ξ

H(x, η)G(η, ξ) dη, (64)

0 = H(x, ξ) +H(x, ξ)−
∫ x

ξ

H(x, η)H(η, ξ) dη. (65)

In order to solve the system of equations (64)–(65), we
use the method of successive approximations, see, (Krstic
and Smyshlyaev, 2008, Section 4.4). In the mean time,
δi,j(x) for i = 2, m j = 1, m− 1 can be obtained. And

the following equations are obtained for Cr(x, ξ), C l(x, ξ):

Cr(x, ξ) =Sl(x)G21(x, ξ) +

∫ x

ξ

C l(x, η)G21(ξ, η) dη, (66)

C l(x, ξ) =Sl(x)G22(x, ξ) +

∫ x

ξ

C l(x, η)G22(ξ, η) dη. (67)

Hence, the control law U(t) can be obtained by substi-
tuting transformation (57) into (49). Readily, β(t, 1) = 0
implies that

U(t) = −R1u(t, 1)

+

∫ 1

0

[G21(1, ξ)u(t, ξ) +G22(1, ξ)v(t, ξ)]dξ. (68)

3.4 Stability of the Target system

Assume that there exist constants M > 0, q̄ > 0, such that

‖Cr(x, ξ)‖, ‖Cl(x, ξ)‖, ‖Sr(x)‖, ‖Sl(x)‖ ≤ M,

∀x ∈ [0, 1], ξ ∈ [0, x], (69)

‖QT
0 Q0‖ < q̄, (70)

where ‖ · ‖ denotes the 2-norm, and denote

min
{
λr
i (x), λ

l
j(x) | x ∈ [0, 1], i = 1, n, j = 1,m

}
= λ,

(71)

max
{
λr
i (x), λ

l
j(x) | x ∈ [0, 1], i = 1, n, j = 1,m

}
= λ.

(72)

We first prove exponential stability of the target system
(53)-(55). The novelty of the proposed approach compared
to Hu et al. (2015), lies in the newly proposed Lyapunov
function that needs to be successively determined.

Lemma 1. For any given initial data ((ε0)T , (β0)T )T =

(εT (0, ·), βT (0, ·))T ∈
(
L2([0, 1])

)n+m
and under the as-

sumption that Cr, C l ∈ C(T), the equilibrium (εT , βT )T =
(0, 0, 0, 0)T of the target system (53)-(56) is exponentially
stable in the L2-norm:

‖(εT (t, ·), βT (t, ·))T ‖2L2

:=

∫ 1

0

εT (t, x)ε(t, x) + βT (t, x)β(t, x)dx. (73)
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Proof.
We consider the following Lyapunov function:

V (t) =
1

2

∫ 1

0

e−νxεT (t, x)Λr
inv(x)ε(t, x)dx

+
1

2

∫ 1

0

(1 + x)βT (t, x)DΛl
inv(x)β(t, x)dx, (74)

where D = diag [d1 , d2 , · · · , dm−1 , dm], and

Λr
inv(x) = diag

{
1

λr
1(x)

, . . . ,
1

λr
n(x)

}
,

Λl
inv(x) = diag

{
1

λl
1(x)

, . . . ,
1

λl
m(x)

}

with (λr
1(x), . . . , λ

r
n(x)) > 0,

(
λl
1(x), . . . , λ

r
m(x)

)
> 0.

The constants ν and d1, d2 , · · · , dm−1, dm are all positive
parameters to be determined. Then, we could find two
postitive constants C1, C2 such that

C1‖(ε(t, ·), β(t, ·))‖2L2≤ V (t) ≤C2‖(ε(t, ·), β(t, ·))‖2L2 , (75)

which ensures that V (t) is positive definite.

Differentiating (74) with respect to time, we get:

V̇ (t) =

∫ 1

0

e−νxεT (t, x)Λr
inv(x)∂tε(t, x)dx

+

∫ 1

0

(1 + x)βT (t, x)DΛl
inv(x)∂tβ(t, x)dx. (76)

With the help of (53) and (54), we could derive from (76)
that

V̇ (t) ≤ β1(t, 0)
2

×

{
q̄

2
− 1

2
d1 +

∫ 1

0

(1 + x)

2

m∑
i=2

d2i
1

λl
i(x)

2
δ2i,1(x)dx

}

+ β2(t, 0)
2

{
q̄

2
− 1

2
d2 +

∫ 1

0

(1 + x)

2

m∑
i=3

d2i
1

λl
i(x)

2
δ2i,2(x)dx

}

+ · · ·+ βm−1(t, 0)
2

{
q̄

2
− 1

2
dm−1

+

∫ 1

0

(1 + x)

2
d2m

1

λl
m(x)2

δ2m,m−1(x)dx

}

+ β2
m(t, 0)

{
q̄

2
− 1

2
dm

}

− 1

2
f1(ν)

∫ 1

0

e−νxεT (t, x)ε(t, x)dx

− 1

2
f2(ν)

∫ 1

0

βT (t, x)β(t, x) dx (77)

with

f1(ν) = ν − 2

(
M

λ

)2

− M

λ
(5 +

1

ν
), (78)

f2(ν) = min
{
di; i = 1,m

}
− 2m+ 1− 1

ν
. (79)

First, choose the positive constants d1, d2 , · · · , dm−1, dm
successively as follows:

dm ≥ q̄,

dm−1 ≥ q̄ +

∫ 1

0

(1 + x)d2m
1

λl
m(x)2

δ2m,m−1(x)dx,

dm−2 ≥ q̄ +

∫ 1

0

(1 + x)

m∑
i=m−1

d2i
1

λl
i(x)

2
δ2i,m−2(x)dx,

· · ·

d1 ≥ q̄ +

∫ 1

0

(1 + x)

m∑
i=2

d2i
1

λl
i(x)

2
δ2i,1(x) dx. (80)

Then, choose ν > 0 large enough to satisfy

f1(ν) > 0, f3(ν) := q̄ − 2m+ 1− 1

ν
> 0. (81)

from which we have

f2(ν) ≥ f3(ν) > 0. (82)

Thus, there exists a positive constant c such that

V̇ (t) ≤ J2(t) ≤ −cV (t). (83)

This, together with (75), completes the proof.

3.5 Stability of the closed-loop control system

With the exponential stability of the target system, and
the existence, uniqueness and regularity and invertibility
of the backstepping transformation, we are now ready to
derive the stability of the closed-loop control system.

Theorem 1. For any given initial data ((u0)T , (v0)T )T =

(uT (0, ·), vT (0, ·))T ∈
(
L2([0, 1])

)n+m
and under the as-

sumption that Cr, C l ∈ C(T), the equilibrium (uT , vT )T =
(0, 0, 0, 0)T of the closed-loop system (38)–(50) with the
designed controller (68) is exponentially stable in the sense
of L2-norm:

‖(uT (t, ·), vT (t, ·))T ‖2L2

:=

∫ 1

0

uT (t, x)u(t, x) + vT (t, x)v(t, x)dx. (84)

Theorem 1 can immediately be applied to the linearized
bilayer Saint-Venant model (1), in Riemann Invariants.

4. SIMULATION RESULTS

The goal of the following numerical simulations is to illus-
trate the efficiency of the designed U(t), namely (68), to
stabilize the linear system (30) around the zero equilib-
rium. As initial conditions, the following data are consid-
ered for the layer 1 and 2 through the physical variables

H2(0, x) = 2+0.5 exp
(
− (x− 0.5)2

0.003

)
, H1(0, x) = 6−H2(x)

and

U1(0, x) =
10

H1(0, x)
+ 3 sin(2πx),

U2(0, x) = − 10

H2(0, x)
− 3 sin(2πx).

The initial data of the characteristic variables ξk, (k =
1, 2, 3, 4) (for system (30)) are computed as function of
the physical variables Hi(0, x) and Ui(0, x) for i = 1, 2,
thanks to the relation (17). For the sake of simplicity,
we consider this uniform steady state: H∗

1 = 3, U∗
1 =
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Proof.
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∫ 1

0

e−νxεT (t, x)Λr
inv(x)ε(t, x)dx

+
1

2

∫ 1

0

(1 + x)βT (t, x)DΛl
inv(x)β(t, x)dx, (74)

where D = diag [d1 , d2 , · · · , dm−1 , dm], and

Λr
inv(x) = diag

{
1

λr
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, . . . ,
1

λr
n(x)

}
,

Λl
inv(x) = diag

{
1

λl
1(x)

, . . . ,
1

λl
m(x)

}

with (λr
1(x), . . . , λ

r
n(x)) > 0,

(
λl
1(x), . . . , λ

r
m(x)

)
> 0.

The constants ν and d1, d2 , · · · , dm−1, dm are all positive
parameters to be determined. Then, we could find two
postitive constants C1, C2 such that
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which ensures that V (t) is positive definite.

Differentiating (74) with respect to time, we get:

V̇ (t) =

∫ 1

0

e−νxεT (t, x)Λr
inv(x)∂tε(t, x)dx

+

∫ 1

0

(1 + x)βT (t, x)DΛl
inv(x)∂tβ(t, x)dx. (76)

With the help of (53) and (54), we could derive from (76)
that

V̇ (t) ≤ β1(t, 0)
2

×

{
q̄

2
− 1

2
d1 +

∫ 1

0

(1 + x)

2

m∑
i=2

d2i
1

λl
i(x)

2
δ2i,1(x)dx

}

+ β2(t, 0)
2

{
q̄

2
− 1

2
d2 +

∫ 1

0

(1 + x)

2

m∑
i=3

d2i
1

λl
i(x)

2
δ2i,2(x)dx

}

+ · · ·+ βm−1(t, 0)
2

{
q̄

2
− 1

2
dm−1

+

∫ 1

0

(1 + x)

2
d2m

1

λl
m(x)2

δ2m,m−1(x)dx

}

+ β2
m(t, 0)

{
q̄

2
− 1

2
dm
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f1(ν)

∫ 1

0

e−νxεT (t, x)ε(t, x)dx

− 1

2
f2(ν)

∫ 1

0

βT (t, x)β(t, x) dx (77)

with

f1(ν) = ν − 2

(
M

λ

)2

− M

λ
(5 +

1

ν
), (78)

f2(ν) = min
{
di; i = 1,m

}
− 2m+ 1− 1

ν
. (79)

First, choose the positive constants d1, d2 , · · · , dm−1, dm
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dm ≥ q̄,

dm−1 ≥ q̄ +

∫ 1

0

(1 + x)d2m
1
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m(x)2

δ2m,m−1(x)dx,

dm−2 ≥ q̄ +

∫ 1

0

(1 + x)

m∑
i=m−1

d2i
1
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i(x)

2
δ2i,m−2(x)dx,

· · ·

d1 ≥ q̄ +

∫ 1

0

(1 + x)
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1
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i(x)

2
δ2i,1(x) dx. (80)

Then, choose ν > 0 large enough to satisfy

f1(ν) > 0, f3(ν) := q̄ − 2m+ 1− 1

ν
> 0. (81)

from which we have

f2(ν) ≥ f3(ν) > 0. (82)

Thus, there exists a positive constant c such that

V̇ (t) ≤ J2(t) ≤ −cV (t). (83)

This, together with (75), completes the proof.

3.5 Stability of the closed-loop control system

With the exponential stability of the target system, and
the existence, uniqueness and regularity and invertibility
of the backstepping transformation, we are now ready to
derive the stability of the closed-loop control system.

Theorem 1. For any given initial data ((u0)T , (v0)T )T =

(uT (0, ·), vT (0, ·))T ∈
(
L2([0, 1])

)n+m
and under the as-

sumption that Cr, C l ∈ C(T), the equilibrium (uT , vT )T =
(0, 0, 0, 0)T of the closed-loop system (38)–(50) with the
designed controller (68) is exponentially stable in the sense
of L2-norm:

‖(uT (t, ·), vT (t, ·))T ‖2L2

:=

∫ 1

0

uT (t, x)u(t, x) + vT (t, x)v(t, x)dx. (84)

Theorem 1 can immediately be applied to the linearized
bilayer Saint-Venant model (1), in Riemann Invariants.

4. SIMULATION RESULTS

The goal of the following numerical simulations is to illus-
trate the efficiency of the designed U(t), namely (68), to
stabilize the linear system (30) around the zero equilib-
rium. As initial conditions, the following data are consid-
ered for the layer 1 and 2 through the physical variables

H2(0, x) = 2+0.5 exp
(
− (x− 0.5)2

0.003

)
, H1(0, x) = 6−H2(x)

and

U1(0, x) =
10

H1(0, x)
+ 3 sin(2πx),

U2(0, x) = − 10

H2(0, x)
− 3 sin(2πx).

The initial data of the characteristic variables ξk, (k =
1, 2, 3, 4) (for system (30)) are computed as function of
the physical variables Hi(0, x) and Ui(0, x) for i = 1, 2,
thanks to the relation (17). For the sake of simplicity,
we consider this uniform steady state: H∗

1 = 3, U∗
1 =

IFAC CPDE 2016
June 13-15, 2016. Bertinoro, Italy

135

1, H∗
2 = 1, U∗

2 = 0.95. With this choice of steady state
(setpoint), the characteristic speeds are given by: λ1 =
6.42, λ2 = 4.08, λ3 = −4.42 and λ4 = −2.18. Elsewhere,
in the reported numerical experiments, the ratio r between
the densities is set to 0.01 and the friction coefficient Cf

to 0.05. We compute the solution up to time T = 10.
Regarding to the boundary conditions (50) the following
matrix are considered

Q0 =

[
−1.5 0.01
0.01 1.5

]
, R1 =

[
0.5 0.1
0.15 −0.5

]
(85)

Our implementation is based on an accurate finite volume
method for the evolution equation (30), see, a modified
Roe’s scheme (see LeVeque (2002)). The kernels G21 and
G22 are solved numerically according to (58)-(62) using the
finite element setup under the package FreeFem++ (Hecht
(2012)). As an illustration, the numerical solution of the
second component of the kernel G21 is given in Figure 2.

Figure 3(b) depicts the evolution in time of the L2-norm
of the characteristics. As expected from the theoretical
part we observe clearly that the norm of all characteristics
decreases in time and converges to zero. As a result,
this shows that the system (30) converges to the zero
equilibrium. Thereby the two-layer Saint-Venant model (1)
also converges to (H∗

1 , U
∗
1 , H

∗
2 , U

∗
2 ).

In Figure 3(a) are depicted the behavior in time of each
component of the input control U(t). Clearly, despite the
initial amplitude of u2(t), this latter one decreases in
time and vanishes after t ≥ 7 s. Likewise u2(t), the first
component of the control input u1(t) shows the same trend
with its amplitude decreasing in time and tending to zero
after t ≥ 7s as can be seen in Figure 3(a).

Figure 2. The second component of the kernel G21.

(a) control input (b) Characteristic solutions

Figure 3. Evolution in time of the control input U(t) and
the norm of the characteristic solutions
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