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Backstepping Stabilization of the Linearized Saint-Venant-Exner Model:
Part II- Output feedback

Ababacar Diagne, Mamadou Diagne, Shuxia Tang and Miroslav Krstic

Abstract— We consider a coupled Saint-Venant-Exner (SVE)
model introduced in a companion paper. This studied model
describes the water dynamics in a sediment-filled canal with
arbitrary values of canal bottom slope, friction, porosity, and
water-sediment interaction under subcritical or supercritical
flow regime. It consists of two rightward and one leftward
convecting transport Partial Differential Equations (PDEs). A
single boundary input control (with actuation located only
at downstream) strategy is adopted and the backstepping
approach developed for the first order linear hyperbolic PDEs is
used. A full state feedback exponentially stabilizing controller is
designed in the companion paper. In this paper, we first design
an exponentially convergent Luenberger observer. Then, based
on the full state controller and reconstruction of the distributed
state from the observer, we achieve output feedback exponential
stabilization of the model.

I. INTRODUCTION

The SVE model, which describes a strong liquid-sediment
interaction, has attracted considerable attention over the past
decades. Several theoretical and experimental studies have
been proposed in the literature, considering the flow and
sediment characteristics of the water motion. These studies
also addressed the influence of the particle size, shape and
density. However, the control of such systems, modeled by
nonlinear hyperbolic PDEs, is left out in most of the studies.

Very recently, [1] proposed a singular perturbation ap-
proach for the synthesis of boundary control for hyperbolic
systems. The effectiveness of the controller is illustrated
using the linearized SVE model. In [2] explicit boundary
dissipative conditions are given for the exponential stability
in .#2-norm of one dimensional linear hyperbolic systems of
balance laws. The proposed Lyapunov approach is applied
to the linearized SVE equations with successful results.
However, on-line measurements of the water levels at both
ends of the spatial domain, namely, at upstream (x = 0) and
downstream (x = L) are assumed to be available. Later on, a
priori estimation technique and the Faedo-Galerkin method
are proposed in [3] for the design of a linear feedback control
law that requires only downstream measurements.

In this paper, using the backstepping design [4], [5], [6],
we achieve exponential stabilization of the coupled SVE
model presented in [2] and discussed widely in the compan-
ion paper [6]. A single boundary input control strategy (with
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actuation located only at downstream) is adopted. A back-
stepping output feedback controller is designed based on the
reconstruction of the distributed state with an exponentially
convergent Luenberger observer. We employ a sole sensor at
the upstream (x = 0) to derive this observer, which estimates
the distributed system over the domain. The Froude number
is set to Fr =1.6. As a consequence, the flow regime is
supercritical (torrential), in other words, all the information
of the fluid part travel downwards. With the backstepping
method, we achieve the exponential stability results without
imposing any conditions in contrast to [2].

II. THE SAINT-VENANT-EXNER MODEL

We consider stabilizing the SVE model around a steady-
state using an output feedback backstepping controller. The
full description of the physical model defined below, is
detailed in the companion paper [6].
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III. PRELIMINARIES
A. Linearized model

Here, we recall briefly the abstract formulation of the
linearized version of (1). The derivation of the following
representation is fully described in our companion paper [6].

diuy + Y10y = 11Uy + Crous + 0 v (2a)
Oy + V2 0yuts = G111 + Onur + OV (2b)
0V — WO = Nyuy + Mauy + 0 v. (2¢)

Introducing, w(z,x) = v(t,x)exp <f%x> , we tranform (2)
into

8,u1 —|—’)/](9xu1 = O11U1 +G12M2+OC(X)W (3a)
Oty + Yo 0us = Oa1uy + Opup + (X)W (3b)
ow — oxyw = 0y (x)uy + 62 (x)uz (3¢)

Yy

with a(x) = a; exp ( i ) and 6j(x) = o exp (%x) for
j=1,2, and the boundary and initial conditions are

u;(t,0) = giw(t,0) fori=1,2, (4a)
W(tal):p]ul(t71)+p2u2(ta1)+U(t)a (4b)
w(0,x) =w®(x), u;(0,x) = ud (x) fori=1,2. (4c)
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As shown in the companion paper [6] (Theorem 1), the
following state feedback controller

1
U(0) == pun(t.1) = pat. )+ [ [l (1,E)r(x:8)
tho(LEm(xE) +h(1.Ew(.E)] . ©)

stabilizes the system (3) with the boundary and initial con-
ditions (4) to the origin. The function k; are the solutions
of the gain kernel PDEs obtained after the transformation of
(3) into a suitable target system (see [6]).
Remark 1: We recover a useful classification of flows,

based on the dimensionless Froude number defined as

V*

gH*'
Let us mention that in the case where the flow regime is
supercritical (F, > 1), the following changes of variable
will be considered regarding on the characteristics (see
the companion paper [6], section C. Change of notations)
v(tax) = é2(tvx)7 ul(t’x) = él(t’x)’ u2(tax) = €3(t>x) and
coefficients Ay = —u, Ay =79 and A3 = .

Fr=

ui (t,x)
A A
N o 3
o12 E uy(t,x
o ) o
A g
@ H P2
Po 0
¥(t) Yo y 2 u(t)
v(t,x)
L 1
r T
x=0 1

Fig. 1. Schematic steep of the hyperbolic system.

Here, uj, up and w are the distributed states and U (¢) is
the control input as shown in Figure 1. The measured output
is given by: w(t,0) = y(¢).

B. Backstepping state feedback controller design

We employ the following backstepping transformation
v;(t,x) = u(t,x) fori=1,2 (6)
X
200) = w(e,9) = [ (e E)un(r.8) g

- [ - [Tkweme . @
0 0

in which the functions k; satisfy the following system of first
order well-posed hyperbolic PDEs:

10cki (x,8) — NIk (x,)

= o11k1(x,8) + o21k2(x, &) + 61 (&) k3 (x,§) (8a)
Woika (x,8) — 1deka(x, &)

= o12k1(x,8) + O22ko(x,8) + 62(E)k3(x,§)  (8b)
poks (x,8) + poeks (x,8)

= a(§)ki(x,8) +a(8)ka(x, &) (8c)

with the following boundary conditions:

_ 6y _ 6(x)
kl (-xvx) - '}/1+I~L’ k2(x7-x) - ,y2+‘u7 (93)
ukj;(x,()) = qulkl(x,0)+q2}/2kz(x,0). (9b)

Then, the transformation (6)-(7) maps the system (3)-(4) to
the exponentially stable target system

oY1 + 110y =011 Y1 + 01y +a(x))
+ [CenEw.6)ae

+ [Centx v £)ag

+ [aworesas  ao
W+ oW =001 W1 + O + (X))
+ [Centxmie£rag
+ [ entxvale£)ag
+ [Mmteor.dz  ob)
X — Loy =0 (10c)
with the following boundary conditions:
v;(¢,0) = gix(¢,0) for i=1,2 and x(z,1) =0. (11)
The functions c;j(-) and K (-), i, j=1,2 are
il 8) = (s &)+ [ k(s E)ds (12
5(0.8) = (ke d) + [ ek Eds ()

defined on the triangular domain
T:{(x,§)€R2|O§§ <x< 1}.

The dynamic the target system is represented on Figure 2.

i (t,x)
A
a+ [k ot fez
v (t,x) o1+ [ea
q1
9
o+ [k 0
x(t,%)
L 1
I T
x=0 1
Fig. 2. Representation of the target system.

C. Inverse transformation and control law

To ensure that the target system and the closed-loop sys-
tem have equivalent stability properties, the transformation
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(6)-(7) has to be invertible. Since y; = u;, for i =1, 2, the
transformation (7) can be rewritten as

200+ [ k&) E)dE+ [ hang)valr.8) o
:w(t,x)+/Oxk3(x,§)w(t,‘g')d§. (14)
Let us define
D) =200+ [ (v E)wi(0,8)dg
+ [ e, 8)ae (15)
0

Since k3 is continuous by Theorem 5.3 in [4], there exists a
unique continuous inverse kernel /3 defined on T, such that

w(t,x tx—l—/lg &)dE,

which yields the following inverse transformation Since y; =
ui, for i =1, 2, we could get the following relation from the
first two equalities of (3) and (10):

(16)

alw=aly+ [ enEwi(rg)ds
+ [Cenewng)de + [amae.dE an
Thus, we could write the following
wle0) = 2600+ [ BnEw(e.E)dg
+/0'x12<x ¢ g)d§+/0xz3<x LE)AE,  (18)
where for i =1, 2,
zi<x,é>:ki<r,é>+[§xki<x,é>zs<é,s>ds. (19)

Thus, the control law U (#) can be obtained by plugging the
transformation (7) into (3). Readily, x(7,1) =0 implies that

1
U(0) == pun(t.1) = pat. )+ [ [l (1,81 (x.8)
Fha(1,&)ua(x,) +ka(1,E)w(1,£)] dé.

The k; in the integral term designate the kernel functions and
satisfy the system (8)-(9).

(20)

IV. BACKSTEPPING OBSERVER DESIGN

The feedback controller (20) requires a full state mea-
surement across the spatial domain. In this section we are
interested in the design of a boundary state observer for
estimation of the distributed states of the system (3)-(4)
over the whole spatial domain using the measured output
w(z,0) = y(z). The observer

o + ’Ylaxﬁl = Oyl + Ol + Ot(x)v'f/

= p1(x)[y(t) —(t,0)] (21a)
dlia + 0iiia = 02111 + Oty 4 0L (X)W

— p2(x0)[y(r) —(t,0)] (21b)
oW — LW = 0y (x)d) + 02 (x) il

= p3()() =w(1,0)],  (2lc)

where (i1, ity, w)T is the estimated state vector, consists of
a copy of the plant plus an output injection and mimics the
well-known finite dimensional observer format. The func-
tions 6j(x) = ¢4 for j=1,2 and c(x) are the ones defined
for the transformed system (3). The following boundary
conditions have to be considered:

ﬁi(l‘,()> =
w(t, 1) =

Our objective is to find p;(x), pa(x) and p3(x) such that
the estimated state vector (W, i, fi,) converges to the real
state vector (w, uj, uz) in finite time. Defining

giy(t) fori=1,2
p1i(t,1) +patiz (2, 1) + U(t).

(22a)
(22b)

(v @ ) =(w—ib w—a1 w—in) (23

as the error variable vector, we obtain the following error
system

OW — WokWw =0, (x)i) + O2(x)iiz + p3(x)w(r,0)  (24a)

Qi1 + Y10yl =011 + Op2ilp 4 0L(x)W
+ p1(x)w(t,0) (24b)

oy + '}’28,&72 =091l + Oy + OC(X)W
+ p2(x)w(t,0) (24¢)

with the boundary conditions

W(tvl):plﬁl(t71)+p2ﬁ2(tvl)v (25&)
i(1,0)=0 fori=1,2. (25b)

A. Backstepping transformation and the target error system

Similarly to the controller design, we use the following
invertible backstepping transformation

i(r3) = #(00) + [ mnOE 26
fori=1,2
W(t,x) = ¢(t,x) +/ ms(x LE)dE, (26b)

where the kernels mj(-) for i =1,2,3 are defined in the
triangular domain T to map the error system (24)-(25) into
the following exponentially stable target system

Ot + 10T = o1l + 012
+/0xgu(x t 5)d5+/()xg12(x
Ot + 10ty = G217y + 00 s
+/X821 (x, &) (¢ é)ﬁ-l—/:&ﬂx
¢ — 1o d = 91( V7 + 6 (x) T

S)m(1,5)ds  (27a)

§)m(1,5)dE  (27b)

+ [ meome)de+ [ mroHmeEdz @10
with the boundary conditions

#(2,0)=0fori=1,2 (28a)

O(t,1) = p1 71 (2, 1) + pafia(2,1). (28b)
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Here the functions g;; and h; have to be determined on
the triangular domain 7. As previously, we are attempting
to find some sufficient condition for the kernels to match
the target system. Differentiating the transformations (26) in
time and space and substituting the results into (24) with the
help of (27), the following PDEs are derived for the kernels

Yi0m| — dgmy = O1ymy + Grpmy + a(x)msz,  (292)
Y0y — /.la,gm2 = Oy 1my + Caamy + aL(x)ms, (29b)
[,Laxl’H3 + [Jagm3 = -6 (x)m1 — 92(x)m2 (29¢)

To close the writing of the above system, the following
boundary conditions are imposed:

my(x,x) = a(x), my(x,x) = a(x 30a
1(60) = el ma(ey) = alx) G0
m3(1,8) = pimi(1,8) + pama(1,5). (30b)

The observer gains are defined by
pi(x) = um;(x,0) for i=1,2, 3, €)Y

and the integral coupling coefficients are defined by the
following equations for {i, j} =1,2

I, €) = —0(E)ms (x 5)—/§xm3(x,s)h,(s £)ds, (32a)

B. Inverse Transformation

The continuity of the kernel m3 in the transformation
(26b) guarantees the existence of a unique continuous inverse
kernel r3 in the transformation

610 =0(r0)+ [ s

define on T, and

§)w(t,8)dg (33)

/ m3(x,8)r3(s, &) ds. (34)

Substituting (34) into (26a), we obtain for i= 1,2,
(1.2) =1i(0.0) — [, E)i0.8)

[ [ e 2rs(@ 9t yasa
:ﬁi(t,x)—/oxmi(x B, E) dE

i
- [ 50.8) [ mon(e.8) dsit,

and hence, for i=1, 2,

7 (t,x) = @ (¢,x) +/0Xri(x

r3(x,8) = —ms(x

§)w(t,8)dg 35)

where

n(x, &) = — —/;mi(x,s)m(s,é‘)ds.

C. Convergence of the designed observer

We first prove exponential stability of the target error
system (27).

Lemma 1: Under the assumptions l,t/?, q/zo,
2’ € £2([0,1]) and g, b € €(T), the system (27)
with boundary conditions (28) and given initial condition
(y), ¥, x°) is exponentially stable in the £ sense.

Proof 1: The stability proof is based on the time differ-
entiation of the following Lyapunov function

I A2(t,x) " (t,x)
Vt:/a652<1 +27>dx
10 2 " »
52x
+/ tx

where a; and &, are strictly positive parameters to be
determined.

_ (T(t,x) guux8&) gnxxf)
() = (ré(u@)’ Gx.§) = (g;(x,&) Z(x@)
0(1)= (0:(x) 02(9), (&) = ((E) ha(x,C).)

Assume that for M > 0, we have, Vx €

[0
1Gx S, 110l 1A(x, &) <

where the matrix/vector norms || - || are compatible with the
other corresponding matrix/vector norms. Differentiating this
function with respect to time, taking into account of the target
error system (27)-(28), integrating by parts and applying
Young’s inequality at different steps, then we obtain the
following inequality:

V() < —e® [(az 72p126282> #2(1,1)
+ (a2-202e2%) & (1,1)]

f/ e <52 l+x) ¢%(t,x) dx
0 u

(36)

A, é [0,4]

(37

—/(;l 7 (1,x)e2*P(x) TI(t,x)dx, (38)
where
P (- /B
26, x i _ 1) @2 _ M’ e (1+%) 39
e (52 TR &

First, from (38), we need to choose the tuning parameter
& > % Then, by choosing

ap > max{2p12e252 szezaz
28x (1 M2 M?
¢ (&-1)%-&
4x+1/8)M
R

e52(1+x)

(40)

to make sure that the matrix P(x),x € [0,1] is positive
definite, we could derive exponential stability of the target
error system.

Then, from the continuity and invertibility of the back-
stepping transformation (26), we could derive exponential
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convergence of the designed observer. Thus, the following
theorem is proved.

Theorem 1: Under the assumptions that the initial data
are in (£([0, 1]))3, the observer (21) (with the coefficient
functions p;(x),i = 1,3 determined by (29)-(31) and with
the boundary condition (22)) exponentially convergent to the
system (3) in the %2 sense.

V. OuTPUT FEEDBACK CONTROL

The controller (20) requires a full state measurement
and the observer is designed to reconstruct the state over
the whole spatial domain based on an output measurement
w(t,0). Thus, by combining these two, we could design an
observer-based output feedback controller.

Theorem 2: Consider the (uy, uy, w)T-system (3)-(4) to-
gether with the (i1, i, W) -observer (21)-(22). For a given
initial condition (9, u3, w0, a9, a3, Ww0)” € (£*([0, 1]))6
and with the control law

1
U(0) == pun(t.1) = pat. )+ [ [l (1,81 (x.8)
ha(1,E)ia(x, &) +ks(1,E)0(1,8)] de,

where k;, ky and k3 satisfy (8) with the boundary condition
9), the (uj, up, w, dy, i, W)T-system is exponentially
stable in the sense of the .#2-norm.

Proof 2: From the definition of the error variable vector
(23), the combined closed-loop (uy, up, w, fy, ia, W)'-
system of (3)-(4), (21)-(22) and (41) is equivalent with the
(1, fa, W, dy, iy, w)T-system of (21)-(22), (24)-(25) and
(41). In comparison to the backstepping transformation (6)
and (7), the invertible transformation

(41)

Vi(t,x) = fi(t,x) for i = 1,2 (42)
700 = 0(00) — [ (e ) (0.8

- [l )ine.8)

- [Nl &8z 3)

and (26) maps the system (21)-(22) into a ({1, $», %, 7,
i, @)7-system, of which the exponential stability can be
proved through the following Lyapunov function:

1 2 N2
V() :/ aje” %% <% ’(/t,x) + ¥ (t,x)) dx
0 1

P
|
+/ +xf(2(t,x)dx
0

u
o [ (Bl B0,
0 N 423
1 ,0x
n /0 eu (]Sz(t,x)dx]. (44)

Exponential stability of the (u, up, w, iy, i, w)!-system
is thus proved.

VI. NUMERICAL SIMULATIONS

The presented simulation results are performed under a
supercritical flow regime and the Froude number is set to
Fr =1.6. Using the physical values defined in Table I, and
the initial condition of [6], the dynamic of the closed-loop
system (2) together with the output feedback control law
(43) is simulated. (27)-(28), the kernel PDEs (29)-(30) and
the observer gain p;(x) (Fig. 3) are computed numerically.

0.005

ol

-0.005 —y

-0.01 = =P
P,(x)

Observer gain factors p,(x)
: o
2
@

o

0 0.1 0.2 03 04

05 06 07 08 09 1
Abcissa

Fig. 3. Computed observer gains pj(x).

Figure 4 illustrates the convergences of the input U(¢) and
the output measurement y(z) to the zero equilibrium after
t =4s.

°

Control Input U(t)

1 2 3 4 5 6 7 8

Time [s]
(a) Output control law

1

ol

Al
=2t
=
1|
H
o4l
°
g
250
<
('3
=5

7

-8

9 L ‘ i ‘ | ‘ |

0 1 2 3 4 5 6 7 8
Time [s]

(b) Measured output

Fig. 4. Evolution in time of the control law and the measured output

The dynamic of the .#?-norm is directly related to the

magnitude of the propagation speed ; as illustrated in Figure
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5(a). Actually, the perturbation related to the sediment part
takes much more time to vanish than the two others parts.

150

TR T
ST T
Il (41 2

-
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o
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~
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0 1 2

-

4
Time [s]

(a) Ouput feedback control through the backstepping
design.
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£ 600
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() |- o
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V] S— _-
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(b) Lyapunov design when the requirements of Theo-
rem 2 in [2] are not fulfilled.

Fig. 5. Evolution in time of the norm of the characteristic solution.

Characteristic variable: u, (t,x)

T T S R

0.8
0.6
0.4

Abscissa

2

Time [s]
Fig. 6. Behavior in time and space of the distributed state u; (7,x).

This class of output feedback controller allows a rapid
stabilization of the SVE system, comparing with the results
presented in [3] where a boundary measurement scenario is
adopted. Figure 5(b) shows that the SVE system blows up
under the controller presented in [3] when the backstepping
output feedback controller presented in this paper allows the
rapid stabilization of the system to the desired setpoint.

Figure 6 illustrates the evolution of the distribute state
ui(t,x) in time and space. The same trend is observed for
up(t,x) and v(z,x). As can be seen, the simulation results are
consistent with the theoritical results presented in this work.

VII. CONCLUSION AND FUTURE WORK

In this paper, a backstepping output feedback controller is
designed to achieve the exponential stability of the linearized
SVE model. The controller stabilizes the water flow and the
bathymetry dynamics at a desired equilibrium set under the
supercritical flow regime. The backstepping stabilization is
realized with a single downstream boundary control input
in contrast to [2], in which exponential stability results was
obtained with on-line measurements of the water levels at
both ends of the spatial domain. Moreover, simulation results
are provided to illustrate that the proposed controller moves
beyond the limitations of [2]. In comparison to [2], the
backstepping approach offers a more complicated design but
enables the exponential stabilization without any restriction,
while reducing the number of actuators of the system.

We emphasize that practically, such systems are subjected
to several types of perturbations and model uncertainties. Our
ongoing works are to consider robustness issues with respect
to input matched disturbances [7], [8] for this application.

APPENDIX

T ] A [CFL] Ay | pe [Cr]pi]p]
8 [ 0.01 | 09 [ 0.003 [ 0.02 | 0.1
(o [ @ [H JU | B
[T [12] 1[5 [04]
TABLE 1
PHYSICAL PARAMETERS AND DIMENSIONLESS NUMBERS
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