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Lateral Vibration Suppression of a Disturbed Mining Cable Elevator
with Flexible Guideways

Ji Wang, Shu-Xia Tang*

Abstract—In an ultra-deep mining cable elevator, the guide-
way consists of several tensioned cables from the surface to
thousands of meters underground. The interaction dynamics
between the cage and the flexible guideway is approximate as
a spring-damping system, and the cage is subject to external
disturbances. Lateral vibration suppression of the mining
cable elevator is addressed in this paper, where an adaptive
output-feedback boundary controller is designed for coupled
hyperbolic PDEs with spatially-varying coefficients and on a
time-varying domain, of which the uncontrolled boundary is
coupled by an ODE subject to uncertain disturbances. The
asymptotic convergence to zero of the ODE state and the
boundedness of the PDE states are proved via Lyapunov
analysis. The performance of the proposed controller on lateral
vibration suppression of a mining cable elevator is verified in
the numerical simulation.

I. INTRODUCTION

A mining cable elevator is used to transport a cage loaded
with the minerals and miners via cables for thousands of
meters between the underground and the surface. The unde-
sirable mechanical vibrations are often caused in the high-
speed operation, because of the stretching and contracting
abilities of cables. It would not only increase the risk of
cable fracture but also cause discomfort or injury to miners.
Active vibration control [18]-[20] is one economical way to
suppress vibrations because the main structure of the mining
elevator doesn’t need to be changed. The cage is always
subject to uncertain airflow disturbances [19], which should
be considered in the control system design.

The objective is to design a control law at the top of
a vibrational cable with a time-varying length to regulate
the disturbed cage (payload) at the bottom. The vibrational
cable is described as coupled transport PDEs which are
from rewriting a second-order hyperbolic PDE in Riemann
coordinates [20]. Many authors have contributed to boundary
control of coupled transport PDEs for the past ten years, such
as [11, [2], [3], [4], [5], [6], [8], [10], [11], [12], [13], [15],
[16]. Considering the payload at the bottom of the cable, the
plant becomes a coupled transport PDE system coupled with
an ODE at the uncontrolled boundary. Boundary control of
the type of this system was also studied in [9], [14], [17],
[20].

The rest of the paper is organized as follows. The lateral
dynamics of the mining cable elevator is built in Sec. II.
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Fig. 1. Lateral vibration control of a mining cable elevator with viscoelastic
guideways.

The adaptive output-feedback control law is presented in
Sec. III. Under the proposed controller, the proof of the
lateral vibration displacement and velocity of the cage being
asymptotically convergent to zero is given via Lyapunov
analysis in Sec. IV. The conclusion and future work are
presented in Sec. VI.

II. PROBLEM FORMULATION
A. Original plant

Fig. 1 depicts a mining cable elevator with a disturbed
cage moving along flexible guideways. The lateral vibration
dynamics of the whole system is built as follows, in which
the flexible guideways are approximated as a viscoelastic
guide, i.e., a spring-damping system [22], [23]:

X(1) = AX (t) + Buy(0,1) + B1d(1), (1)
Py (x,1) = T (x) e (x,1) — Cuy (x,2) + T (X)ux (x,2),  (2)
u;(0,8) =CX(t), 3
=T (1()ux(1(2),1) = U (1), O]

for x € [0,I(¢)],7 € [0,00), where [(¢) is the time-varying
length of the cable, i.e., hoisting motion of the cage, and
x denotes position coordinates along the cable in a moving
coordinate system associated with /(¢) where the origin is
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located at the cage. The PDE state u(x,#) denotes distributed

lateral vibration displacements along the cable and the ODE
state

X(t) = [u(0,2),u,(0,1)]" (5)

describes the lateral displacement and velocity of the cage,

with matrices A, B, By, C being
= 0
7B = ) 6
lo=[s] o

_ 0 1
A= { —ke
M. M.
],C: [0,2]. (7)

0
B = 1
M

T(x) = M.g+xpg is static tension along the cable with p
being linear density of the cables, M, being the total hoisted
mass and g being gravitational acceleration. ¢ is the material
damping coefficient of the steel cables. The coefficients k., cg
are the equivalent stiffness and damping coefficients of the
viscoelastic guide. U (¢) is the lateral control force provided
by the hydraulic actuator at the head sheave to be designed.
The modeling process refers to [7], changing the pinned
boundary condition in [7] as Neumann actuation, removing
the control force at the boundary payload and adding a spring
force with the coefficient k. from the viscoelastic guide at
the payload.

Assumption 1: The hoisting trajectory [(¢) has following
two properties: 1) [(¢) is bounded by the the total length of
the cable L, i.e., 0 < I(¢) < L. 2) The hoisting velocity I(¢)
is bounded by

it i { T }
(D] < min VT ()/p

Assumption 2: The uncertain external disturbance d(t) is
of the general harmonic form as

d(t) =) [ajcos(0jt)+b;jsin(0;1)], (8)

'["JZ

1

J

where the integer N is arbitrary. The frequencies 0;, j €
{1,2,--- ,N} are known and arbitrary constants. The ampli-
tudes aj,b; are unknown constants bounded by the known
and arbitrary constants a;,b;, i.e., a; € [0,a;], bj € [0,b}].

Note that Assumption 2 can model most periodic dis-
turbance signals since N is arbitrary and can be chosen
sufficiently large.

B. Reformed plant

Applying the Riemann transformations:

the original model (1)-(4) is reformed as the following
coupled transported PDEs-ODE:

X(t) =AX(t) +Bw(0,t) + B1d(t), (11)
Z(Oat) :CX(I) 7W(07t)a (12)
2 (xat) = q(x)zx(x,t)
+c1(%)z(x,1) + c2 (X)w(x, 1), (13)
we(x,1) =q(x)wx(x,1)
+c1(x)z(x, 1) + ca(x)w(x, 1), (14)
w(l(t),t) =U(t) +z(l(2),1), (15)
where
0 0
A= ;/[k; —Cqg— FM(pg ’ B= \/lﬁ‘)lj}:" ’ (16)
_TW —<_T'
1=\ N = T
_ ¢, T'(v
)= T
The new control signal is
—20(t)
t) = , (17)
® pT(I(t))
which is to be designed based on (11)-(15).
Note that from Assumption 1,
[()] < min {g(x)}. (18)

Also, from (5), (9), (10), we have the relationship

u(x,r) /XIM w(x,t) —z(x,t))dx+Ci1X (), (19)

where C; = [1,0

III. OUTPUT-FEEDBACK ADAPTIVE CONTROL SYSTEM
A. Control law

We propose the following adaptive output-feedback con-
trol law

U(t) = 2{—%(10)#) —T(1(2),0)Z(t) + D(1(2))X (1)

(1) _
+ [Mra0 e
1)
+/ Y(U(t),y) 0(3,1) + T (1) Z(1))dy
+[s (

/ Y(y,0)(2(0.1) + Ty (0,1)Z(1))do

) +T1(31)Z(1t))dy

1) +T(y,1)Z(t)

- /0 (y.0)((0.1) +F(0',t)Z(t))dG> dy], (20)
z(x,t) = uy (x, 1) — uy(x,1), ) '

p which is constructed only depending on two measurements
X(¢) and wu(I(2),t). X(¢), i.e., the vibration displacement

T(x) . ) ..
w(x,1) = u (x,1) + uy(x,1), (10) and velocity of the cage in the mining cable elevator, are
p obtained by the acceleration sensor placed at the cage plus
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twice integration [18]. Similarly, u(I(¢),), i.e., the lateral
vibration velocity at the top of the cable, are obtained by the
acceleration sensor at the head sheave with an integration.
Multiplying by M according to (17), then U (¢) (20)
can be converted into the lateral control force U(z), i.e.,
the control input in the original wave PDE model. Other
components in (20) are illustrated as follows.

B. Definitions of components in the control law

1) Z(t),2(x,t),W(x,1): The vector Z(t) is defined as
Z(1) = [cos(Oy1),sin(Oy1),- - - ,cos(Byt),sin(Oy2)]T.  (21)
2(x,t),w(x,r) are states of the PDE state observer built as
2(0,¢) =CX(t) — w(0,t), 22)

Z(x,1) = —q(x)Z(x, )+61(X) (,2) + €2 (X)W (x, 1)
+ Do (o, 1) (ue (1) 1) — EU(t) 2(1(t),1)), (23)

Wi (x,1) = q(x)Wx(x,1) + €1 (x)2(x, 1) + c2 () (x, 1)
FO ) (10).0) UG - 200.0), @
PIE),1) = U0+ (10),6) ~ SU0) 5)
Note  that  w(I(t),r) — $U(t) = w(l(t),t) —

PO o (1(r), 1) = 2(I(t),1). The observer gains are

<I>z(x7t)=l:(t)<5(x,l(t))— q(1(1))9(x,1(t)),  (26)
Q3 (x,1) = 1) P(x,1(2) —q(l(1)P(x, (). (27

In practice ¢(x,y), ¢ (x,y), ¥(x,y), ¥(x,y) can be solved from

where
0= (78 ) (" a)
and

. 0 -6 0 —6y
Azdlag<( 0, 0 ),~~~,< oy 0

The initial condition of the ODE (37) is

)

r0,z)
€(0,1) = ( I'1(0,1) )
- &1(t),lA)1(t),~-- ,&N(t),BN t)
- ( —ay (1), =y (1), -+ ,—an (1), ~bn (1) ) 9

where a;(t),b;(t), j € {1,---,
of aj,bj, defined by

a;(t) = Projig 4 1 (11(t),a;(1)) ,
bj(1) = Projjg 5,1 (725(1),b;(1)) -

Projj,, ) 1s the standard projection operator given by

N}, are adaptive estimations

(40)
(41)

0, if p=mand r<o,
Proj[m,M] (np)=< 0, if p=M and r >0,
r, else.

The bounds a;,b; are defined in Sec. II, and 7y (t), 72;(¢) are
defined as

(szPB1 — g J1O) 8y (x, t)D(x)Bldx) cos(8;t)

the following four transport PDEs by using the finite differ-  T1,(¢) = Ya;
14+Q()
ence method, (42)
— 1) — (q(x) + () Wxx) = 0, (28) (27 PBy — 1[4 50 1) D) B ) sin(1)
#(0,y) +9(0,y) =0, 29 i) =n; 190 )
q(0) ¥ (6,y) + ¥ (x,5)a(y) + 1 (1§ (x.) (43)
+ (c2(x) —c2(y)) Plx,y _) (y)‘lf(xa)i) =0, (30) which are obtained from Lyapunov analysis in the proof
—q(y) ¥y (x,y) +q(x) P (x,y) — ¢ () ¥(x,y) of Lemma 2. The components in (42)-(43) are illustrated
+c1 ()0 (x,y) + (c2(x) —c1(y)W(x,y) =0, (31) in the rest of this section. The signals )(-,z) and &(-,1)
$,(x,9)g(y) — q(x)e(x,y) + ¢ (x,3)d' (») included in Q(r) which will be shown later, are represented
! v N _0 3 by the observer states W(x,t),%(x,#) through the inverses of
+(e1l) —ealy ))¢(x_ ) e )W(x’fj )=0, G2 the following invertible transformations:
—q(x)9x(x,y) —q(y) 9y (x,y) — 1 ()0 (x,y) )
+e1()P(x) +e2()PEY) —d () (xy) =0, (33) Pt =P FTHZ0), (“44)
¥(0,5) +6(0,y) =0, (34) $e,1) =200 1) + T (x )Z(t) (45)
¢ (x,2)(g(x) +¢(x)) —c2(x) =0, (35) 0 (x,1) = §(x,1) — / Ax
which are obtained by using the backstepping design. _ / 4
2) Tu(e0). T 1), M (). F(x,9), Y.). D(x): Delining A0 “o
Cou)T = [D(x,1), Ty (x,1)], (36) B(x,1) = 0(x,1) / T(x,y)3(
wher.e the superscript 7 means transposition, §(x,z) is the / Y(x,y)0(y,1)dy, (47)
solution of the ODE
_ AGx,t) =Bt — | Nix,y)B —D(x)X(t), (48
Gulet) + 7 (D) (1) =0, an A0 =plen - ["Rwp X0, «8)
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where 4(x,y),A(x,y),Y(x,y),Y(x,y) are solved from the

following four transport PDEs:
c2(x) = (g(x) + q(x)A(x X)
A(x,0)4(0) + A(x.0)g(0) =

0, (49)
(50)

Ay (x,3)q(y) — q(x) A(x,y) Z<xy> 2(y)
+(qd () +e1(x) —e2(y)A(x,y) =0, (51)
Ay(x,)q(y) + q(x) Ax(x,) + A (x,y)c (y)
+ A )@ ) +er1(y) —cr(x) = (52)
c1(x) + (g(x) +q(x) Y (x,x) =0, (53)
( 0)¢(0) +Y(x,0)g(0) =0, (54)
Ty (x,3)g(y) + g(x) T (x,y) = T(x,y)ea(y)
+(q (y) +c2(x) — c2(3) T (x,) =0, (55)
Ty (x,3)g(y) — g(x)Ye(x,) + Y (x,y)e1 (y)
+Y(x,) (¢ (v) +e1(y) —ea(x)) =0, (56)

and N(x,y),D(x) are solved from the following transport
PDE-ODE system:

D(0) =K, (57)
—q(x)D ( )+D( )(A—ca(x))

+T(x,0)¢(0)C — / R(x,)T(y,0)9(0)Cdy =0,  (58)

a()Ny (x, y)+61( N (x,) +4' (»)N (x,y) =0, (59)

q(0)N(x,0) — D(x)B = 0. (60)

Q(¢) in (42)-(43) is defined as
Q) =XTPX(t) + %ra /Ol(t) %) (x,1)%dx
+1rb :(t) —oxgy O(x, t)zdx (61)

2

According to (16), (A,B) is stabilizable. Choose a control
gain vector K such that A,, = A+ BK is a Hurwitz matrix.

where
T= max {|A(x,0)[}, (68)
D= max {|C~ D)} (69)

Amin denotes the minimal eigenvalues of the corresponding
matrices. The positive update gains ¥, %, in (42)-(43)
should be chosen sufficiently small according to Lyapunov
analysis.

C. Design philosophy of the control law

The adaptive backstepping boundary control is designed
based on the state observer (22)-(25). Then, we apply the
transformations (44)-(48) to attenuate the unmatched distur-
bance, remove couplings in the PDE domain and make the
state matrix of the ODE Hurwitz. We achieve a target system
(77)-(81) including adaptive estimation errors. For the right
boundary condition of the target system to hold, the boundary
controller including the adaptive laws is derived, where the
adaptive laws are built from the Lyapunov analysis based on
the target system.

IV. STABILITY OF THE CLOSED-LOOP SYSTEM

The following lemma shows the effectiveness of the ob-
server (22)-(25).

Lemma 1: Considering the observer (22)-(25) with the
observer gains (26)-(27), z(x 1) —2(x,1),w(x,t) —w(x,t) be-
come zero after 1 =

mmOSASL{‘] )}
Proof: Defining the observer error state as

(200, 1), w(x,1)) = (2(x,8), w(x,1)) = (2(x,1),W(x,1))

the resulting observer error system is converted to the fol-
lowing target observer error system

(70)

; ! . : a(0,1) = —B(0.1), (71)
Let the matrix P = P* > 0 be the unique solution to the N N _
following Lyapunov equation * (x,1)=—q (x~)a e (x,1) + 1 ({)O‘(X 1), (72)
PAn+ALP=—0Q (62) lft(x’t) = WPt Fealpxr), (73)
) B =0 (74)
for some Q=0Q" > 0.
The positive constant 0 should be chosen to satisfy via the invertible backtepping transformation
200+q 2c1+1+4
8 > max 62+q, atltg , (63) Z(x,t) =0(x,1) / ¢ (x,y) e (y,1)dy
1 1
where [ §enBonay, (75)
J— X
g = min {g(x)}, q’:mx q(x (64) ~ 1(t)
2= a0 = g D w(e0) =Bl — [ ple)andy
Var— D — X
T= max (o (@)]}, @ = max (@]} (69) oo 6
Positive constants r,,r, are chosen to satlsfy _/x Wxy)BOy0)dy, (76)
gﬁfmm( 0) where the observer gains (26)-(27) and the conditions of
S QDL 1O Lﬁ|c| (66) " 6(x,7),6(x,9), W(x,y), ¥(x,y) (28)-(35) are used. According
to the stability result in [11] and the invertibility of the
ro > 2 <q(0),b |PB| ) (67)  backstepping transformations, the proof of this lemma is
q(0) /’me (Q) completed. |
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Through the transformations (44)-(48), the observer (22)-
(25) with (11) written as X(¢f) = AX(t) + B(w(0,7) +
w(0,1)) 4+ B1d(t), is converted to the final target system:

X(1) = AnX (1) +B7(0,1) + Bid(1), 7
a(0,1) = (C—D(0))X(r) - 71(0,1), (78)
O (x,1) = —q(x) 0 (x, 1) + 1 (x) &e(x, 1)

— A (x,0)g(0)CX () + (rl,(x,t)

- [ Ao [“Aeonend)ze. a9
0
) = a0 ) + 2l 1)
Ny

+ {F,(x,t) — /Ova'(x,y)l—}( /Oxf(x,y)l“lt(y,t)dy

+ ‘/O.XN(XJ) (/Oylv’(y, )i (z,1)dz + (/:T(%Z)Fu(z,t)dz
+Ft(y,t))dy] Z(t)—D(x)Bd(t), 80)
n(1(t),1) =0,

where

(81)

i )cos(8;t) +b;(t)sin(6;1)],

and @;(t) = aj —a;(t), b;(t) = b; — bj(t). Note that the
output injections Z(I(¢),t) = u, (I(z), ) 1U( t)—2(l(r),t) and
w(l(t),t) are regarded as zero in the above conversion, i.e.,
the state-feedback design, and then the separation principle
will be verified and applied in the stability analysis of the
resulting closed-loop system, by recalling Lemma 1 which
shows the observer errors vanish in a finite time which
only depends on the plant parameters. The conditions (36)-
(39), (49)-(60) are obtained from matching (22)-(25) and
(77)-(81) through (44)-(48). The following lemma shows the
asymptotical stability of the target system.

Lemma 2: For any initial data (&(-,0),7(-,0),X(0)) €
L*(0,L) x L*(0,L) x R?, the target system (77)-(81) is
asymptotically stable in the sense of

lim ({6, 2)[[ + [0 (- 2) [ + X (1)]) = 0.
Proof: Consider a Lyapunov functional
N o2
(1+Q( 5—bj( (83)
Z 2%” ; 2%

Taking the time derivative of (83), recalling (18), (63), (66)-
(67), inserting the adaptive laws (40)-(43), choosing small
sufficiently ¥,;, ¥»;, through a lengthy calculation, we obtain

) A,
<
Vi =1Tg

+a<1<r>,r>2+||a<-,t>||2) <0

(82)

V() =In

(IR 002 102
(84)
for some positive Aa. We in further have boundedness of

G XOF, GIACNIP, Flla(1)]> along (77)-(81). Finally,
integrating (84) from 0 to oo, it follows that |X(¢)], || &(-,2)]],

TABLE I
PHYSICAL PARAMETERS OF THE MINING CABLE ELEVATOR.

Parameters (units) Values
Initial length L (m) 300
Final length (m) 2700
Cable linear density p (kg/m) 8.5
Total hoisted mass M. (kg) 20000
Gravitational acceleration g (m/s?) 9.8
Maximum hoisting velocities Vpax (m/s) 20
Total hoisting time #(s) 150
Cable material damping coefficient ¢ 0.4
Viscoelastic guideway equivalent damping coefficient ¢y 0.4
Viscoelastic guideway equivalent stiffness coefficient k, 1500

I (-,2)|| are square integrable. Following Barbalat’s Lemma
that |X(¢)], ||&(-,2)||, [} (-,2)|| tend to zero as t — . Due to
the space limit, the details in this proof are omitted. [ ]

Using Lemmas 1-2, we obtain the main result of this paper,
which physically shows the lateral vibration displacement
and velocity of the cage are convergent to zero under the
proposed controller.

Theorem 1: For any initial data (z(-,0),w(-,0),X(0)) €
L?(0,L) x L*(0,L) x R?, the closed-loop system including the
plant (11)-(15), the observer (22)-(25), the adaptive update
laws (42)-(43) and the control law (20), has the following
properties:

1) The ODE state X(¢) in the closed-loop system is

asymptotically convergent to zero in the sense of

lim |X (¢)] = 0. (85)

t—ro0

2) The PDE states in the closed-loop system are ulti-
mately uniformly bounded in the sense of the norm

2 0) |+ w1 (86)

Proof: Recalling the asymptotic stability result proved
in Lemma 2, property 1) is obtained straightforwardly. Con-
sidering the invertibility and continuity of the backstepping
transformations (46)-(47), (48), we obtain the asymptotic
convergence to zero of ||9(-,7)||+1|S(-,7)||. Applying Cauchy-
Schwarz inequality into (44)-(45), we obtain the ultimate
uniform boundedness of ||W(-,#)]|, ||2(+,#)]]. Recalling Lemma
1 and (70), applying the separation principle verified by the
independent stability results of the observer error system in
Lemma 1 and the state-feedback loop in Lemma 2, property
2) is obtained. |

V. SIMULATION

The parameters of the mining cable elevator are shown in
Tab. 1. The hoisting velocity curve [(z) and the according
velocity [(t) are shown in Fig. 2. The disturbance applied at
the cage is given as

d(t) = 15cos(8 )+20sm(78r)

where the amplitudes 15,20 are assumed to be unknown.
The initial lateral offset of the cage is defined as 0.2m and
the initial vibration velocity is defined as zero. Applying the
proposed controller, and the traditional PD controller, the
comparing results of the lateral vibration displacement and

87)
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Fig. 2. Hoisting trajectory /(¢) and hoisting velocity I(r).

velocity of the cage are shown in Figs. 3-4, where we observe
both the proposed adaptive controller and the traditional
PD controller can reduce the lateral vibrations of the cage
in the descending operation of the mining cable elevator
with flexible guideways. Even though the performance of
proposed adaptive controller is worse than the PD controller
at the beginning due to the adaptive learning transient, the
proposed controller can reduce the lateral vibration displace-
ments and velocities to a smaller range around zero as time
goes on under the uncertain disturbance (87). It verifies the
proposed adaptive controller has the better performance on
lateral vibration suppressions.

1
i

o
¥}

(=]

—0.2¢ ' ’ — Adaptive control
—PD control
-- Without control

Cage vibration displacement [m]

04 ) - 1
0 50 100 150
Time [s]
Fig. 3. Lateral vibration displacement of the cage.
0.06[ l—Adaptive control —PD control --Without control | ]

Cage vibration velocity [m/s]

Time [s]

Fig. 4. Lateral vibration velocity of the cage.

VI. CONCLUSION AND FUTURE WORK

We propose an adaptive output-feedback controller applied
at the head sheave to suppress the lateral vibrations of an
ultra-deep mining cable elevator with flexible guideways
which are approximate as a spring-damping system, and
the cage is subject to uncertain external disturbances. The
simulation results show the proposed adaptive controller

effectively suppresses the lateral vibration displacements
and velocities of the cage in the descending mining cable
elevator. In future works, the hydraulic actuator dynamics
and input delay will be incorporated into the control design.
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