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Abstract

We propose an asymptotically convergent state and dis-
turbance estimator for a class of reaction-advection-
diffusion PDEs where the disturbance is anti-collocated
with control input, using measurements at both bound-
aries. Two auxiliary systems are designed for distur-
bance estimation, adopting the output error injection
method, where the disturbance estimator is determined
by the plant model structure and measured signals. A
sufficient condition on the reaction coefficient is derived
for which the disturbance estimator achieves asymp-
totic convergence to the true value. All states in the
disturbance estimator are proved to be bounded using
Lyapunov stability theory. We further propose a state
estimator using the backstepping technique, by inject-
ing the disturbance estimation signal into the state ob-
server.

1 Introduction

This paper considers a general reaction-advection-
diffusion partial differential equation (PDE) with un-
known boundary disturbances, which can be utilized
to describe a variety of systems such as thermal/fluid
flows [4], electrochemistry [5], and structural acoustics
[6], with uncertain flux at one end. The objective of this
paper is to estimate the disturbance at the boundary, in
order to attenuate the effect of disturbance in the feed-
back controller design. With the disturbance estimation
signal, a state estimator is also proposed.

In the past few decades, the boundary control and
estimation of PDE systems has gained significant re-
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search attention, due to their high-fidelity model accu-
racy in describing many processes. When uncertain-
ties enter the PDE system through the boundaries or
in-domain dynamics, there generally have been three
types of methods developed to tackle such issue: adap-
tive control [8], sliding mode control [7, 9], and active
disturbance control [10, 11]. See [7] for an excellent re-
view.

The active disturbance rejection control (ADRC)
method was initially introduced by Han [12], which has
been proven to be effective in dealing with disturbances
in PDE systems. A crucial step in ADRC is to estimate
the time-varying disturbance using available boundary
measurements. The convergence problem of ADRC was
solved in [13], and this approach has been widely applied
to disturbance attenuation in feedback controller design
in PDE systems. For instance, a boundary output
feedback stabilization for a one-dimensional anti-stable
wave equation with control matched disturbance is
examined in [11]. A disturbance estimator for a wave
PDE on a time-varying domain is studied in [14], and an
output feedback controller is further designed utilizing
the disturbance estimates [10]. The output feedback
stabilization for an unstable wave equation with general
boundary measurement disturbance is introduced in
[15]. The application of ADRC on the unstable heat
equation with boundary uncertainties is presented in
[7], as well as the sliding mode controller design. In
[3], stabilization of an unstable 1-D heat equation
with boundary uncertainty and external disturbance
is achieved by designing an unknown input type state
observer.

In this paper, we design a combined disturbance
and state estimator for an unstable reaction-advection-
diffusion PDE with boundary disturbance, by adopting
a similar methodology from [3, 14]. The contribution of
this paper lies in

• Designing a disturbance estimator for bound-
ary disturbance in an unstable reaction-advection-
diffusion PDE system, and derive a sufficient con-
dition on the reaction coefficient, for which the
disturbance estimator achieves asymptotic conver-
gence.
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• Proposing an asymptotically convergent state esti-
mator for the unstable reaction-advection-diffusion
PDE using the estimated disturbance signal, adopt-
ing the backstepping technique.

This paper is organized as follows. Section 2 dis-
cusses the problem set-up, well-posedness of the plant
model. The disturbance estimator and the correspond-
ing convergence analysis are presented in Section 3. Sec-
tion 4 presents the state estimator design using the es-
timated disturbance signal, by employing the backstep-
ping method. Section 5 provides a numerical simulation
to visualize the performance of the proposed estimators.
Section 6 summarizes and concludes the paper.

Notation. Throughout the manuscript, u(x, t)
denotes the state variable with the dependence on
space variable x and time variable t. The x and t
subscripts represent partial derivatives with respect to
the notated variable: ut = ∂u/∂t, ux = ∂u/∂x, and
uxx = ∂2u/∂x2. The dot symbol denotes derivative
with respect to time t, e.g. Ṫ = dT/dt, and the prime
symbol represents derivative with respect to space x,
e.g. X ′ = dX/dx. The L2(0, 1) spatial norm is defined

as ‖u(·, t)‖ =
√∫ 1

0
u2(x, t)dx.

2 Problem Specification.

We consider the following reaction-advection-diffusion
PDE with boundary disturbance, where the disturbance
is anti-collocated with the applied control input:

zt(x, t) = zxx(x, t) + bzx(x, t) + λ0z(x, t),(2.1)

zx(0, t) = q0z(0, t) + d0(t),(2.2)

zx(1, t) = Q(t),(2.3)

z(x, 0) = z0(x),(2.4)

y(t) = {z(0, t), z(1, t)},(2.5)

where b, λ0, and q0 are constants, d0(t) represents the
boundary disturbance, and Q(t) denotes the control in-
put. The signals at both boundaries are measured. The
following change of variables (gauge transformation) [2]:

(2.6) u(x, t) = z(x, t)e
b
2x,

transforms the system (2.1)-(2.5) to (2.7)-(2.11), with
coefficients, disturbance, and control input mapped
accordingly, as follows,

ut(x, t) = uxx(x, t) + λu(x, t),(2.7)

ux(0, t) = qu(0, t) + d(t),(2.8)

ux(1, t) = U(t),(2.9)

u(x, 0) = u0(x).(2.10)

ym(t) = {u(0, t), u(1, t)}.(2.11)

Symbol d(t) represents the disturbance on the heat flux
at one boundary, U(t) denotes the known control input,
and λ and q are constants.

Assumption 1. The disturbance d(t) ∈ R is upper and
lower bounded:

(2.12)
∣∣d(t)

∣∣ ≤ d, ∀t ∈ [0,∞),

where d is an unknown positive number.

The analysis in this paper is based on system (2.7)-
(2.11). Our objective is to estimate the disturbance
d(t) as well as the state u(x, t) by utilizing the boundary
measurements ym(t).

Theorem 2.1. The linear boundary value problem
(BVP) (2.7)-(2.10) is well-posed with initial data
u0(·) ∈ L2(0, 1), provided that the disturbance d(t) and
control input U(t) are bounded.

We utilize Lemma A.1 [1] (in Appendix) to prove
Theorem 2.1.

Proof. Define the operator

(Lu)(x, t) = −uxx(x, t)−λu(x, t),(2.13)

(x, t) ∈ (0, 1)× [0,∞).

Similarly, define the boundary condition operator
(2.14)

(Bu)(x, t) =

{
ux(0, t)− qu(0, t) x = 0, t ∈ [0,∞)

ux(1, t) x = 1, t ∈ [0,∞)

which allows the boundary condition to be expressed as

(2.15) (Bu)(x, t) = h(x, t),

where h(0, t) = d(t) and h(1, t) = U(t). Then, by
defining
(2.16)

(Hu) =


ut(x, t) + (Lu)(x, t) (x, t) ∈ (0, 1)× [0,∞)

(Bu)(x, t) (x, t) ∈ {0, 1} × [0,∞)

u(x, 0) x ∈ [0, 1], t = 0

and

(2.17) F(x, t) =


0 (x, t) ∈ (0, 1)× [0,∞)

h(x, t) (x, t) ∈ {0, 1} × [0,∞)

u0(x) x ∈ [0, 1], t = 0

the BVP (2.7)-(2.10) can be written in the compact
form:

(2.18) (Hu)(x, t) = F(x, t).
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The operator H is linear. The inverse monotonicity of
H can be confirmed by contradiction. Moreover, a non-
negative comparison function φ(x), x ∈ [0, 1], can be
computed by constructing a low-degree polynomial, for
example, φ(x) = Ax2 + Bx + C, and choose constants
A,B,C to verify Hφ(x) ≥ 1 for x ∈ [0, 1]. Then the
well-posedness follows immediately from Lemma A.1,
by choosing ‖ψ‖u = ‖ψ‖∞ = max(x,t)∈[0,1]×[0,∞) ψ, for
ψ ∈ L2(0, 1). Furthermore, from (A.4) we have that

max
x∈[0,1]

∣∣u(x, t)
∣∣(2.19)

≤
[

max
x∈[0,1]

φ(x)
]
·max{‖h(x, t)‖∞, ‖u0(x)‖∞},

which dictates that a bound on the magnitude of the
solution has been determined.

Remark 2.1. The plant model dynamics (2.7)-(2.10)
is unstable for sufficiently large λ and q. This motivates
future ADRC design where the disturbance estimation is
required to attenuate the actual disturbance.

3 Disturbance Estimator Design

In this section, we detail the disturbance estimator de-
sign for system (2.7)-(2.10) using boundary measure-
ment ym(t). We introduce the following auxiliary sys-
tem:

ηt(x, t) = ηxx(x, t) + λη(x, t),(3.20)

η(0, t) = u(0, t)− ζ(0, t),(3.21)

ηx(1, t) = −αη(1, t),(3.22)

where ζ(x, t) satisfies the following system:

ζt(x, t) = ζxx(x, t) + λζ(x, t),(3.23)

ζx(0, t) = qu(0, t),(3.24)

ζx(1, t) = U(t) + α(u(1, t)− ζ(1, t)).(3.25)

Specifically, ζ system consists of a copy of the plant
model (2.7)-(2.10) with the output error injection using
the measurement of u(1, t). The η system is completely
determined by the measured signal u(0, t) and the
boundary value from the ζ system. We further define
the estimate for the disturbance d̂(t) to be

(3.26) d̂(t) = ηx(0, t).

The system (3.20)-(3.22), (3.23)-(3.25), together with
(3.26), is the disturbance estimator. The constant
α > 0 is to be determined such that the disturbance
estimate d̂(t) reconstructs the actual disturbance d(t)
asymptotically.

3.1 Convergence of Disturbance Estimator De-
fine the variable y(x, t) = u(x, t)−ζ(x, t), which satisfies
the system:

yt(x, t) = yxx(x, t) + λy(x, t),(3.27)

yx(0, t) = d(t),(3.28)

yx(1, t) = −αy(1, t),(3.29)

and we also define w̃ = y − η, which verifies

w̃t(x, t) = w̃xx(x, t) + λw̃(x, t),(3.30)

w̃(0, t) = 0,(3.31)

w̃x(1, t) = −αw̃(1, t).(3.32)

The purpose of w̃ system is that the disturbance esti-
mation error d̃(t) = d(t)− d̂(t) can be expressed by the
boundary signal of w̃, as follows,

(3.33) d̃ = d− d̂ = yx(0, t)− ηx(0, t) = w̃x(0, t).

Thus, the convergence analysis of disturbance esti-
mation error d̃(t) is equivalent to the convergence of
w̃x(0, t).

Remark 3.1. The systems (3.27)-(3.29) and (3.30)-
(3.32) are well-posed. The structure of the proof is
analogous to Theorem 2.1 using Lemma A.1.

From now on, we aim to determine the values of
parameter λ such that there always exists a tuning
parameter α > 0 for which w̃(x, t) and w̃(x, t) converge
to zero as t → ∞ in the sense of L2 norm. Prior
to presenting the main theorem, we require a few
lemmas. The next lemma is the extension of the well-
known Poincaré Inequality [2, 16]. For the reader’s
convenience, we provide a sketch of the proof.

Lemma 3.1. For any function w̃(x, t) with x ∈ [0, 1]
and t ∈ [0,∞), that is twice continuously differentiable
on x ∈ [0, 1],

(3.34) ‖w̃x(x, t)‖2 ≤ 2w̃2
x(1, t) + 4‖w̃xx(x, t)‖2.

Proof.∫ 1

0

w̃2
xdx = xw̃2

x

∣∣∣1
0
− 2

∫ 1

0

xw̃xw̃xxdx

≤ w̃2
x(1) +

1

2

∫ 1

0

w̃2
xdx+ 2

∫ 1

0

x2w̃2
xxdx,(3.35)

where Young’s Inequality has been used. Therefore,

(3.36)

∫ 1

0

w̃2
xdx ≤ 2w̃2

x(1) + 4

∫ 1

0

w̃2
xxdx.
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Lemma 3.2. System (3.30)-(3.32) admits an unique
solution w̃(x, t) which satisfies

(3.37) ‖w̃xx(·, t)‖ ≤ ‖w̃xx(·, 0)‖Le−Ωt, t ≥ 0,

where L and Ω are positive constants, given that λ < x2
0,

where x0 is the smallest positive solution to

(3.38) tan(x) = −x
α
.

The proof of Lemma 3.2 is omitted here. The readers
may refer to Lemma 3.1 in [3] for details.

Now we present the following lemma describing the
stability results for the system (3.30)-(3.32).

Lemma 3.3. For any initial data w̃0(·) ∈ L2(0, 1), and
λ < 3 − 2

√
2, there exists a constant α > 0 such

that w̃(x, t) in the system (3.30)-(3.32) is asymptotically
stable for all x ∈ [0, 1]. Moreover, w̃x(0, t) converges to
zero as t→∞.

Proof. Consider the Lyapunov functional

(3.39) V (t) =
α

2
w̃2(1, t) +

1

2
‖w̃‖2 +

1

2
‖w̃x‖2.

The time derivative of the Lyapunov functional V (t)
along the trajectory of w̃(x, t) is

V̇ (t) =αw̃(1)w̃t(1) +

∫ 1

0

w̃w̃tdx+

∫ 1

0

w̃xw̃xtdx

=αw̃(1)w̃t(1) + w̃(x)w̃x(x)
∣∣∣1
0
−
∫ 1

0

w̃2
xdx

+ λ

∫ 1

0

w̃2dx+ w̃t(x)w̃x(x)
∣∣∣1
0
−
∫ 1

0

w̃tw̃xxdx

=− αw̃2(1)− ‖w̃x‖2 + λ‖w̃‖2 − ‖w̃xx‖2

− λ
∫ 1

0

w̃w̃xxdx

=− αw̃2(1)− ‖w̃x‖2 + λ‖w̃‖2 − ‖w̃xx‖2

+ λαw̃2(1) + λ‖w̃x‖2

=− α(1− λ)w̃2(1) + λ‖w̃‖2 − (1− λ)‖w̃x‖2

− ‖w̃xx‖2

≤− α(1− λ)w̃2(1) + λ‖w̃‖2 − (1− λ)‖w̃x‖2

+
1

2
w̃2
x(1)− 1

4
‖w̃x‖2

=−
[
α(1− λ)− α2

2

]
w̃2(1) + λ‖w̃‖2

−
(

5

4
− λ
)
‖w̃x‖2,(3.40)

where integration by parts has been utilized multiple
times, and Lemma 3.1 is applied in the last inequality.

Observing the last line of (3.40), λ clearly has a signifi-
cant impact on the sign of V̇ (t). A sufficient condition
posed on λ for which there always exists a α > 0 such
that V (t) is asymptotically stable is to be determined.

We first require λ < 5/4 in view of the last term
involving ‖w̃x‖ in (3.40), and introduce two positive
constants p1 and p2 as follows,

(3.41) p1 + p2 =
5

4
− λ, and p1, p2 > 0,

so that (3.40) becomes

V̇ (t) =−
[
α(1− λ)− α2

2

]
w̃2(1) + λ‖w̃‖2

− p1‖w̃x‖2 − p2‖w̃x‖2

≤−
[
(1− λ)− α

2
− p1

2α

]
αw̃2(1)

−
(
p1

4
− λ
)
‖w̃‖2 − p2‖w̃x‖2.(3.42)

where the Poincaré Inequality is used. According to
(3.42), if there exists a p1 such that there always exists
a α > 0 so that the following conditions hold:

(1− λ)− α

2
− p1

2α
> 0,

p1

4
− λ > 0,

5

4
− λ− p1 > 0, and p1 > 0,(3.43)

then the Lyapunov functional V (t) decays exponentially
with decaying rate β:

(3.44) V̇ ≤ −βV.

where β > 0 is defined by

(3.45) β = min

{
(1−λ)− α

2
− p1

2α
,
p1

4
−λ, 5

4
−λ−p1

}
.

In order for p1 to be well-defined by (3.43) for some α,
we must enforce

(3.46) max{0, 4λ} < p1 < min

{
2α(1−λ)−α2,

5

4
−λ
}
.

We solve for the values of λ such that there always exists
a α > 0 so that (3.46) holds. We consider two cases:
λ ≤ 0 and λ > 0.

Case 1: λ ≤ 0. In this case, the left hand side
(LHS) of (3.46) is LHS = max{0, 4λ} = 0. On the right
hand side (RHS) of (3.46), we have 5/4 − λ > 0. Let
f(α) = 2α(1 − λ) − α2, and f(α) takes its peak value
fmax = (1 − λ)2 > 0 at α = (1 − λ) > 0, which means
that there always exists a α > 0 such that RHS > 0.
Thus, there always exists a p1 > 0 that satisfies (3.46)
if λ ≤ 0.
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Figure 1: Visualization of analysis of sufficient condition
for reaction coefficient λ.

Case 2: λ > 0. In this scenario, LHS = 4λ. Let
g(λ) = 4λ, f1(λ;α) = 2α(1 − λ) − α2, and f2(λ) =
5/4 − λ. Note that function f1 is parametrized by α.
Our objective is to search for the values of λ > 0 such
that there exists a α so that the minimum of f1 and f2

is larger than g. Observe that f1 intersects the y-axis at
(0, 2α− α2), which is below the point (0, 5/4) where f2

intersects the y-axis, because 2α − α2 ≤ 1 ∀α > 0. On
the other hand, f1 intersects the x-axis at ((2−α)/2, 0),
which is to the left of (5/4, 0) where f2 intersects the x-
axis, because (2− α)/2 < 1 ∀α > 0. Therefore, we can
conclude that RHS = min{f1, f2} = f1 due to these
two facts, and the fact that f1 is linear in λ. These
arguments are geometrically illustrated in Fig. 1, where
the family of f1 parameterized by α > 0 (in black) is
always less than f2 (in red). Hence, the maximum value
of λ such that there exists α such that g ≤ f1 can
be obtained by finding the value of λ where f1 and g
intersect. Equating f1 and g yields

(3.47) λ =
2α− α2

4 + 2α
, and λmax = 3− 2

√
2.

Consequently, there always exists a α > 0 such that
(3.46) is satisfied when 0 < λ < 3− 2

√
2.

Combining Case 1 and 2, we conclude that there
always exists a α > 0 such that (3.46) is satisfied
provided that λ < 3−2

√
2. Under this condition, (3.44)

gives us

(3.48) V (t) ≤ V0e
−βt,

where V0 is the initial condition of V (t). With this, we

can also conclude from (3.39) that

(3.49) ‖w̃‖, ‖w̃x‖ → 0, as t→∞.

Applying Agmon’s ([2], Lemma 2.4) and Young’s In-
equality yields

(3.50) max
x∈[0,1]

|w̃|2 ≤ w̃2(0)+2‖w̃‖‖w̃x‖ ≤ ‖w̃‖2+‖w̃x‖2,

where (3.31) is used, and we have thus proved that

(3.51) w̃(x, t)→ 0 ∀ x ∈ [0, 1], as t→∞.

According to the Fundamental Theorem of Calculus,
triangle inequality, and Cauchy-Schwarz Inequality:

w̃x(0, t) = w̃x(1, t)−
∫ 1

0

w̃xxdx

≤ α
∣∣w̃(1, t)

∣∣+

(∫ 1

0

w̃2
xxdx

) 1
2

≤ α
∣∣w̃(1, t)

∣∣+ ‖w̃xx(·, 0)‖Le−ωt,(3.52)

where Lemma 3.2 has been imposed in the last inequal-
ity. As t → ∞, w̃(1, t) → 0 according to (3.51), and
it can be concluded that w̃x(0, t) → 0 as t → ∞. This
concludes the proof for Lemma 3.3.

With Lemma 3.3, we are now positioned to present
and prove the main result of the disturbance estimator.

Theorem 3.1. For any initial data d̃0 which is finite,
and λ < 3−2

√
2, there exists a constant α > 0 such that

the error for the disturbance estimation d̃(t) converges
to zero asymptotically,.

Proof. According to (3.33),

(3.53) d̃ = d− d̂ = ũx(0, t)− ηx(0, t) = w̃x(0, t),

which according to Lemma 3.3, is asymptotically stable.

Remark 3.2. The state in the system (3.20)-(3.22) is
bounded in the sense of L2 norm, as follows,

(3.54) lim
t→∞

‖η(·, t)‖ <∞.

This can be verified by using the Lyapunov functional
W = 1

2‖η(·, t)‖2. Since η is bounded and w̃ is asymp-
totically stable in the sense of L2 norm, y is bounded
in the sense of L2 norm. In addition, as u is bounded
according to (2.19), ζ is also bounded in the sense of
L2 norm. We have thus proved that all the states in
disturbance estimator stay bounded in the sense of L2

norm.

Remark 3.3. The sufficient condition on λ for the
asymptotic convergence of the disturbance estimator is
conservative, since the majorization of V̇ (t) in (3.42)
using Poincaré Inequality is not tight.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

71

D
ow

nl
oa

de
d 

07
/3

1/
19

 to
 1

92
.5

8.
12

5.
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



4 State Estimator Design

This section presents a state estimator utilizing the
asymptotically convergent disturbance estimation sig-
nal. The state estimator is designed by using a copy of
the plant model (2.7)-(2.10) with an error injection, i.e.

û(x, t) = ûxx(x, t) + λû(x, t) + k(x)ũ(1, t),(4.55)

ûx(0, t) = qu(0, t) + d̂(t),(4.56)

ûx(1, t) = U(t) + k1ũ(1, t),(4.57)

û(x, 0) = û0(x),(4.58)

where û(x, t) represents the estimation of u(x, t), and
k(x) and k1 are, respectively, spatially-distributed and
constant observer gains to be determined to achieve sta-
bility of state estimation error ũ(x, t) = u(x, t)− û(x, t).

Note that the disturbance estimation d̂(t) is injected
into the boundary of the state estimator. The distur-
bance estimator is autonomous and upstream from the
state estimator, so they are convergent independently.

Subtracting (4.55)-(4.58) from (2.7)-(2.10) yields
the state estimation error dynamics:

ũt(x, t) = ũxx(x, t) + λũ(x, t)− k(x)ũ(1, t),(4.59)

ũx(0, t) = d̃(t),(4.60)

ũx(1, t) = −k1ũ(1, t),(4.61)

ũ(x, 0) = u0(x)− û0(x).(4.62)

As t → ∞, the disturbance estimation error d̃(t) at
x = 0 boundary vanishes when λ < 3− 2

√
2, according

to Theorem 3.1. Hence, when d̂(t) converges to d(t), we
recover a boundary condition with left end insulated,
i.e.

(4.63) ũx(0, t) = 0.

To determine the observer gains, we adopt the
backstepping approach [2]. We seek a linear Volterra
transformation that transforms the state of the error
system ũ(x, t) to the target state ṽ(x, t), by making use
of the following expression:

(4.64) ũ(x, t) = ṽ(x, t)−
∫ 1

x

`(x, y)ṽ(y, t)dy,

which maps the error system (4.59), (4.61)-(4.63) to the
exponentially stable heat equation (target system):

ṽ(x, t) = ṽxx(x, t),(4.65)

ṽx(0, t) = 0,(4.66)

ṽx(1, t) = 0,(4.67)

where `(x, y) is the gain kernel. To explicitly determine
`(x, y), we differentiate the transformation (4.64) with

Figure 2: The convergence of disturbance estimator and
backstepping state estimator.

respect to x and t, and conclude that `(x, y) must satisfy
the following Klein-Gordon PDE:

`xx(x, y)− `yy(x, y) = −λ`(x, y),(4.68)

`x(0, y) = 0,(4.69)

`(x, x) = −λ
2
x,(4.70)

in which the boundary condition (4.69)-(4.70) emerges
from evaluating (4.64) together with the boundary
conditions (4.63) and (4.61). An unique and closed-form
analytic solution exists for the kernel p(x, y) [2]:

(4.71) `(x, y) = −λy
I1

(√
λ(y2 − x2)

)
√
λ(y2 − x2)

,

where I1(·) is the Modified Bessel Function of the first
kind. Moreover, the observer gains are computed as

(4.72) k(x) = −`y(x, 1), k1 = −`(1, 1).

Therefore, the observer gains can be determined offline
using the kernel PDE solution (4.71). It can also be
proven that the linear Volterra transformation (4.64)
is invertible [2]. Thus, the exponential stability of the
target system (4.65)-(4.67) implies the stability of the
original error system (4.59), (4.61)-(4.63).
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5 Numerical Simulation and Discussion

In this section, we demonstrate the effectiveness of the
proposed estimators. The plant model (2.7)-(2.10), dis-
turbance estimator (3.20)-(3.26), and the backstepping
state estimator (4.55)-(4.58) are implemented in MAT-
LAB. The finite difference method is employed in spa-
tial discretization. 51 points has been utilized to dis-
cretize in space, and the spatial discretization step is
dx = 1/50. The simulation end time is chosen as T = 6s.
We use reaction coefficient λ = −1, constant q = 0.5,
the disturbance d(t) = 0.1 sin(5t), and input U(t) = 0
for an illustrative example. As demonstrated in Fig-
ure 2, with an appropriate selection of design variable
α > 0, the disturbance estimation d̂(t) converges to its
true value d(t) asymptotically, and the backstepping ob-
server reconstructs the actual state asymptotically.

6 Conclusion

In this paper, we propose and rigorously analyze a com-
bined disturbance and state estimator for a class of un-
stable reaction-advection-diffusion PDEs, subject to un-
known boundary disturbance. A sufficient condition on
the reaction coefficient is derived, for which the distur-
bance estimation error is asymptotically stable. The
disturbance estimate is combined with a backstepping
state observer to also yield asymptotically convergent
state estimates. The convergence of the estimators are
analyzed by Lyapunov stability analysis. The results
of this paper can be applied to ADRC where the dis-
turbance estimate is required to attenuate the actual
disturbance in a feedback controller design, as the plant
model becomes unstable for certain combination of λ
and q. Future work will also examine the necessary
condition on reaction coefficient λ for the disturbance
estimator to be asymptotically convergent.
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Appendices
A Well-Posedness for Linear BVP

The following lemma is well-established to deal with the
well-posedness of a linear BVP [1]. The proof for the
lemma is omitted here.

Lemma A.1. Suppose the BVP under consideration is
written in the form

(A.1) (Hu)(x, t) = F(x, t),

where H contains both the differential and boundary
operators, and F the data terms comprising the right
hand side of the differential equation and the boundary
conditions. Moreover, suppose

1. H is linear.

2. H is inverse monotone: Hv ≥ 0 implies v ≥ 0.
3. A bounded and non-negative comparison function

φ(x) exists, such that Hφ(x) ≥ 1 for all x ∈ [0, 1].
If an appropriate norm ‖ · ‖u is defined such that

(A.2) −‖F‖u ≤ F ≤ ‖F‖u,

then the problem (Hu) = F is well-posed:

(A.3) −‖F‖uφ ≤ u ≤ ‖F‖uφ

at all points x ∈ [0, 1], which means that

(A.4) max
x∈[0,1]

|u| ≤ γ‖F‖u,

where γ = maxx∈[0,1] φ.
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