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Abstract— This paper addresses the problem of stabilizing a
class of one-dimensional linearized Korteweg-de Vries systems
with possible anti-diffusion (LKdVA for short), through control
at one end and non-collocated observation at the other end.
An exponentially convergent observer is designed, and then a
dynamical stabilizing output feedback boundary controller is
constructed based on the observer. The resulting closed-loop
systems can achieve arbitrary exponential decay rate. In order
to derive invertibility of the kernel function in the backstepping
transformation between the observer error systems and its
corresponding target systems, stabilizing of a critical case of
LKdVA is considered in the Appendix, which can also be treated
as a preliminary problem for the main part of this paper.

Index Terms— Linearized Korteweg-de Vries systems; Anti-
diffusion; Observer; Output feedback; Backstepping.

I. INTRODUCTION

The Korteweg-de Vries (KdV) equation can be used to
model waves on shallow water surfaces and ion-acoustic
waves in plasmas, etc. It has thus been intensively studied
by many mathematicians and physicists. Controllability and
stabilization of the Korteweg-de Vries (KdV for short) sys-
tems have been topics of active research (see, e.g., [1], [2]).
In [3], the authors use PDE backstepping method to stabilize
a linearized KdV system.

When anti-diffusion exists in systems such as Kuramoto-
Sivashinsky equation, Ginzburg-Landau equation, it can
make significant influence on the system stability. Moreover,
the effect of anti-diffusion term in some KdV-type equations
is dicussed in [4].

State feedback stabilizing of a class of LKdVA is con-
sidered in [5], which can serve as the first part of a full
result, with this paper as the second part. This paper is
devoted to stabilizing the class of LKdVA by output feedback
boundary control. Output feedback problems (see, e.g., [6],
[7], [8], [9], [10]) are usually more applicable and/or more
cost saving than state feedback problems. Moreover, since
non-collocated control is generally preferable over collocated
control in practice and performance, only non-collocated
case is considered in this paper.

Difficulties in the LKdVA backstepping control design
give rise to novel design and system analysis approaches.
Firstly, it is not quite possible to use only a Volterra integral
transformation (see, e.g., [11], [12], [13]) to convert this
original system into an exponentially stable target system.
In order to compensate for the presence of the anti-diffusion
term, we apply another coordinate transformation [5] before
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using the Volterra integral transformation. Secondly and most
important, because of the third order partial derivatives in the
kernel function systems of the backstepping transformations,
we need all the n-th, n ∈ R+, order partial derivatives for
one of the kernel function successive approximation terms
in each iteration of the successive approximation. The usual
mathematical induction (with constant number of induction
terms in the process) in successive approximation could not
solve this problem. We employ a mathematical induction
process in which the number of induction terms increases
while the induction proceeds. Thirdly, it is not trivial to prove
the invertibility of the kernel function for the transformation
between the observer error system and the corresponding
exponentially stable target system. This problem is resolved
while solving state feedback control problem for a critical
case of the LKdVA.

The remaining parts of this paper are organized as follows.
In Section II, problem formulation is presented. In Section
III, an observer is designed and the observer error systems
are exponentially stable with an arbitrary decay rate. Output
feedback control problem is considered in Section IV , where
the closed-loop control systems are also proved to be expo-
nentially stable with arbitrary decay rate. Some conclusion
and possible future work are given in Section V . Existence,
regularity and invertibility of the kernel function in Section
III are shown from a preliminary state feedback boundary
stabilizing problem in the Appendix.

II. PROBLEM FORMULATION

The problem we are concerned with is stabilizing the
following class of LKdVA with boundary control and non-
collocated observation:

ut(x, t) =uxxx(x, t)+λ2uxx(x, t)+λ1ux(x, t)+λ0u(x, t),

x ∈ (0,L) (1)
ux(0, t) =λ3u(0, t) (2)

uxx(0, t) =λ4u(0, t) (3)
u(L, t) =U(t) (4)

y(t) =u(0, t), (5)

where u(x, t)∈R is the system state, U(t) is the control input,
y(t) is the measured output, and λ0,λ1,λ2,λ3,λ4 are known
constants which can take any values. The control objective
is to exponentially stabilize the system to zero in energy
state space, and our control method is through observer-based
boundary output feedback.

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 1959



III. OBSERVER DESIGN

With the available measured output data (5), we first
consider designing an observer to recover the full state of
the system (1)− (4).

The following observer is a ”copy of the plant plus output
injection terms”:

ût(x, t) =ûxxx(x, t)+λ2ûxx(x, t)+λ1ûx(x, t)+λ0û(x, t)

− c0(x)(u(0, t)− û(0, t)),x ∈ (0,L) (6)
ûx(0, t) =λ3u(0, t)− c1(u(0, t)− û(0, t)) (7)

ûxx(0, t) =λ4u(0, t)− c2(u(0, t)− û(0, t)) (8)
û(L, t) =U(t), (9)

where the function c0(x) and the constants c1, c2 are to be
determined.

Denote

ũ(x, t) = u(x, t)− û(x, t), (10)

then the observer error system is as follows:

ũt(x, t) =ũxxx(x, t)+λ2ũxx(x, t)+λ1ũx(x, t)+λ0ũ(x, t)

+ c0(x)ũ(0, t),x ∈ (0,L) (11)
ũx(0, t) =c1ũ(0, t) (12)

ũxx(0, t) =c2ũ(0, t) (13)
ũ(L, t) =0. (14)

Let

ṽ(x, t) = ũ(x, t)eε̃x, (15)

where

ε̃ 6 λ2/3, (16)

then

ṽt(x, t) =ṽxxx(x, t)+ µ̃2ṽxx(x, t)+ µ̃1ṽx(x, t)+ µ̃0ṽ(x, t)

+ c0(x)eε̃xṽ(0, t),x ∈ (0,L) (17)
ṽx(0, t) =µ̃3ṽ(0, t) (18)

ṽxx(0, t) =µ̃4ṽ(0, t) (19)
ṽ(L, t) =0, (20)

where

µ̃2 =λ2−3ε̃ > 0 (21)

µ̃1 =3ε̃
2−2λ2ε̃ +λ1 (22)

µ̃0 =− (ε̃3−λ2ε̃
2 +λ1ε̃−λ0) (23)

µ̃3 =ε̃ + c1 (24)

µ̃4 =ε̃
2 +2ε̃c1 + c2. (25)

We would like to find a backstepping transformation:

ṽ(x, t) = w̃(x, t)−
∫ x

0
κ̃(x,y)w̃(y, t)dy, (26)

where the kernel function κ̃(x,y) ∈ R is to be determined,
to transform the system (17) − (20) into the following
exponentially stable target system:

w̃t(x, t) =w̃xxx(x, t)+ µ̃2w̃xx(x, t)+ µ̃1w̃x(x, t)+ ν̃0w̃(x, t),

x ∈ (0,L) (27)
w̃x(0, t) =µ̃3w̃(0, t) (28)

w̃xx(0, t) =ν̃4w̃(0, t) (29)
w̃(L, t) =0 (30)

where we firstly choose

ν̃0 <
1

4L2 µ̃2 =
1

4L2 (λ2−3ε̃), (31)

then for arbitrarily chosen c1, choose c2 such that

c2 >−
1
3

Lε̃
3 +

(
1
3

Lλ2 +1
)

ε̃
2 +

(
2c1−

1
3

Lλ1

)
ε̃

− 1
3

Lν̃0 +
1
2

c2
1−λ2c1 +

1
3

Lλ0−
1
2

λ1, (32)

lastly choose

ν̃4 =µ̃4 +
ν̃0− µ̃0

3
L

=
1
3

Lε̃
3 +

(
1− 1

3
Lλ2

)
ε̃

2 +

(
1
3

Lλ1 +2c1

)
ε̃

+
1
3

Lν̃0−
1
3

Lλ0 + c2, (33)

thus
µ̃1 +2µ̃2µ̃3− µ̃

2
3 +2ν̃4 > 0. (34)

Remark 1: Exponential stability of system (27)− (30)
with (21),(31),(34) is proved in Theorem 1 of [5], and
the exponential decay rate estimation 1

4L2 µ̃2 − ν̃0 can be
arbitrarily large by choosing ν̃0 small/negative enough.

By calculation and comparison between the systems
(17)− (20) and (27)− (30), the functions κ̃(x,y) and c0(x)
need to satisfy

κ̃xxx(x,y)+ κ̃yyy(x,y)+ µ̃2(κ̃xx(x,y)− κ̃yy(x,y))

+ µ̃1(κ̃x(x,y)+ κ̃y(x,y)) = (ν̃0− µ̃0)κ̃(x,y) (35)
κ̃(x,x) = 0 (36)

κ̃x(x,x) =
µ̃0− ν̃0

3
(x−L) (37)

κ̃(L,y) = 0 (38)

and

c0(x) =
[
κ̃yy(x,0)− (µ̃2 + µ̃3)κ̃y(x,0)

+(µ̃1 + µ̃2µ̃3 + ν̃4)κ̃(x,0)
]
e−ε̃x. (39)

Let

κ̃(x,y) = κ̄(x̄, ȳ), (40)

where

x̄ = L− y, ȳ = L− x, (41)
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then

c0(x) =
[
κ̄x̄x̄(L,L− x)+(µ̃2 + µ̃3)κ̄x̄(L,L− x)

+(µ̃1 + µ̃2µ̃3 + ν̃4)κ̄(L,L− x)
]
e−ε̃x, (42)

where κ̄(x̄, ȳ) satisfies

κ̄x̄x̄x̄(x̄, ȳ)+ κ̄ȳȳȳ(x̄, ȳ)− µ̃2(κ̄x̄x̄(x̄, ȳ)− κ̄ȳȳ(x̄, ȳ))

+ µ̃1(κ̄x̄(x̄, ȳ)+ κ̄ȳ(x̄, ȳ)) = (µ̃0− ν̃0)κ̄(x̄, ȳ) (43)
κ̄(x̄, x̄) = 0 (44)

κ̄x̄(x̄, x̄) =
ν̃0− µ̃0

3
x̄ (45)

κ̄(x̄,0) = 0. (46)

The above PDE is in class of (108) − (111) from the
Appendix (with µ̃0, µ̃1, µ̃2, ν̃0 replaced by µ0,µ1,−µ2,ν0
respectively). Thus, existence, regularity and invertibility of
κ̄(x̄, ȳ) and also κ̃(x,y) follow similarly as in Appendix.

Since the transformation (15) is also invertible, the fol-
lowing main theorem can be obtained.

Theorem 1: For any initial data u(·,0), û(·,0) ∈ L2(0,L),
the observer (6)− (9), with constant c1 arbitrarily chosen
firstly, then constant c2 chosen from (32),(16),(31) and
lastly function c0(x) derived by (42)−(46),(21)−(24),(33),
guarantees that the observer error system (11)− (14) has a
unique (mild) solution

ũ(·, t) ∈C([0,∞);L2(0,L)), (47)

and there exist positive constants M̃, ρ̃ such that

‖ũ(·, t)‖L2(0,L) 6 M̃e−ρ̃t‖ũ(·,0)‖L2(0,L). (48)

Moreover, if ũ(·,0) satisfies boundary compatibility condi-
tion, then

ũ(·, t) ∈C1([0,∞);L2(0,L)) (49)

is the classical solution to (11)− (14).

IV. OUTPUT FEEDBACK STABILIZATION

Based on the full state data recovered by the observer
(6)−(9), we now deal with the output feedback stabilization
problem of the system (1)−(5). Consider the observer (6)−
(9) with

U(t) =
∫ L

0
κ(L,y)û(y, t)eε(y−L)dy, (50)

where the constant ε and function κ(x,y) are from [5], that
is,

ε 6 λ2/3, (51)

and κ(x,y) satisfies

κxxx(x,y)+κyyy(x,y)+µ2(κxx(x,y)−κyy(x,y))

+µ1(κx(x,y)+κy(x,y)) = (µ0−ν0)κ(x,y) (52)
κ(x,x) = µ3−ν3 (53)

κx(x,x) =
ν0−µ0

3
x− (µ3−ν3)µ3 +µ4−ν4 (54)

κyy(x,0)− (µ2 +µ3)κy(x,0)+(µ1 +µ2µ3 +µ4)κ(x,0) = 0,
(55)

where

µ0 =− ε
3 +λ2ε

2−λ1ε +λ0 (56)

µ1 =3ε
2−2λ2ε +λ1 (57)

µ2 =−3ε +λ2 (58)
µ3 =ε +λ3 (59)

µ4 =ε
2 +2λ3ε +λ4 (60)

and ν0,ν3,ν4 are chosen such that

ν0 <
1

4L2 µ2, µ1 +2µ2ν3−ν
2
3 +2ν4 > 0. (61)

Let

v̂(x, t) = û(x, t)eεx, (62)

then

v̂t(x, t) =v̂xxx(x, t)+µ2v̂xx(x, t)+µ1v̂x(x, t)+µ0v̂(x, t)

− c0(x)eεxṽ(0, t),x ∈ (0,L) (63)
v̂x(0, t) =µ3v̂(0, t)+µ5ṽ(0, t) (64)

v̂xx(0, t) =µ4v̂(0, t)+µ6ṽ(0, t) (65)

v̂(L, t) =
∫ L

0
κ(L,y)v̂(y, t)dy, (66)

where

µ5 =λ3− c1 (67)
µ6 =2ε(λ3− c1)+λ4− c2. (68)

Apply the invertible transformation v̂ 7→ ŵ:

ŵ(x, t) = v̂(x, t)−
∫ x

0
κ(x,y)v̂(y, t)dy, (69)

then we get the following class of systems:

ŵt(x, t) =ŵxxx(x, t)+µ2ŵxx(x, t)+µ1ŵx(x, t)+ν0ŵ(x, t)

−
[

µ5κy(x,0)− (µ2µ5 +µ6)κ(x,0)+ c0(x)eεx

−
∫ x

0
κ(x,y)c0(y)eεydy

]
w̃(0, t),x ∈ (0,L) (70)

ŵx(0, t) =ν3ŵ(0, t)+ν5w̃(0, t) (71)
ŵxx(0, t) =ν4ŵ(0, t)+ν6w̃(0, t) (72)

ŵ(L, t) =0, (73)

where

ν5 =µ5 (74)
ν6 =− (µ3−ν3)µ5 +µ6. (75)

The w̃-system (27)− (30) and homogenous part of the
ŵ-system (70)− (73) are both exponentially stable. The
interconnection of two systems (ŵ, w̃) is a cascade, and the
combined system (70)− (73),(27)− (30) is exponentially
stable, which is to be proved.

Consider the Hilbert space

H= L2(0,L)×L2(0,L) (76)
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with an inner product

< ( f1,g1),( f2,g2)>=
∫ L

0
a f1(x) f2(x)+g1(x)g2(x)dx,

∀( f1,g1),( f2,g2) ∈H, (77)

where a > 0 is a constant to be determined.
Define the system operator A : D(A)(⊂ H)→ H as fol-

lows:

A( f ,g) =
(

f ′′′+µ2 f ′′+µ1 f ′+ν0 f

−
[

µ5κy(x,0)− (µ2µ5 +µ6)κ(x,0)+ c0(x)eεx

−
∫ x

0
κ(x,y)c0(y)eεydy

]
g(0),

g′′′+ µ̃2g′′+ µ̃1g′+ ν̃0g
)
,∀( f ,g) ∈ D(A), (78)

D(A) = {( f ,g) ∈ H3(0,L)×H3(0,L)| f (L) = g(L) = 0,
f ′(0) = ν3 f (0)+ν5g(0),g′(0) = µ̃3g(0),
f ′′(0) = ν4 f (0)+ν6g(0),g′′(0) = ν̃4g(0)}, (79)

then the (ŵ, w̃)-system (70)−(73),(27)−(30) can be written
as an evolution equation in H:

d(ŵ(·, t), w̃(·, t))
dt

= A(ŵ(·, t), w̃(·, t)). (80)

Lemma 1: If

(
1 ν3 ν4

)
eD1L

 1
0
0

 6= 0,

(
1 µ̃3 ν̃4

)
eD2L

 1
0
0

 6= 0, (81)

where

D1 =

 0 0 −ν0
1 0 −µ1
0 1 −µ2

 , D2 =

 0 0 −ν̃0
1 0 −µ̃1
0 1 −µ̃2

 , (82)

then A−1 exists and is compact on H. Hence, σ(A), the
spectrum of A, consists of isolated eigenvalues only.

Let ( f ,g) ∈ D(A), then

Re <A( f ,g),( f ,g)>

6a(ν0−
1

4L2 µ2 +
θ 2L
4m1

)‖ f‖2
L2(0,L)

+(ν̃0−
1

4L2 µ̃2)‖g‖2
L2(0,L)

−a
(
ν4 +µ2ν3−ν

2
3 +

1
2

µ1− (ν6 +µ2ν5)
2m2
)
| f (0)|2

− (ν̃4 + µ̃2µ̃3−
1
2

µ̃
2
3 +

1
2

µ̃1−a(ν2
5 +m1 +

1
4m2

))|g(0)|2

(83)

where

θ = sup
06x6L

∣∣∣(µ5κy(x,0)− (µ2µ5 +µ6)κ(x,0)+ c0(x)eεx

−
∫ x

0
κ(x,y)c0(y)eεydy

∣∣∣ (84)

and the constants m1 > 0,m2 > 0 are to be determined.
First choose

m1 >
θ 2L

µ2/4L2−ν0
(85)

0 < m2 6
ν4 +µ2ν3−ν2

3 +
1
2 µ1

(ν6 +µ2ν5)2 , (86)

then choose

0 < a 6
ν̃4 + µ̃2µ̃3− 1

2 µ̃2
3 +

1
2 µ̃1

ν2
5 +m1 +

1
4m2

, (87)

we get

Re <A( f ,g),( f ,g)>6−ρ‖( f ,g)‖2
H, ∀( f ,g) ∈ D(A),

(88)

where

ρ = min
{

1
4L2 µ2−ν0−

θ 2L
4m1

,
1

4L2 µ̃2− ν̃0

}
> 0. (89)

We will drop the subscripts from the norms being used in
the sequel when clear from the context.

Lemma 2: A is dissipative in H, and A generates a C0-
semigroup eAt of contractions in H. For each λ ∈ σ(A),
Reλ < 0.

Define a Lyapunov function

Vw(t) =
a
2
‖ŵ(·, t)‖2 +

1
2
‖w̃(·, t)‖2, (90)

then we can get

V̇w(t)6−2ρVw(t). (91)

Since A generates a C0-semigroup eAt , this semigroup must
be exponentially stable.

Theorem 2: A generates an exponentially stable C0 semi-
group on H. For any initial data (ŵ(·,0), w̃(·,0)) ∈H, there
exists a unique (mild) solution to the transformed (ŵ, w̃)-
system (70)− (73), (27)− (30) such that

(ŵ(·, t), w̃(·, t)) ∈C([0,∞);H), (92)

and

‖(ŵ(·, t), w̃(·, t))‖6 e−ρt‖(ŵ(·,0), w̃(·,0))‖. (93)

Moreover, if (ŵ(·,0), w̃(·,0)) ∈ D(A), then

(ŵ(·, t), w̃(·, t)) ∈C1([0,∞);H) (94)

is the classical solution.
From invertibility of the transforms (15),(26),(62),(69),

this following main theorem holds.
Theorem 3: For any initial data (u(·,0), û(·,0))∈H, there

exists a unique (mild) solution to the closed-loop (u, û)-
system (1)−(5),(6)−(9) (in which constant c1 is arbitrarily
chosen firstly, then constant c2 is chosen from (32),(16),(31)
and lastly function c0(x) is derived by (42)− (46),(21)−
(24),(33) ) with the controller determined from (50)− (61),
such that

(u(·, t), û(·, t)) ∈C([0,∞);H), (95)
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and there exists a positive constant Mu such that

‖(u(·, t), û(·, t))‖6 Mue−ρt‖(u(·,0), û(·,0))‖. (96)

Moreover, if (u(·,0), û(·,0)) satisfies the boundary compati-
bility condition, then

(u(·, t), û(·, t)) ∈C1([0,∞);H) (97)

is the classical solution.
Remark 2: ρ is an exponential decay rate estimate, which

can be arbitrarily large by choosing ν0, ν̃0 small enough and
then choosing m1 large enough.

V. CONCLUSION AND FUTURE WORK

A control design for stabilizing a class of LKdVA is pre-
sented, by means of the non-collocated boundary feedback.
An arbitrary exponential decay rate of the resulting closed-
loop control systems is achieved.

For future work, subclasses of LKdVA which are Riesz
spectral systems are to be considered, for which more useful
results might be derived. Also, stabilization of the linearized
KdV systems with spatially varying coefficients can be an
interesting problem. Another problem is stabilization for the
case when some coefficients of the systems are unknown.

APPENDIX

Consider the following subclass of LKdVA

vt(x, t) =vxxx(x, t)+µ2vxx(x, t)+µ1vx(x, t)+µ0v(x, t),

x ∈ (0,L) (98)
v(0, t) =0 (99)

vx(0, t) =0 (100)
v(L, t) =V (t) (101)

and an exponentially stable target system

wt(x, t) =wxxx(x, t)+µ2wxx(x, t)+µ1wx(x, t)+ν0w(x, t),

x ∈ (0,L) (102)
w(0, t) =0 (103)

wx(0, t) =0 (104)
w(L, t) =0, (105)

which can be derived from [5] by choosing ν1 = µ1,ν2 =
µ2,ν3 = µ3 and taking a critical case of ν4 = µ4 =+∞. Here
µ0,µ1 are arbitrary known constants and

µ2 > 0,ν0 <
1

4L2 µ2. (106)

In order to obtain the state feedback controller, we use the
proposed transformation v 7→ w:

w(x, t) = v(x, t)−
∫ x

0
k(x,y)v(y, t)dy (107)

with the kernel function k(x,y) ∈ R to satisfy:

kxxx(x,y)+ kyyy(x,y)+µ2(kxx(x,y)− kyy(x,y))

+µ1(kx(x,y)+ ky(x,y)) = (µ0−ν0)k(x,y) (108)
k(x,x) = 0 (109)

kx(x,x) =
ν0−µ0

3
x (110)

k(x,0) = 0, (111)

which is the corresponding special case of (57)−(60) in [5].
Thus, the following lemma holds:

Lemma 3: The system of equations (108)− (111) has a
unique C3 solution, and the system of equations for kernel
function l(x,y) of the inverse transformation w 7→ v:

v(x, t) = w(x, t)+
∫ x

0
l(x,y)w(y, t)dy, (112)

also has a unique C3 solution.
From continuity of the transformations (107),(112) and

exponential stability of the system (102)− (105), the fol-
lowing lemma holds.

Theorem 4: For any initial data v(·,0) ∈ L2(0,L), there
exists a unique (mild) solution to the closed-loop system
(98)− (101) (where µ0, µ1 are arbitrarily chosen, and µ2,
ν0 are chosen from (106)) with the controller

V (t) =
∫ L

0
k(L,y)v(y, t)dy (113)

such that

v(·, t) ∈C([0,∞);L2(0,L)), (114)

and there exist positive constants Mv,ρv such that

‖v(·, t)‖6 Mve−ρvt‖v(·,0)‖. (115)

Moreover, if v(·,0) satisfies the boundary compatibility con-
dition, then

v(·, t) ∈C1([0,∞);L2(0,L)) (116)

is the classical solution.
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