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Abstract

A control system of an ODE and a diffusion PDE is discussed in this paper. The novelty lies in that
the system is coupled. The method of PDE backstepping as well as some special skills is resorted in
stabilizing the coupled PDE—-ODE control system, which is transformed into an exponentially stable
PDE-ODE cascade with an invertible integral transformation. And a state feedback boundary
controller is designed. Moreover, an exponentially convergent observer for anti-collocated setup is
proposed, and the output feedback boundary control problem is solved. For both the state and
output feedback boundary controllers, exponential stability analyses in the sense of the
corresponding norms for the resulting closed-loop systems are given through rigid proofs.
© 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In control engineering, systems modeled by ordinary differential equations (ODE) are
common. Over the past decades of years, systems modeled by partial differential equations
(PDE) have been popular too. Recently, coupled systems have been active areas of research.
Examples can be found in control problems of electromagnetic coupling, mechanical coupling
and chemical reaction coupling. Some results on controllability of coupled PDE-PDE systems
have been established (see, e.g., [12-14]). However, the problem of feasible controllers and
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observers designing for coupled PDE-PDE systems as well as coupled PDE-ODE systems is far
from complete, and rather challenging. In fact, it is still an original area.

In this paper, the system considered couples an ODE with a heat equation. Physical
background comes from, e.g., solid—gas interaction of chemical reaction and heat diffusion
with insulated catalyst fixed at one point.

The most intuitive method to tackle coupling in the system is decoupling it directly. But
this is not practicable for all the time. One of the most useful methods for boundary
controller and observer designing of PDEs is PDE backstepping, which is introduced by
Krstic. It is used to stabilize the cascaded PDE-ODE systems in [4-7,10,11] where the
interconnection between the PDE and ODE is one-directional, and is employed here to
stabilize the coupled PDE-ODE system where the interconnection between the PDE and
ODE is two-directional. The papers [1-3,8,9] have also been referred to. In this paper,
firstly, an invertible integral transformation is introduced to transform the original system
into an exponentially stable target system. Since the kernel functions satisfy some
conditions, which are also coupled, some special skills are also used in solving them. And a
state feedback controller is designed. Secondly, an observer for anti-collocated setup is
designed to achieve exponential convergence of the observer error, and an output feedback
controller is established.

2. Problem formulation and analysis

Consider the following coupled PDE-ODE control system:

X (1) = AX(t) + Bu(0,1) (1)
ui(x,1) = e (x,0) + CX(1), x € (0,]) )
u(0,£) =0 3)
u(l,t)=U(1) ©)

where X (¢) € R" is the ODE state, and the pair (4, B) is assumed to be stabilizable;
u(x,7) € Ris the PDE state, and C” is a constant vector; U(¢) is the scalar input to the entire
system. The coupled system is depicted in Fig. 1. The control objective is to exponentially
stabilize the system (1)—(4).

The most intuitive method is to decouple the PDE and the ODE. After doing the
decoupling directly, the system is transformed into an integral-differential system

t
X(1)= X(0)e! + / A9 Bu(0,7) dt
0

: : u(x,lz

: | o
v+ PDE uien [ opE x(n| X0,

' |

| ] |

Fig. 1. The coupled control system of the heat equation PDE and the ODE.
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t
mu@=wdxo+c0mwm+/eMﬂ&mﬂwQ
0

1(0,6) =0
u(l,t) = U(1)

Intuitively, this system is stabilizable.

However, to achieve the stabilization of the system (1)-(4) in a strict manner, PDE
backstepping is more effective.

The method of PDE backstepping is to seek an invertible integral transformation
(X ,u)— (X,w) to convert the system (1)—(4) into an exponentially stable target system, e.g.,
the following system

X(t)= (A + BK)X(¢) + Bw(0,1) (5)
WX, 1) = (X, 1) (6)
we(0,0) =0 (7)
w(l,f) =0 8)

where K is chosen such that A+BK is Hurwitz. Thus, with the invertibility of the
transformation (X,u)— (X,w), exponential stabilization of the original closed-loop system
will be achieved.

3. State feedback controller design

The integral transformation (X,u)— (X,w) is postulated in the following form:
X=X ©))
w(x, 1) = u(x,1)— / K(x,y)u(y,1) dy—(x) X (1) (10)

0

where the gain functions x(x,y) € R and @(x)7 € R" are to be determined.
The first two derivatives with respect to x of w(x,t), as defined in (10), are given by

wi(x, 1) = uy(x, ) — 1 (x, x)u(x,1)— /Ox Ky (X, )u(y, 1) dy—@'(x)X (¢) (11)

W (06, 1) = U (00, ) =1 (X, Xt (X, 1) — (d% K(x,X) + Kx(x»x)> u(x, 1)
— [ k) dr=0 X0 (12)
The first derivative of w(x,#) with respect of ¢ is

Wi(x, 1) = U (X, 1) =10, X1 (x, 1) 4 16,(X, X)u(x, £)— /x Ky (X, 0)u(y,t) dy
Jo
+K(x’0)ux(0’ t)_(Ky(an) + qj(x)B)u(O! t)

— (di(x)A + /x K(x,y) dy C—C) X(1) (13)
0
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Let x=0 in the backstepping transformation (10) and Eq. (11) and subtract the two sides
of (12) from the two sides of (13) separately, then the following identities

w(0,7) = u(0,)—P(0) X (¢)
wy(0,7) = —k(0,0)u(0,7)— ' (0) X (¢)
we(x, 1) —wyr(x,0) =2 (% K(x,x)) u(x,t)
+ /0 “ (K (X, ) =1y (X, 0)u(y, 1) dy—(1¢y(x,0) + D(x) B)u(0, )

+ (©’/(X)—©(X)A— / x k(x,y)dy C+ C> X(1)
0

are obtained, where the following notations

0

Kx(xax) = a K(xby)|y =X
0

Ky(xax) = 5K(xsy)|y =X

i 1k (x,x) = 1,(X,X) + 1,(x,x)

dx

and the fact u,(0,7) =0 have been used. A sufficient condition for Egs. (5)—~(7) to hold is
that x(x,y) and @(x) satisfy

Kxx(X,9) = Kyp(X,p) (14)

Kk(x,x)=0 (15)

Kky(x,0) = —D(x)B (16)
which represents a hyperbolic PDE of second order and of Goursat type, and

D" (x)—P(x)A— /OX K(x,»)dy C+C=0 (17)

¢(0)=K (18)

'0)=0 (19)

What must be emphasized here is that the PDE (14)-(16) and the ODE (17)-(19) are
weakly coupled, which can be decoupled and solved explicitly through some techniques of
algebra and analytical mathematics.

Firstly, the solution to the PDE (14)—(16) can be obtained as

x—y
K(x,y) = /0 ®(0)B do (20)

Secondly, substituting (20) into (17), it is obtained that

X px—y
D" (x)—P(x)A— / / ®(c)Bdody C+ C=0
0o Jo
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which is a non-homogeneous linear ODE of second order. Changing the order of
integration and differentiating the ODE twice, the following fourth order ODE:
W (x)—@"(x)A—P(x)BC =0 (21)
and initial values
@"(0)=KA—C, 3(0)=0
are obtained. Let 7 be a unit matrix, then the solution to the ODE (17)—(19) is
d(x)=(K 0 KA—C 0)eP*E

where
0 0 0 BC I
I 0 0 O 0
D == N E =
0 I 0 4 0
0 0 I O 0

The transformation (X,u)+— (X ,w) (9)—(10) is invertible, and the inverse transformation
(X,w)—(X,u) is postulated in the following form:

X(t)=X() 22)

u(x,t) = w(x,t) + /X 1(x,y)ywy,t) dy + P(x)X(t) (23)
0

where the kernel functions 1(x,y) € R and ¥(x)” € R" are to be driven.

As is done in the kernel functions seeking of the direct transformation, the derivatives
wy, Wy and w, are computed, and a sufficient condition for Egs. (1)—(3) to hold is that
1(x,y) and Y(x) satisfy

Lex(X,) = 1)y (x,p) (24)

1(x,x) =0 (25)

1,(x,0) = —P(x)B (26)
and

P (x)—¥(x)(A+ BK)+ C=0 (27)

P(0)=K (28)

Y'(0)=0 (29)

This cascade system can also be solved explicitly. Firstly, by employing the method of
variable separating, the explicit solution to the ODE (27)—(29) can be obtained as follows:

0  A+BK I
W) = F(oe )x(o)
where

0 A+Bl\')x

F(x)=(K 0)+(C(A+BK)™" 0)e " ""x_J)
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Thus, through further calculation, the solution is
¥(x)=(K—C(A + BK) " H)G(x) + C(4 + BK)™"

where

G(x) = (I O)eHx<(I))

0 A+ BK
H=
G 7)

Secondly, the solution to the PDE (24)—(26) is
x—y
1(x,y) = / Y(o)Bdo
0
Write

b(s) = /0 ®(c)Bdo, W(s)= /0 W(0)Bdo

and

then the direct and inverse backstepping transformations are written into

w(x, 1) = u(x,0)— /0 Pe—uy.1) dy—B(0)X (1) (30)

u(x,t) = w(x,t) + /Ox Y(x—y)w(y,t) dy + P(x)X (1) (31)

Now, a controller is to be designed such that the boundary condition (8) is satisfied. Let
x=I/in Eq. (10), then from Eqgs. (4) and (8), a controller is chosen as

!
U= /O p(=y)u(y.0) dy + P(DX (1) (32)

Furthermore, the explicit solution to the system (1)—(4), Eq. (32) can also be obtained.
Firstly, the heat equation (6)—(8) is solved, and the solution

00 1
w(x,t) = % Z eOm /277 P o (7(144 _il_ D" x) Hoy (33)

m=1

is obtained, where

/ 1
o = /O wo(€) cos (@é)d&

and the initial condition wy(x) can be calculated since it is related to the initial state u(x,0)
via (10). Secondly, the solution to the closed-loop system (1)—(4), Eq. (32) can be obtained
from

t
X (1) = X (0)e“ PR 4 / BRI By 0,1) de (34)
0

and (23).
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Theorem 1. For any initial data X(0) € R and u(-,0) € H'(0,]), the closed-loop system
consisting of the plant (1)—(4) and the control law (32) has a unique classical solution and is
exponentially stabilized in the sense of the norm

X (D uC )2 = [X O + luC.01 2.
Proof. A Lyapunov function

V()=XTPX += Hw( t)lle(O nt5 IIWL( Z)HU(O )

is employed, where the matrix P = PT>O is the solution to the Lyapunov equation
P(A+ BK)+ (A4 BK)'P=-0

for some Q = Q7 >0, and the parameter a>0 is to be chosen later.For simplicity, in the
sequel, the symbol Il - Il stands for the norm in L?(0,/).
From the backstepping transformations (30) and (31), it can be obtained that

Iwl? <oy llull® + 00| X7, il <osllul? + ollull® + os| X (35)

lul® < B Iwl? 4+ By X2, luell? < Bslwill> 4 Bllwll* + | X|? (36)
where

=314+ U¢I%), w=310I7 a3=3, ag=3l¢ I, as=31d

Br=3(1+IIR), By=3ITI% By=3, By=30y % Bs=31¥I"
From Egs. (35) and (36), it can be obtained that
(X + lull G o )<V <SUXT + lullpg )

where
aocy s Aoy 4 03
§=max{ () + 3+ 5, 5+
1
min j~min(P):ge_
5— 272

max{f, + fs + 1,5, + 4,53}

Taking a derivative of the Lyapunov function along the solutions to the system (5)—(8),
then

|2
mm(Q)

From Agmon’s inequality, the following inequality:

V<— m‘“(Q) |2+2 w(0,0)>—allwy P —llwyl?

141
e l? < JIF I P =0, 1)

can be proved, and thus

. 2
ME(Q)'XP_( 8|PB|I 1+1

V== (@)1

)| will?—w,(0,7)?
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By taking

PBP*l 141
,l | n I+
Zmin(Q) [
and using Poincaré inequality, it can be shown that

V<—bV

>8

where

@2 PEIL _Li!
b= mm{zzmax(P) S <1 (@

Therefore, V(1)< V(0)e™"". Let =4/, then
(X + .03 0.) <SUAXO)* + lu(-,0)I31 0 e

for all >0, which completes the proof. [J

4. Observer design and output feedback

2149

To implement the control law (32), the signals u(x,f) and X(¢) are supposed to be
measurable. Sometimes, the information of the signal u(x,?) is measurable only at one of
the ends, or for economic considerations, is measured only at one end. In this situation, an
observer is necessary to track the signal u(x,f). Consider the case that only u(0,7) is

available for measurement, and the input is at the other end x=/.
Observer with Dirichlet actuation of the following form:

X (1) = AX(0) + Bu(0,1) + Po(u(0,1)—(0, 1))
0,0, 8) =l (x,0) + CX (2) + p1(2)w(0,8)—21(0,7))
i1,(0,1) = p2(u(0,6)—(0,1))

a(l,0) = U(r)

(37)
(38)
(39)
(40)

where P, is a constant vector, pj(x) is a function and p, is a constant, which is to be

designed to achieve exponential stabilization of the error system
X (1) = AX (1) Pyii(0, 1)
i1(x,1) = it (x,1) + CX (1) =p1(x)ia(0,7)
i1x(0,1) = —p,it(0,17)
u(l,t)y=0
where
a(x, ) = u(x,0)—i(x,0), X)) =X()—X (1)
A transformation of the form

Wwix,t) = ii(x,1)—O(x) X (¢)

(41)
(42)
(43)
(44)

(45)
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is also to be looked for to convert the system (41)—(44) into an exponentially stable target
system, e.g.,

X (1) = (4= Py@(0))X (1) Poiv(0,1) (46)
06, 1) = ¥y (6, 1) (47)
W(0,0)=0 (48)
(L, =0 (49)

where 4—Py©(0) is a Hurwitz matrix. Thus, the output injection functions Py,p;(x) and p5,
together with @(x), are to be determined.

According to the transformation (45), the first two derivatives with respect to x and the
first derivative with respect to ¢ of Ww(x,f) are given by

WX, 1) = i1, (x,0)— O’ (x) X (1) (50)
Wax(x, 1) = T (x, [)_@”(X)X/(t) (51)
WX, 1) = (%, 1) + (O(x) Po—p1 (x))it(0,0)—(O(x)A—C) X (1) (52)

By matching the systems (41)—(44) and (46)—(49), a sufficient condition for Egs. (46)—(49)
to hold is obtained as follows:

O'(x)—O(x)A+C=0 (53)

0'(0)=0 (54)

o()=0 (55)
and

P1(x) = O(x)Py (56)

p2=0 (57)

To construct the solution to the ODE (53)—(55), a lemma is shown firstly.

Lemma 1. Write

0 4 I
J=< ) L=(1I O)eJ’( )
I 0 0

then L is a nonsingular matrix if and only if the matrix A has no eigenvalues of the form
—(2k 4+ 1’72 /(41%) for k € N.

Proof. Firstly, there exists an invertible matrix M such that M~'4M is the Jordan’s
canonical form of A4, that is

M AM =diag(N1 -+ Np)
where each Jordan block N,,1<g<p, is a square matrix of lower-triangular type, and all

the elements on its main diagonal are the eigenvalues of A, which are denoted by
¢ j=12,....,n.
3‘])] b b b
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Secondly, a simple calculation gives that

Sy
)
Thus
S=M"'"LM= Z:O(z)'dlag( N,i)
Z(FCO 0

(2i)! cosh(lc)”?) 0
) > (1P, % ' cosh(l/cl/?)
" ZJ Qi)!

Therefore S is singular if and only if 151/ 2= =(Q2k + 1)n/2)i, (here i, stands for the
imaginary unit) for some ¢;, j=1,2,...,n and k € N. Thus, L is a nonsingular matrix if
and only if 4 has no eigenvalues of the form —Q2k + 1’12 )4 for k e N. [

When A4 has no cigenvalues of the form —(2k + 1)2712/(412) for k € N, according to
Lemma 1, L is nonsingular and thus the solution to the non-homogeneous linear ODE
two-point-boundary-value problem (53)—(55) is as

I
O(x) = Nx)e™ ( 0 ) (58)
where

) =(00) 0)- / 0 Oy ae
0

1
@(0):/0(0 C)effdg-ef’<é>Ll

Choose P, such that A—Py®(0) is Hurwitz, then all the quantities needed to implement
the observer (37)—(40) are determined.

The system (46)—(49) is a cascade of the exponentially stable heat equation (47)—(49) and
the exponentially stable ODE (46). The entire observer error system is exponentially stable.

Theorem 2. Assume that the matrix A has no eigenvalues of the form —2k + 1)*n2 /(41%) for
k € N, then the observer (37)—(40), with gains defined through Eqs. (56)—(58), guarantees that
observer error exponentially converges to zero, that is, X (t) and i(f) exponentially track X(t)
and u(t) in the sense of the norm

(X (2), (-, )P = 1 X (0 + (-, t)IIH 10.)
Proof. From the transformation (45), the following relations

Iwli> <20@l? + 210121 X 12, 11> <2l 4+ 210121 X )2
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lal? <20l + 210P1X 12, lil? <20, 1?4 21011 X |?
are obtained. With a Lyapunov function
Viy=X"PX + fllw( NI* + = wa(-,z)nz
where P = P” >0 is the solution to the Lyapunov equation
P(A—Py0(0)) + (A—PoO(0)" P = -0
for some Q = QT>O and & is a constant to be determined, it can be obtained that

QX1 + 11t 0.) <V <0(X > + il 0.1)

mm{ ﬂumm(P)}

max{2,2|0'|* +2|0|* + 1}

where

g:

@:maX{ﬁ,1,|@,|2 + El|@|2 + )tmax(P)}

Take the time derivative of the Lyapunov function along the solution to the system
(46)—(49), then

. 2
< ‘m‘“(Q) X P2— ( _gIPRoPI 1+ l) 130 12— (0, 7)?
mm(Q) l
where the last line is obtained by using Agmon’s inequality and the following inequality:
1
P < J;luwx||2—wx(o,z)2
Take
|PP0|21 1+1
mm(Q) !
and use Poincaré inequality, then
V<—bV (59)
where
T bp 2
Ezmin{ Aminl@) 2 S <1—8 PRl —lfl)}>0
2)°max(P) 1447 Zlimin(Q) al

Let ¢ =0/0, then
X0 + 13,01, <X ©0) + 17(-,0)12,: . )e

for all £>0, which means that the error system (41)—(44) is exponentially stable in the sense
of the norm

I (), C.e)I> = | X (OF + (-, )10,

and thus completes the proof. [
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Replace u(y,r) and X(¢) with i(y,7) and X (¢) in Eq. (32) respectively, an output feedback
control law is obtained as follows:

!
U= /0 GU—=y)ia(y.1) dy + S X (1) (60)

Theorem 3. Assume that the matrix A has no eigenvalues of the form —(2k + 1)*n2 /(41%) for
k € N, then for any initial data X(0),X(0) € R and u(-,0),a(-,0) € H'(0,]), the closed-loop
system consisting of the plant (1)—(3), the controller (60) and the observer (37)—(40) has a
unique classical solution and is exponentially stable in the sense of the norm

QX (@), u(-, 0, X (0,80, 0)17 = [ X0 + a0 350, + 1XOF + 18,013

Proof. The transformation
w(x, 1) = a(x,0)— /  PO—n)ir(y.1) dy— ()X (1) (61)
0
converts Egs. (37)—(40) into the system

X (1) = (4 + BK)X (6) + BW(0.0) + (B + Po)(#(0.1) + O(0)X (1)) (62)

WX, 1) = Wx(X, 1) + <p1(X)—@(X)(B + Po)— /Ox d(x=y)p1(y) dy> (9(0,0) + O(0)X (1)

(63)
W(0,/)=0 (64)
W(l,t)=0 (65)

The (X, W) system (46)—(49) and the homogeneous part of the (X, W) system (62)—(65)
(w1thout X (1),w(0,7)) are exponentially stable. The interconnection of the two systems
(X0, X, ) is a cascade. The combined (X, %, X,¥) system is exponentially stable. In fact,
this can be proved by taking the weighted Lyapunov function

AT A A a 1 -
Ef)=X"PX + % (-, 0l + 3 W (-, )1 + e¥ (£) (66)
where the matrix P = P’ >0 is the solution to the Lyapunov equation
P(A+BK)+ (A4 BK)"P=-0

o ~T N . .
for some Q =Q >0, the constant a and the weighting constant e are to be chosen later.
Taking the time derivative of Eq. (66),

E<—X"0X + 2%  P(BW(0,1) + (B + Po)(i(0,1) + O(0)X (¢)))
!
—alw, I +a / W(x) (pl(x)—tb(x)(B + Py)
0

- /0 PP ) dy> (9(0,1) + O(0)X (1)) dx

1
Il + /0 wx(x)(pQ(x>—¢’(x)<B+Po)
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-~ /0 =)y dy) (#(0,0) + O(0)X (1)) dx
Iin(0) &0 (- |PP0|21 L+,
”(_ 2 'X'_(“ Tmin(0) l>”W">

Using Poincaré, Agmon’s and Young inequalities, taking

0 = max {pl(x)—cp(x)(B + Py)— /Ox d(x=y)p1(») dy}

9= maX{pﬁ (x)=@'(x)(B + Py)— /0 ¢ (x=y)p1(») dy}
then it can be obtained that

E<—e||XP—elhiv P —es| X P —eylliv,l?

where
o = Am“‘z@) —¢| P(B + Po)I*
ezzé—l 1 \PBIL |PB|?1 1+
2 2 (@) !
e3 = M“T(NQ)e— G +4a6°P + 921) 10(0)?

—1640°1*—49*1

L PPl 1+ |P(B + Py))*l
es=¢la-8 — — —-16
)vmin(Q) [ vmin(Q)
and ¢>0. Take

PBZ 2 )Lmin C
L IPBIL  31+2 ©
/Lmln(Q) l 2|P(B + P())|
: (1 +4a0°P + 91 ) 10(0)?
mm(Q)
2 2
mm(Q) ) e Amin
then it can be obtained that
E<—fE
where
f= min{ e Ze2 ) 2ey }
T i (P) a1+ 8P) ehman(P) ea(1 + 412)
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Hence, the system (X%, X,) is exponentially stable. Since the transformations (45) and
(61) are invertible, exponential stability of the system (X,¥,X,#) ensures exponential
stability of the system (X,2,X,i). This directly implies the closed-loop stability of the
system (X,u,/i’,ﬁ). O

5. Conclusions and comments

In this paper boundary controller and observer for a coupled PDE-ODE control system
are developed through PDE backstepping. Meanwhile, state and output feedback
boundary control problems are solved.

Firstly, the method of PDE backstepping is employed here. For PDE backstepping,
difficulties generally come from seeking for the kernel functions, and here the equations of
kernel functions are still coupled. By using some skills, it is feasible to decouple and then
solve them. Secondly, the systems are generally considered whether to be stabilized in the
L? norm, but they are stabilized in the H' norm in this paper.

Stabilization for coupled PDE-ODE control systems with boundary control is an
original area with so many problems to be considered. Coupled PDE-ODE control
systems with delays are also being worked on. More interesting areas, such as stabilization
for coupled PDE-PDE systems with boundary control, are also subjects of the ongoing
research.
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