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Abstract—In this paper, a backstepping control of the one-
phase Stefan Problem, which is a 1-D diffusion Partial Dif-
ferential Equation (PDE) defined on a time varying spatial
domain described by an ordinary differential equation (ODE),
is studied. A new nonlinear backstepping transformation for
moving boundary problem is utilized to transform the original
coupled PDE-ODE system into a target system whose expo-
nential stability is proved. The full-state boundary feedback
controller ensures the exponential stability of the moving
interface to a reference setpoint and the 7i:-norm of the
distributed temperature by a choice of the setpint satisfying
given explicit inequality between initial states that guarantees
the physical constraints imposed by the melting process.

I. INTRODUCTION

Diffusion PDEs with moving boundaries have been studied
actively for the last few decades, and their understanding
continues to be of high interest due to their extent for various
industrial processes. Representative applications include sea-
ice melting and freezing [1], continuous casting of steel [2],
crystal-growth [3], and thermal energy storage system [4].

While the numerical analysis of these systems is widely
covered in the literature, their control related problems have
been addressed relatively fewer. In addition to it, most of
the proposed control approaches are based on finite dimen-
sional approximations with the assumption of an explicit and
known moving boundary [5], [6], [7]. For instance, diffusion-
reaction processes with explicitly known moving boundaries
are investigated in [6] based on the concept of inertial
manifold [8] and the partitioning of the infinite dimensional
dynamics into slow and fast finite dimensional modes. We
also refer the reader to [7] for the motion planning boundary
control of a one-dimensional one-phase nonlinear Stefan
problem based on series representation which leads to highly
complex solutions that reduce the design possibilities. Instead
of controlling the position of the liquid-solid interface by
means of the temperature or the heat flux at the boundary, [7]
solves the inverse problem assuming a prior known moving
boundary which help to derive the manipulated input.

More complicated approaches that lead to significant
mathematical complexities in the process characterization
are developed based on an infinite dimensional framework.
These methods impose a number of constraints on the initial
data and the state variables to achieve convergence of the
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dynamical coupled systems to the desired equilibrium. In
order to avoid surface cracks during the solidification stage
in a steel casting process represented by a diffusion PDE-
ODE system defined on a time-varying spatial domain, an
enthalpy-based Lyapunov functional is used in [2] to ensure
stabilization of the temperature and the moving boundary at
the desired setpoint. The aftermentioned results are derived
restricting a priori, the input signal to be strictly positive
and the moving boundary to be a non-decreasing function
of time. In [9] a geometric control approach [10]-[12] that
enables the manipulation of the boundary heat flux to adjust
the position of a liquid-solid interface at a desired setpoint
is proposed, and the exponential stability of the Ly-norm
of the distributed temperature is ensured using a Lyapunov
analysis.

In this paper, the backstepping control [13], [14] of a
one phase Stefan problem [2], [9], [15] is studied. The ex-
ploitation of the PDE backstepping methodology for moving
boundary problems is not well investigated in the literature.
An extension of the backstepping-based observer design to
the state estimation of parabolic PDEs with time-dependent
spatial domain was proposed in [16] with an application
to the well-known Czochralski crystal growth process. The
authors offer a design tool for the stabilization of an unstable
parabolic PDE system with moving interface using a collo-
cated boundary measurement and actuation located at the
moving boundary. The novelty of our approach relies to the
proposition of a new nonlinear backstepping transformation
that allows to deal with moving boundary problem without
the need to rescale the system into a fixed domain. Our
design of backstepping transformation for moving boundary
stands as an extension of the one proposed in [17]-[19]
for linear PDE-ODE defined on a fixed spatial domain. The
proposed controller enables the exponential stability of sum
of the moving interface and the H;-norm of the temperature
profile under physical constraints which restrict the choice
of reference setpoint with respect to the initial data.

This paper is organized as follows: The one-phase Stefan
problem is presented in Section [lI] and the control related
problem in Section Section [[V] introduces the nonlinear
backstepping transformation for moving boundary problems.
The properties of the proposed backstepping controller are
stated in Section [V] and the Lyapunov stability of the closed-
loop system under full-state feedback is established in Sec-
tion with the exponential convergence of 7{;-norm of
the distributed temperature and the moving boundary to the
desired equilibrium. Supportive numerical simulations are
provided in Section The paper ends with final remarks
and future directions discussed in Section [VIIL



II. DESCRIPTION OF THE PHYSICAL PROCESS
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Fig. 1. Schematic of 1D Stefan problem.

Consider a physical model-which-deseribes-the-melting-or
solidification mechanisnr ira pure one-component material
of length L in one dimension. In order to describe a position
at which phase transition from liquid to solid occurs (or
equivalently, in the reverse direction) mathematically, we
divide the domain [0, L] into the two time varying sub-
domains, namely, [0, s(¢)] occupied by the liquid phase, and
[s(t), L] by the solid phase.
into the material through—theboundary—at—=—=0-of the
liquid phase, which affecis the dynamics of the solid-liquid
interface. As a consequence, the heat equation alone does not
provide a complete description of the phase transition and
must be coupled with an unknown dynamics that describes
the moving boundary. Assuming that the temperature in the
liquid phase is not lower than the melting temperature 7,

K=l T

of the material, the following coupled system consisting of

A _heat fluy ic maninulated
AU IS—APUates

« the diffusion equation of the temperature in the liquid-
phase which is written as

Ti(,t) = 0T,ua.8), 0 0 < s(t), ai= g (1)
with the boundary conditions :
—kT:(0,1) = ge(t), 2)
T(s(t),t) = T (3)
and the initial condition
T;0) = To(x), )

where T'(z,t), ¢.(t), p, Cp and k are the distributed
temperature of the liquid phase manipulated heat flux,
liquid density, the liquid heat capacity, and the liquid
heat conductivity, respectively.
and
o the local energy balance at the position of the liquid-

solid_interface x = s(#) which yields to_the following
ODE

) k

s(t) = e
that describes the dynamics of moving boundary. The
physical parameter AH™* represents the latent heat of
fusion.

BT (s(t) 1), A=

T =

For the sake of brevity, we refer the readers to [20], where
the Stefan condition in the case of a solidification process is
derived.

Remark 1: As the moving interface s(t) is unknown
explicitly, the problem defined in (1)) is a highly nonlinear
problem. Note that this non-linearity is purely geometric
rather than algebraic.

Remark 2: Due to the so-called isothermal interface
condition that prescribes the melting temperature T}, at the
interface through (3)), this form of the Stefan problem is a
reasonable model only if the following conditions hold:

T(x,t) > T, forall x€]0,s(t)], (6)

$(t) >0 forall t>0 @)
From Remark [Z] it is plausible to assume the existence of a
positive constant H such that

0 <Th(z) — Ty < H(s(0) — ). 8)

We recall the following lemma that ensures the validity of
the model (1)-(5).

Lemma 1: For any ¢.(t) > 0 on the finite time interval
(0,7), T(z,t) > T, Vy € (0,s(t)) and Vt € (0,%). And
then 5(t) > 0, Vt € (0,1).

The proof of the lemma [I| is based on Maximum Principle
and Hopf’s Lemma as shown in [20].

III. CONTROL PROBLEM STATEMENT

In this model, the heat flux ¢.(t) is manipulated as a
boundary controller. The objective of control is to drive
the moving boundary s(¢) to a desired position s, while
ensuring the convergence of the H;-norm of the temperature
T'(z,t) in the liquid phase. We denote the reference error of
tHiquid termperature—and—the moving interface as u(x,t) =
T(z,t) =Ty, and X (t) = s(t) — s, respectively. The main
theorem of this paper is stated as follows.

Theorem 1: Consider a closed-loop system consisting of
the_plant (T)=(3)_and the control law

/1 s(t)
—ck k/ T(x,t) — T )dx
«

+ L5 - s») o
g

where ¢ > 0 is an arbitral controller gain. Assume that the
initial condition (Tp(x), s(0)) is compatible with the control
law and satisfies (8). For any reference setpoint s, which
satisfies the following inequality

sr > s(0) + —

11

s(0)
C:f'* / (TO(J:) - Tm)dl‘, (10)
0

of the norm

1T — Tl |3, (11)

+ (s(t) — 5,)%

The proof is to be given below.
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IV. BACKSTEPPING TRANSFORMATION FOR MOVING
BOUNDARY FORMULATION

A. Direct transformation

In this section, we introduce the following new backstep-
ping transformation in order to achieve a target system that
is exponentially stable.

¢ s(t)
wet) =uwt) = < [ = oty )y

(12)

This transformation is an extension of the one first introduced
in [17], to moving boundary problems proposed in [16].
By taking the derivative of with respect to ¢ and x
respectively along the solution of (I)-(3) with the control
law (9), we derive the following target system

wi(z,t) = awyy (2, 1) + %é(t)X(t) (13)

with the boundary conditions which are given as
w(s(t),t) =0 (14)
w,(0,1) = 0. (15)

with the help of (12), the ODE (5) is rewritten as
X(t) = —cX(t) — Bua(s(t),1) (16)

B. Inverse transformation

The original system (I)—(3) and the target system (13)-
have equivalent stability properties if the transformation
(12) is invertible. Let us consider the following inverse
transformation

s(t)
u(e, 1) = wiz, ) + / I, y)w(y, t)dy

+h(s(t) — 2) X (t), a7

where [(x,y) is the kernel function. Taking derivative of
with respect to ¢ and x respectively along the solution of
(13)-(16), the following relation is derived

us(x,t) — gy (z,t) = 20 (il(x,x)) w(z,t)

s(t)
— Oé/ (ZML(%; y) - lyy(xv y))w(y, t)dy

¢ s(t)
+ (5 (1 —|—/L l(a:,y)dy) +h'(s(t) — x)) ()X (1)

— (ah”(s(t) - )+ch( (t) —x)) X(t)

+ (ad(, 5(t)) — Bh(s(t) — x))wa(s(t), 1) (18)
u(s(t),t) = h(0)X(t) (19)
U (5(t),t) = wa(s(t),t) — h'(0)X () (20)

In order to hold for any continuous functions

(w(z,t), X(t)), by . . h(s(t) — ) and I(z, y) satisfy
ah”(s(t) —x) + ch(s(t) — ) 21
hO) =0, H(0) =~ (22)
va(T,Y) = lyy(7,y) =0 23)
d

dil( z)=0 (24)

. (1)
5 (1 —i—/m l(x,y)dy) +h(s(t)—x)=0 (25)
al(z,s(t)) — Bh(s(t) —x) =0 (26)

By and (22), the solution of h(s(t) — z) is given by

h(s(t) —x) = — \/asin <\/?(s(t) — a:)) 27
8 o
In addition, the conditions (23)-(26) hold for
c . c
o) = =[S (S0 -0)) 9

Finally, from and (28), the inverse transformation is
written as
v C%n (, [ S (s(t) — z)) X(t)
a

/S(t) \/>Sln <\/> )) w(y,t)dy (29)

V. PHYSICAL CONSTRAINTS

u(z,t) =w(x,t) —

Noting that g.(t) > 0 is required by Remark [2|and Lemma
[} the overshoot beyond the reference s, is prohibited to
achieve the control objective s(t) — s, due to its increasing
property (7), which means s(t) < s, is required to be
satisfied for V¢ > 0. In this section, we derived the condition
that guarantees these two conditions

q.(t) > 0,

, namely “’physical constraints”. Physically, a negative con-
troller may lead to a freezing process.
Proposition 1: If the initial condition satisfies , then
qc(t) > 0 and s(0) < s(t) < s, for V¢ > 0.
Proof: By taking the time derivative of (9), we have

s(t) <s., Vt>0 (30)

s(t)
Ge(t) = —ck (1/0 ug(z, t)de + éé(t)u(s(t),t)

!
1.
+5X(t)> = cku,(0,t) = —cqe(t) 31
The solution of ¢.(t) can be written explicitly as
qe(t) = qe(0)e™ (32)

Therefore, if the initial condition satisfies (10}, which leads
to g.(0) > 0, then we can state that ¢.(¢) > 0 for any t.
Next, by Lemma 1, if g.(¢) > 0 for V¢ > 0, then it deduces
to

T(x,t) > T, 5(t)>0, Vye(0,s(t),vt>0. (33)



Knowing ¢.(t) > 0 and T'(z,t) > T,, by (), we deduce

s(t) < sp, VE>0 (34)
In addition, by $(¢) > 0, it leads to s(0) < s(¢). Connecting

this result with (34), we derive

s(0) < s(t) < sp, VEt>0. (35)

|
In the following, we assume that is satisfied. We use the
property of and to show the Lyapunov stability.

VI. LYAPUNOV STABILITY

We recall that in order to design backstepping controller
(9) and the target system (I3)—(16) we introduce the trans-
formation and its inverse (17). The exponential stability
of the scaled system (I)—(3) is guaranted if the nonlinear
target system (13)—(16) is exponentially stable and the trans-
formation admits a unique inverse defined as (17). In
the following we establish the exponential stability of the
closed-loop control system H'-norm of the temperature and
the moving boundary based on the analysis of the associated

target system (13)—(16) .

A. Exponential stability for the target (w, X )-system

Let V; be a functional such that

1 S(t)
Wi :f/ w(z, t)dx
2 Jo

s(t)
+ f/ woo, 0P + EX(02 G6)
0

2

with a positive number p > 0 which is chosen later. Then, by
taking the derivative of along the solution of the target
system (13)-(16) , we have the following

dV- s(t)
ditl = —a/ Wy (2, )% da
0

s(t)
—a / wq (e, 1)%de — peX (1) — pBX (Hw, (s(1), )

¢ s(t)
+5(t) (aﬂX(t)/O w(z, t)dx

c 1 9
~aSX (0 (s(0),1) ~ us(s(0). 07 a7

By (33), Pointcare’s inequality and Agmon’s inequality are
obtained as

s(t) s(t)
/ w(zx,t)?dr < 452/ wy(x,t)%dz,  (38)
0 0

s(t)
wa(s(t), )% < 4s, / Wea (2, 1)2dz.  (39)
0

Applying these, Young’s inequality, Cauchy-Schwartz in-
equality, and to (37), we have

vy

dt

o s(t) , s(t) ,

—p (c— pﬁ;‘”) X(t)?

. Ca;g(t) ( /O " e 2o + (1 + Cg) X (t>2> (40)

Suppose that p is chosen to satisfy the following

0<p< 1)

co
B%s,
For any choice of ¢ > 0, there exists p > 0 such that
holds. Consider the Lyapunov functional

V = Ve ®® (42)
then, by choosing the parameter a such that
1 co
a= —max 1,—-(1+ > } , 43)
26 { ( B
we have
dv «@ s(t) 9
— < |- t)°d
at = 4£+1<A W, 8)"dv

s(t) 2
2 _ _ pﬁ Sr 2 —as(t)
+ /0 w(z,t) dsr:) D (c Y >X(t) ] e astt

< bV (44)
where b is defined as
bmin{4s§i1,2<c 6ST)} (45)
By the relation (42) and Corollary 1 that s(0) < s(¢) < s,,
we arrive at
Vi(t) < Vi (0)ea(sr=s(0)g=bt (46)

B. Exponential stability for the original (u, X )-system

From the direct transformation (12)) and the inverse trans-
formation (17) and using Young’s and Cauchy-Schwarz
inequality, we have

s(t) s(t)
/ w(z, t)?dr < Ml/ u(z, t)’de + Mo X (1) (47)
0 0

and
s(t) s(t)
/ wy(, 1) 2da < 3/ U, (z,t)%de
0 0

s(t)
+ M / u(w, t)?de + MyX(t)*  (48)
0

s(t) s(t)
/iumegm/ w(z,t)?dr + MgX (t)* (49)
0 0



s(t) s(t)
/ Uy (x,t)%de < 3/ wy(, ) dx
0 0

s(t)
+A@/’ w(z, £)2de + MsX (t)? (50)
0
where
02.13*3 CQ$*3
M1—3<1+ 3@2), 2_? (28
CQST Czs'r‘
My =3 Mi=3TF ()
2
A@__3<1+‘37{1—smc(2vﬁﬂ%>}) (53)
2 «
_ 3casy 1« 9 < (54)
6 = T sinc as,.
2.2
My = 3¢ ZT {1 + sinc (2\/?87)} (55)
2 «
3c2s, . c
Mg = %E {1 + sinc (2\/;3,)} (56)

Adding to and to (50), we derive the following

inequality

s(t) s(t)
[ / u(z, t)?dx + / ug (z,t)2dx + X (t)?
0 0

s(t) s(t)
< / w(m,t)zdx—F/ wy (2, t)?dx + pX (t)?
0 0

_ s(t) s(t)
<90 (/ Uy (x,t)*dx +/ u(z, t)?dx + X(t)2>
0 0
(57
where
5 = max{M1 + M3,p + M2 —+ M4}
in {1
5= min {1,p} (58)
max {M5 + M7, MG + Mg + 1}
Defining the parameter D > 0 as
5
D:SwM% (59)

by and (57), for any choice of ¢ > 0 there exists D > 0
and b > 0 such that

s(t) s(t)
/ u(z, t)?dx +/ ug(x,t)2dx + X (t)?
0 0

s(0) s(0)
<D (/ uo(z)?dx +/ uf(x)?dr + X (0)% | et
0 0
(60)
which completes the proof of Theorem 1.

VII. NUMERICAL SIMULATION

As in [9], the simulation is performed considering a strip
of zinc whose physical properties are given in Table 1 using
the well known boundary immobilization method and finite
difference semi-discretization. The setpoint of the interface
is 5,=0.35m. The initial distribution of the temperature error

is set as Ty(z) — Ty, = H(s(0) — x) with H=10000K-m~!.
The controller gain c is chosen arbitrarily, but small enough
to avoid numerical instabilities, and here it is chosen ¢=0.01.
The dynamics of the moving interface s(¢) and H;-norm of
temperature error ||T(z,t) — Tp,||3, are depicted in Fig.
and Fig. 3] respectively for two different initial position
of the moving interface, namely, s(0)=0.0lm (blue dash)
and $(0)=0.25m (red dash). Time evolution of the control
input is depicted in Fig[d The simulation of coupled system
with s(0) =0.01m shows that the interface converges to its
setpoint while keeping $(¢) > 0 and s(t) < s, with a positive
control signal ¢.(t) > 0 as we expected from theoretical
result, because the setpoint and initial condition satisfy (10).
However, the system with the interface initialized at the
position s(0) =0.25m leads to $(t) < 0, s(t) > s,, and a
negative control signal because the choice of setpoint doesn’t
satisfy . Therefore, the numerical simulation is consistent
with our theoretical result. We emphasize that the proposed
controller does not require the restriction imposed in [9]
regarding the material properties, although the equation of
the controller is the same as the one proposed in [15] for a
Stefan problem which describes a solidification process. In
that sense, the proposed controller in the present result offers
more modularity to a large class of materials, and guarantees
the exponential stability of the sum of interface error and H -
norm of temperature error, compared to [15] which provides
only an asymptotical stability result.

TABLE I
PHYSICAL PROPERTIES OF ZINC

Description Symbol | Value

Density P 6570 kg - m~—3

Latent heat of fusion | AH* 111,961 - kg ™1

Heat Capacity Cp 389.5687 J - kg1 . K1
Thermal conductivity | k 116 w-m™!

0.5
Critical region
04f T
03 LT
02
0.1¢ --5(0) = 0.01m
i - 5(0) = 0.25m
0 ‘ ‘ j — 5, =0.35m
0 20 40 60 80 100

Time (min)

Fig. 2. The moving interface.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we studied a one-phase Stefan problem
in 1-D and proposed a boundary feedback controller that
achieves the exponential stability of sum of the moving
interface and the H;-norm of the temperature based on the
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Fig. 3. Hi-norm of the temperature.
sx10°
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Fig. 4. The positiveness verification of the controller.

full state measurement. A nonlinear backstepping transfor-
mation for moving boundary problem is utilized and the
controller is proved to remain positive, which guarantees
some physical properties required for the validity of the
model and the proof of stability. There are two contributions
stated in our conclusion. Firstly, our approach offers an
interesting perspective regarding the backstepping control of
moving boundary problem whose dynamics depends on the
system. Secondly, we showed the exponential stability of the
sum of the interface error and the #;-norm of temperature
error, while in [9] and [15] it was shown asymptotical
stability of interface error and exponential stability of Lo-
norm of temperature error. Adding a dissipative term in the
transformation would allow faster convergence and must be
considered as a future direction. The design of an observer
that enables to reconstruct the full state based on the bound-
ary measurement is of practical interest in such type of
problem and will be considered in our future work.
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