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Abstract— In this paper, backstepping boundary controllers
are designed for a class of linearized Korteweg-de Vries systems
with possible anti-diffusion, and the resulting closed-loop sys-
tems can achieve arbitrary exponential decay rate. Semigroup
of linear operators is constructed in analyzing well-posedness
and stability of the target systems, and mathematical induction
is used in proving existence of kernel functions. An example is
also presented, which illustrates performance of the controller.
The decay rate estimate derived in this paper is not necessarily
equal to decay rate, which can be seen from the appendix.

Index Terms— Linearized Korteweg-de Vries systems; Anti-
diffusion; Backstepping; Arbitrary exponential decay rate;
Semigroup of linear operators.

I. INTRODUCTION

Korteweg-de Vries equation (KdV equation for short) is a
nonlinear partial differential equation (PDE for short) of third
order, which can be used to model waves on shallow water
surfaces and ion-acoustic waves in plasmas. Controllability
and stabilization of KdV equations are topics of active
research (see, e.g., [1], [2], [3]). This paper is devoted to
stabilizing a class of linearized KdV systems with possible
anti-diffusion by backstepping boundary control.

The method of backstepping can be used for stabilizing
unstable PDE systems. For example, in [4], [5], [6], back-
stepping boundary controllers are designed for some unstable
parabolic, hyperbolic and even complex-valued PDEs, etc,
and the resulting closed-loop control systems are exponen-
tially stable.

Arbitrary exponential decay rate is desirable in engineer-
ing, which has also obtained much attention from scientists
(see, e. g. [7], [8], [9], [3]). One elegant method to analyze
stability of PDE systems is through applying theory of
semigroups of linear operators (see, e. g, [10], [11]).

This paper is organized as follows. In Section II, problem
formulation is presented. Well-posedness and exponential
stability with arbitrary decay rate of a class of target systems
are analyzed and proved in Section III, where theory of
semigroups of linear operators is applied. In Section IV ,
existence of kernel functions for backstepping boundary
controllers is proved by mathematical induction, and direct
and inverse transformation between the v-system and w-
system are derived. Then, exponential stability with arbitrary
decay rate of the resulting closed-loop control systems is
proved. Moreover, an example is presented in Section V .
Some conclusion and possible future work are given in
Section V I. Exponential decay rate estimate derived in this
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paper is not necessarily equal to decay rate, as can be seen
from Appendix .

II. PROBLEM FORMULATION

Consider the following class of linearized KdV control
systems with anti-diffusion

ut(x, t) =uxxx(x, t)+λ2uxx(x, t)+λ1ux(x, t)

+λ0u(x, t),x ∈ (0,L) (1)
ux(0, t) =λ3u(0, t) (2)

uxx(0, t) =λ4u(0, t) (3)
u(L, t) =U(t). (4)

Remark 1: λ0,λ1,λ2,λ3,λ4 can take any values. We call
this class of systems ”with anti-diffusion” only to emphasize
that λ2 is allowed to be negative.

Let

v(x, t) = u(x, t)eεx, (5)

where ε is to be determined later, then we get the following
systems

vt(x, t) =vxxx(x, t)+µ2vxx(x, t)+µ1vx(x, t)

+µ0v(x, t),x ∈ (0,L) (6)
vx(0, t) =µ3v(0, t) (7)

vxx(0, t) =µ4v(0, t) (8)
v(L, t) =V (t), (9)

where

µ0 =− ε
3 +λ2ε

2−λ1ε +λ0 (10)

µ1 =3ε
2−2λ2ε +λ1 (11)

µ2 =−3ε +λ2 (12)
µ3 =ε +λ3 (13)

µ4 =ε
2 +2λ3ε +λ4 (14)

V (t) =U(t)eεL. (15)

III. TARGET SYSTEM

Consider the following class of target systems

wt(x, t) =wxxx(x, t)+ν2wxx(x, t)+ν1wx(x, t)

+ν0w(x, t),x ∈ (0,L) (16)
wx(0, t) =ν3w(0, t) (17)

wxx(0, t) =ν4w(0, t) (18)
w(L, t) =0, (19)
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where

ν2 > 0, ν1 +2ν2ν3−ν
2
3 +2ν4 > 0, ν0 <

1
4L2 ν2. (20)

Remark 2: The system of inequalities (20) is a sufficient
but not necessary condition for the target systems (16)−
(19) to be exponentially stable. Moreover, from what will
be stated later in Section IV , we will choose

ν1 = µ1,ν2 = µ2. (21)

There are two ways of making design choices for the
parameters in order to satisfy (20) and (21):

(1). First choose a ε 6 λ2/3 such that µ2 > 0. Then, choose
ν0,ν3,ν4 such that

ν1 +2ν2ν3−ν
2
3 +2ν4 > 0, ν0 <

1
4L2 ν2, (22)

where ν1 and ν2 are known.
(2). First choose any ν3,ν4, then choose ε from the

following system of inequalities:

−3ε +λ2 > 0 (23)

3ε
2−2(λ2 +3ν3)ε +λ1 +2λ2ν3−ν

2
3 +2ν4 > 0, (24)

which always has solutions. Thus, ν1,ν2 are known. Last,
choose

ν0 <
1

4L2 ν2. (25)

To establish stability and well-posedness for this class of
systems, consider the state Hilbert space H= L2(0,L). Define
the system operator A : D(A )(⊂H)→H as follows:

A f = f ′′′+ν2 f ′′+ν1 f ′+ν0 f ,∀ f ∈ D(A ), (26)

D(A ) = { f ∈ H3(0,L) | f ′(0) = ν3 f (0),
f ′′(0) = ν4 f (0), f (L) = 0}, (27)

then the system (16)− (19) can be written as an evolution
equation in H:

dw(·, t)
dt

= A w(·, t). (28)

Lemma 1: If
(

1 ν3 ν4
)

eDL

 1
0
0

 is nonzero,

where

D =

 0 0 −ν0
1 0 −ν1
0 1 −ν2

 , (29)

then A −1 exists and is compact on H. Hence, σ(A ),
the spectrum of A , consists of isolated eigenvalues only:
σ(A ) = σp(A ), where σp(A ) denotes the set of eigenval-
ues of A . Moreover, each λ ∈ σ(A ) is geometrically simple
and satisfies the characteristic equation

0 =eσ1L(σ2−σ3)(σ2σ3−ν3(σ2 +σ3)+ν4)

+ eσ2L(σ3−σ1)(σ3σ1−ν3(σ3 +σ1)+ν4)

+ eσ3L(σ1−σ2)(σ1σ2−ν3(σ1 +σ2)+ν4) , (30)

where

σ1 =−
ν2

3
+α +β (31)

σ2 =−
ν2

3
+ωα +ω

2
β (with ω = e2/3πi) (32)

σ3 =−
ν2

3
+ω

2
α +ωβ , (33)

and

α =
3

√
τ1 +

√
τ2

1 + τ3
2 , β =

3

√
τ1−

√
τ2

1 + τ3
2 , (34)

τ1 =
ν1ν2

6
−

ν3
2

27
− ν0−λ

2
, τ2 =

ν1

3
− ν2

2
9
. (35)

An eigenfunction f corresponding to λ is

f (x) =(σ2−σ3)(σ2σ3−ν3(σ2 +σ3)+ν4)eσ1x

+(σ3−σ1)(σ3σ1−ν3(σ3 +σ1)+ν4)eσ2x

+(σ1−σ2)(σ1σ2−ν3(σ1 +σ2)+ν4)eσ3x. (36)
Proof: (Part 1) By calculation, we get

A −1 f = f1, ∀ f ∈H, (37)

f1(x) = f1(0)
(

1 ν3 ν4
)

eDx

 1
0
0


+
∫ x

0
f (τ)

(
0 0 1

)
eD(x−τ)

 1
0
0

dτ, (38)

where

f1(0) =−
∫ L

0
f (τ)

(
0 0 1

)
eD(L−τ)

 1
0
0

dτ

×

( 1 ν3 ν4
)

eDL

 1
0
0

−1

. (39)

Hence we get the unique f1 ∈ D(A ) and thus A −1 exists
and is compact on H by the Sobolev embedding theorem.
Therefore, σ(A ), the spectrum of A , consists of isolated
eigenvalues only.

(Part 2) For any λ ∈ σp(A ), we have

A f = f ′′′+ν2 f ′′+ν1 f ′+ν0 f = λ f (40)
f ′(0) = ν3 f (0), f ′′(0) = ν4 f (0), f (L) = 0, (41)

which has at least one nonzero solution. If it has two linearly
independent solutions f1, f2, then there exists constants a,b
(a2+b2 6= 0) such that a f1(0)+b f2(0) = 0. Thus, f = a f1+
b f2 satisfies

A f = f ′′′+ν2 f ′′+ν1 f ′+ν0 f = λ f (42)
f (0) = f ′(0) = f ′′(0) = f (L) = 0, (43)

which has only zero solution. Hence, a f1 + b f2 ≡ 0, which
contradicts with the assumption. Therefore, each λ ∈ σp(A )
is geometrically simple.

(Part 3) For any λ ∈ σp(A ), from (40), we have

f (x) = c1eσ1x + c2eσ2x + c3eσ3x (c2
1 + c2

2 + c2
3 6= 0). (44)
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From (41), we get∣∣∣∣∣∣
σ1−ν3 σ2−ν3 σ3−ν3
σ2

1 −ν4 σ2
2 −ν4 σ2

3 −ν4
eσ1L eσ2L eσ3L

∣∣∣∣∣∣= 0 (45)

and the characteristic equation is (30). We can also derive
the corresponding eigenfunction (36).

Lemma 2: A is dissipative in H, and A generates a C0-
semigroup eA t of contractions in H.

Proof: Let f ∈ D(A ), then

Re < A f , f >=− (
ν1

2
+ν2ν3−

ν2
3

2
+ν4)| f (0)|2

− 1
2
| f ′(L)|2−ν2‖ f ′‖2 +ν0‖ f‖2

6(ν0−
1

4L2 ν2)‖ f‖2

<0. (46)

Hence A is dissipative in H, and A generates a C0-
semigroup eA t of contractions in H by the Lumer-Philips
theorem.

Theorem 1: For each λ ∈ σ(A ), Reλ < 0. A generates
an exponentially stable C0-semigroup on H. For any initial
value w(·,0) ∈ H, there exists a unique (mild) solution to
(16)− (19) such that

w(·, t) ∈C([0,∞);H), (47)

and there exists a positive constant ρ such that

‖w(·, t)‖6 e−ρt‖w(·,0)‖. (48)

Moreover, if w(·,0) ∈ D(A ), then

w(·, t) ∈C1([0,∞);H) (49)

is the classical solution to (16)− (19).
Proof: From the proof of Lemma 2, we have

Re < A f , f >6−ρ‖ f‖2, ∀ f ∈ D(A ), (50)

where

ρ =
1

4L2 ν2−ν0 > 0. (51)

Define a Lyapunov function

L(t) =
1
2
‖w(·, t)‖2, (52)

then we can get

L̇(t)6−2ρL(t), (53)

and thus

L(t)6 L(0)e−2ρt . (54)

Since A generates a C0-semigroup eA t , this semigroup must
be exponentially stable.

Remark 3: ρ is a lower bound estimate of exponential
decay rate, which can be arbitrarily large by choosing ν0
small enough. As can be seen from Appendix , it’s not
necessarily equal to decay rate.

IV. STATE FEEDBACK CONTROLLER

A transformation v 7→ w is to be seeked to transform the
class of control systems (6)− (9) into the exponentially
stable target system (16)− (19), and it’s postulated in the
following form

w(x, t) = v(x, t)−
∫ x

0
κ(x,y)v(y, t)dy, (55)

where the gain function κ(x,y) ∈ R is to be determined.
Choose

ν1 = µ1, ν2 = µ2, (56)

then a sufficient condition for (16)− (18) to hold is that
κ(x,y) satisfies

κxxx(x,y)+κyyy(x,y)+µ2(κxx(x,y)−κyy(x,y))

+µ1(κx(x,y)+κy(x,y)) = (µ0−ν0)κ(x,y) (57)
κ(x,x) = µ3−ν3 (58)

κx(x,x) =
ν0−µ0

3
x− (µ3−ν3)µ3 +µ4−ν4 (59)

κyy(x,0)− (µ2 +µ3)κy(x,0)+(µ1 +µ2µ3 +µ4)κ(x,0) = 0.
(60)

Let

κ(x,y) = p(x,y)ec(x−y), p(x,y) = G(ξ ,η), (61)

where

c =−µ2 +µ3

2
, ξ = x+ y, η = x− y, (62)

then

2Gξ ξ ξ (ξ ,η)+6Gξ ηη(ξ ,η)−2(µ2 +3µ3)Gξ η(ξ ,η)

+2
(

µ1−
(µ2 +µ3)(µ2−3µ3)

4

)
Gξ (ξ ,η)

= (µ0−ν0)G(ξ ,η) (63)
G(ξ ,0) = µ3−ν3 (64)

Gη(ξ ,0) =
ν0−µ0

6
ξ +(µ3−ν3)

µ2−µ3

2
+µ4−ν4 (65)

Gξ ξ (ξ ,ξ )−2Gξ η(ξ ,ξ )+Gηη(ξ ,ξ )

+

(
µ1−

(µ2−µ3)
2

4
+µ4

)
G(ξ ,ξ ) = 0. (66)

By a lengthy calculation, an integral equation can be
obtained:

G(ξ ,η) =G0(ξ ,η)+F [G](ξ ,η). (67)

Here

G0(ξ ,η) =
ν0−µ0

6
η(ξ −η)+ JeEη

(
1
0

)
+

2
3
(ν0−µ0)

∫
η

0

(
0 1

)
eE(η−σ)

(
1
0

)
dσ (68)
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and

F [G](ξ ,η) =
∫

ξ

η

∫
η

0

∫
τ

0
(d1G(s, t)+d2Gs(s, t)

+d3Gst(s, t)+d4Gsss(s, t))dtdτds

+4
∫

η

0

∫
σ

0
(d1G(σ , t)+d2Gσ (σ , t)

+d3Gσt(σ , t)+d4Gσσσ (σ , t))dt

×
(

0 1
)

eE(η−σ)

(
1
0

)
dσ , (69)

where

E =

(
0 m
1 0

)
(70)

J =
(

µ3−ν3 (µ3−ν3)
µ2−µ3

2 +µ4−ν4
)

(71)

m =−
(

µ1−
(µ2−µ3)

2

4
+µ4

)
(72)

and

d1 =
1
6
(µ0−ν0) (73)

d2 =−
1
3

(
µ1−

(µ2 +µ3)(µ2−3µ3)

4

)
(74)

d3 =
1
3
(µ2 +3µ3) (75)

d4 =−
1
3
. (76)

Let

Gn+1(ξ ,η) = F [Gn(ξ ,η)],n = 0,1,2, · · · , (77)

then

G(ξ ,η) =
∞

∑
n=0

Gn(ξ ,η). (78)

Denote

e1 = |d1|, e2 = |d2|, e3 = |d3|, e4 = |d4| (79)

and

M =
2
3
|µ0−ν0|+ sup

06η61

∣∣∣∣JeEη

(
1
0

)
+

2
3
(ν0−µ0)

∫
η

0

(
0 1

)
eE(η−σ)

(
1
0

)
dσ

∣∣∣∣
+2 sup

06η61

∣∣∣∣JeEη

(
0
1

)
+

2
3
(ν0−µ0)

∫
η

0

(
0 1

)
eE(η−σ)

(
0
1

)
dσ

∣∣∣∣ (80)

N =4(e1 + e2 + e3 + e4)

×

(
1+ sup

06η61

∣∣∣∣( 0 1
)

eE(η−σ)

(
1
0

)∣∣∣∣
+ sup

06η61

∣∣∣∣( 0 1
)

eE(η−σ)

(
0
1

)∣∣∣∣
)
,

(81)

then we can get

|G1(ξ ,η)|6 MN(ξ +η) (82)

|G1
η(ξ ,η)|6 MN (83)

|G1
ξ
(ξ ,η)|6 MN (84)

|G1
ξ η

(ξ ,η)|6 MN (85)

|G1
ξ ξ
(ξ ,η)|6 MN (86)

|G1
ξ ξ η

(ξ ,η)|6 MN (87)

|G1
ξ ξ ξ

(ξ ,η)|= 0. (88)

Moreover, by mathematical induction, it can be proved that
for n > 1,

|Gn(ξ ,η)|6 MNn (ξ +η)n

n!
(89)

|Gn
η(ξ ,η)|6 MNn (ξ +η)n−1

(n−1)!
(90)

|Gn
ξ
(ξ ,η)|6 MNn (ξ +η)n−1

(n−1)!
(91)

|Gn
ξ ξ · · ·ξ︸ ︷︷ ︸

m−1

η
(ξ ,η)|6 MNn (ξ +η)n−1

(n−1)!
(92)

|Gn
ξ ξ · · ·ξ︸ ︷︷ ︸

m

(ξ ,η)|6 MNn (ξ +η)n−1

(n−1)!
(93)

|Gn
ξ ξ · · ·ξ︸ ︷︷ ︸

n+1

η
(ξ ,η)|6 MNn (ξ +η)n−1

(n−1)!
(94)

|Gn
ξ ξ · · ·ξ︸ ︷︷ ︸

n+2

(ξ ,η)|= 0, (95)

where

2 6 m 6 n+1. (96)

From (68)− (69), we can get that Gn(ξ ,η) is C3. There-
fore, G(ξ ,η) = ∑

∞
n=0 Gn(ξ ,η) converges absolutely and uni-

formly, and G(ξ ,η) is C3 which has a bound

|G(ξ ,η)|6 MeN(ξ+η). (97)

Since we have found the function G(ξ ,η), existence of
function p(x,y) and kernel κ(x,y) is obtained. Moreover,
since the transformation (55) is continuous, there exists a
positive constant Cκ such that

‖w‖6Cκ‖v‖. (98)

The backstepping transformation (55) is invertible, and
inverse transformation w 7→ v can also be postulated as
follows:

v(x, t) = w(x, t)+
∫ x

0
ι(x,y)w(y, t)dy, (99)
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which satisfies

ιxxx(x,y)+ ιyyy(x,y)+µ2(ιxx(x,y)− ιyy(x,y))

+µ1(ιx(x,y)+ ιy(x,y)) = (ν0−µ0)ι(x,y) (100)
ι(x,x) = µ3−ν3 (101)

ιx(x,x) =
ν0−µ0

3
x− (µ3−ν3)ν3 +µ4−ν4 (102)

ιyy(x,0)− (µ2 +ν3)ιy(x,0)+(µ1 +µ2ν3 +ν4)ι(x,0) = 0.
(103)

Similar results about existence and regularity of the kernel
ι(x,y) can be proved in a similar way as proving for
kernel κ(x,y). Moreover, the inverse transformation is also
continuous, and thus there exists a positive constant Cι such
that

‖v‖6Cι‖w‖. (104)

Then from (5),(48),(98),(104), there exists a constant Cε

such that

‖u(·, t)‖6CεCιCκ e−ρt‖u(·,0)‖, (105)

which proves exponential decay for the class of closed-loop
control systems (1)− (4) with controllers

U(t) =
∫ L

0
κ(L,y)u(y, t)eε(y−L)dy. (106)

Theorem 2: For any initial value u(·,0) ∈H, there exists
a unique (mild) solution to the closed-loop system (1)− (4)
with (106) such that

u(·, t) ∈C([0,∞);H), (107)

and there exists positive constants Mu,ρ such that

‖u(·, t)‖6 Mue−ρt‖u(·,0)‖. (108)

Moreover, if u(·,0) satisfies boundary compatibility condi-
tion, then

u(·, t) ∈C1([0,∞);H) (109)

is the classical solution.

V. AN EXAMPLE

Consider the following subclass of control systems as an
example:

ut(x, t) =uxxx(x, t)+λ0u(x, t) (110)
ux(0, t) =0 (111)

uxx(0, t) =0 (112)
u(1, t) =U(t). (113)

Choose ε = 0, that is, v(x, t) = u(x, t), and set the target
system as follows:

wt(x, t) =wxxx(x, t)+ν0w(x, t) (114)
wx(0, t) =0 (115)

wxx(0, t) =0 (116)
w(1, t) =0. (117)

Through spectrum analysis and some calculation, we get
that, for λ0 > 6.3297, the open-loop systems (110)− (113)
(with U(t) = 0) have eigenvalues on RHS of the complex
plane and thus are unstable. However, by choosing ν0 <
6.3297, all eigenvalues of target systems are on LHS of the
complex plane (see, e.g., TABLE 1) and thus the equivalent
closed-loop control systems are asymptotically stable. What’s
more, for ν0 < 0, we have proved that they’re exponentially
stable, and the exponential decay rate can be arbitrarily large
by choosing ν0 to be small enough.

Real parts of uncontrolled system with closed-loop system with
first 7 eig. λ0 = 100 ν0 =−100

1st eig. 93.6703 -106.3297

2nd eig. -61.1000 -261.1000

3rd eig. -645.9000 -845.9000

4th eig. −1.9467×103 −2.1467×103

5th eig. −4.2501×103 −4.4501×103

6th eig. −7.8423×103 −8.0423×103

7th eig. −1.3010×104 −1.3210×104

TABLE I
REAL PARTS OF FIRST SEVEN EIGENVALUES

Remark 4: The eigenvalues of (110)−(113) (with U(t) =
0) and (114)−(117) are (lnθ)3+λ0 and (lnθ)3+ν0 respec-
tively, where θ are roots of the following equation:

θ +θ
ω +θ

ω2
= 0 (118)

That is, eigenvalues of target systems are open-loop eigen-
values shifted to the left in the complex plane by the same
distance λ0−ν0.

For the kernel function, first we have

G0(ξ ,η) =
ν0−µ0

6
η(ξ +η). (119)

Then, by performing some lengthy calculations, we get the
following formula:

Gk(ξ ,η) =
[ k

3 ]

∑
i=0

(
ai,0,kη

3k+2−3i

+
k+1−3i

∑
j=1

ai, j,kη
3k+2− j−3i(ξ j−η

j)

)

=
[ k

3 ]

∑
i=0

η
3k+2−3i

(
k+1−3i

∑
j=0

bi, j,k(
ξ

η
) j

)
(120)

for k > 1, where all coefficients ai,0,k,ai, j,k,bi, j,k are constants
and [x] denotes the integer not larger than x.

VI. CONCLUSION AND FUTURE WORK

In this paper, backstepping boundary controllers are de-
signed for a class of linearized KdV systems with pos-
sible anti-diffusion. The target systems considered can be
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exponentially stable with arbitrary decay rate. Since the
backstepping transformation is invertible, same properties
hold for the resulting closed-loop control system.

For future work, we are to consider control design for
cascaded/coupled KdV-ODE systems with possible anti-
diffusion, such as

Ẋ(t) =AX(t)+Bu(0, t) (121)
ut(x, t) =uxxx(x, t)+λ2uxx(x, t)+λ1ux(x, t)

+λ0u(x, t),x ∈ (0,L) (122)
ux(0, t) =λ3u(0, t)+CX(t) (123)

uxx(0, t) =λ4u(0, t) (124)
u(L, t) =U(t). (125)

Another problem which might bring some challenges is to
derive optimal decay rates for the target systems and resulting
closed-loop control systems.

APPENDIX

If choosing ν3 = ν4 = 0, then for the class of target systems
(16)− (19) with

ν1 > 0, ν2 > 0, ν0 6
1

4L2 ν2, (126)

the following lemma holds.
Lemma 3: For each λ ∈ σ(A ), Reλ < 0. Moreover, A

generates an asymptotically stable C0-semigroup on H.
Proof: Following the proof of Lemma 2, we can get

that for each λ ∈ σ(A ), Reλ 6 0. Let λ ∈ σ(A ) be on the
imaginary axis and f ∈D(A ) be its associated eigenfunction
of A , then we have Re < A f , f >= 0, hence, f ′(L) =
0, ν0 = ν1 = ν2 = 0. That is, there exist y(x)∈H3(0,L)\{0}
and λ on the imaginary axis such that

y′′′−λy = 0,x ∈ (0,L) (127)
y′(0) = y′′(0) = y(L) = y′(L) = 0. (128)

Denote by z ∈H3(R) its prolongation by 0, then

z′′′−λ z = y(0)δ ′′0 − y′′(L)δL in D ′(R), (129)

where δx0 denotes the Dirac measure at x0. This is equivalent
to the existence of complex numbers φ ,ψ,λ (with φ 6=
0, ψ 6= 0) and a function z ∈ H3(R) with compact support
in [−L,L] such that

z′′′−λ z = φδ
′′
0 −ψδL in D ′(R). (130)

Take Fourier transformation, then(
(iξ )3−λ

)
ẑ(ξ ) = φ(iξ )2−ψe−iLξ in D ′(R), (131)

and (setting λ =−ip3)

ẑ(ξ ) =−i
φξ 2 +ψe−iLξ

ξ 3− p3 . (132)

Thus, there exist p∈C and (φ ,ψ)∈C2\{(x,y)|x 6= 0,y 6= 0}
such that

f (ξ ) :=
φξ 2 +ψe−iLξ

ξ 3− p3 (133)

is an entire function in C. Since the roots of ξ 3− p3 are
p,ω p,ω2 p, this holds only if they are all also roots of φξ 2+
ψe−iLξ . Then we have

e−iLp =− φ

ψ
p2 (134)

e−iLω p =− φ

ψ
ω

2 p2 (135)

e−iLω2 p =− φ

ψ
ω

4 p2. (136)

Substitute (134) into (135) and (136), multiply both sides
of the resulting equations, then

p2 =−ψ

φ
,−ω

ψ

φ
or −ω

2 ψ

φ
. (137)

However, by substituting (137) into (135), we get con-
tradictions for all three cases, which proves that for each
λ ∈ σ(A ), Reλ < 0. Moreover, since from (54),

L(t)6 L(0), (138)

then A generates an asymptotically stable C0-semigroup on
H by the Arendt-Batty-Lyubich-Phong theorem.

Remark 5: If furtherly choosing ν0 = ν1 = ν2 = 0, then
the class of target systems (16)− (19) has been proved to
be exponentially stable in [12].
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