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Formation Tracking Control for Multi-agent Systems: A Wave-equation
based Approach
Shu-Xia Tang, Jie Qi*, and Jing Zhang

Abstract: This paper considers the formation tracking control problem of large-scaled Multi-Agent Systems (MAS)
for which the model is based on a system of mutually independent wave Partial Differential Equations (PDEs). The
spatial derivatives in the equation correspond to the underlying communication topology of the agents. A leader-
follower mode is employed in the control algorithm, with which the agents on the boundary of PDEs are chosen
as leaders knowing the tracking trajectory and all the other agents are followers. Each follower has only the infor-
mation of its own relative position and velocity to its topological neighbors. With a designed distributed controller,
the formation tracking error is bounded by a constant proportional to the acceleration of the desired trajectory.
Robustness of the control law to a perturbation in the velocity measurement is also discussed. Furthermore, some
simulation studies are provided to show the effectiveness of the control algorithm.
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1. INTRODUCTION

Compared with static deployment, dynamic formation
tracking control is more challenging and has more applica-
tions. Formation tracking control have wide applications
in formation flight, air traffic control, exploration, naviga-
tion in a group, cooperative carrying and coordinated path
following, etc [1–3]. The problem of formation tracking,
or coordinated tracking, is often formulated as determin-
ing a coordinated control law that keeps the multi-agent
systems maintain a desired, possibly time-varying, forma-
tion while tracking a target or following a reference orbit.

In most of the existing literatures, formation control
for MAS is modeled by a system of Ordinary Differential
Equations (ODEs), in which each agent corresponds to an
ODE [4, 5]. While the number of the agents increases,
the system modeled by ODEs becomes more complex
and thus can be more difficult to analyze the macro-
dynamics. Recently, the coordinate control of multi-agent
system with thousands of agents has attracted great atten-
tion [6, 7]. Inspired by the application of Lagrangian spa-
tial coordinates in the modeling of large-scale collective
hydrodynamics [8], large-scale MAS can be modelled by
PDEs by treating all the agents as a continuum [9].
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The PDE-based approach is more suitable than the
ODE-based method in control design and analyzing large-
scale systems. Besides, it can generate more diversified
and more interesting desirable formation manifolds in a 2-
D and even higher dimensional spaces. The Laplace con-
sensus laws can then be approximated by the correspond-
ing discretized version of the Laplace operators in the
PDEs [10]. In fact, the PDE-based approach has been suc-
cessfully applied into agent deployment [11–13], coordi-
nated searching [14], vehicular platoons [15], distributed
detecting pipeline leakage [16], opinion dynamics [17]
and configuration transitions with collision and obstacle
avoiding [18]. When employing the PDE-based approach,
There are several main contributions in the paper.

• A second-order wave PDE model is proposed with
actuation on the accelerations of the agents, while
most researchers choose the parabolic PDE which de-
scribes the first-order dynamics. Indeed, since the
inputs actuated on the agents are usually forces or
torques, acceleration control has wider applications
[19, 20] than velocity control. Furthermore, when
the acceleration of the desired trajectories is equal to
zero, the proposed distributed control actuating on the
acceleration makes the formation tracking error con-
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verges to zero. While our previous work [21] with the
control actuating on the velocity has tracking error in
the same situation of zero acceleration.

• In the literature of formation tracking control, e.g., [1,
22], the reference orbit is the global information for
all agents. But for the system with thousands of
agents, it is energy-consuming to inform each agent
where the target is. We loose this constraint by as-
suming that only a few of agents i.e., the leaders cho-
sen as the agents on boundary of the PDEs know
the desired trajectory. The other agents are follow-
ers. All the information that is needed for control of
a follower is an agent’s relative position and relative
velocity to its neighbors, so this method is suitable
for applications in room where the Global Position-
ing System (GPS) signal is weak and not accurate.

• The wave PDE is not convergent due to the energy
conservation. In the paper, we introduce a Kelvin-
Voigt damping term which allows the PDE model to
converge. The added damping term is applied to ac-
tuate the acceleration with the velocity feedback such
that tracking errors are bounded by a constant propor-
tional to the acceleration of the desired trajectory. Ro-
bustness of the control law to a perturbation in the ve-
locity measurement is analyzed, and a range of the ve-
locity inaccuracy is given within which the controller
remains effective, i.e., to guarantee that tracking error
converges to a bounded region or converges to zero
due to a zero acceleration of the desired trajectory.

The remaining parts of this paper is organized as fol-
lows. Section 2 models the large-scale MAS by a wave
PDE and states the formation tracking control problem.
Introducing a Kelvin-Voigt damping into the distributed
controller for the PDE system, the formation tracking
errors under a leader-follower strategy are proved to be
bounded in Section 3. Section 4 studies robustness of the
control law to a perturbation in the velocity measurement.
Section 5 presents several numerical simulations for 3-D
formation tracking with 2-D spherical surface topology, il-
lustrating that the proposed control algorithm in this paper
is effective for the formation tracking control of MAS. Fi-
nally, some concluding remarks are presented in Section
6.

2. PROBLEM STATEMENT

2.1. Multi-agent PDE system
Consider an MAS under the following consensus con-

trol protocol [5]:

ẅk = ∑
j∈Nk

ak,j (wj −wk) , (1)

where wk ∈ D ⊂ Rn denotes the position for the agent la-
beled by k ∈ I ⊂ (N∗)m, with I denoting the (discrete) set

of the agent label and m denoting the dimension of the cor-
responding topology. Moreover, Nk ⊂ I is the set of neigh-
bors of the agent k, and ak,j ∈ R≥0 is the linkage weight
between the agents k and j. Implied by the second-order
time derivative on the left hand side, the control protocol
is applied onto the acceleration of the agents.

Treating the large-scale MAS as a continuum, i.e., map-
ping the discrete agent label set I into a continuous space
Ω ⊂ Rm, each agent can then be labeled by a vector
α = (α1,α2, · · ·αm) ∈ Ω, which gives the topology loca-
tion of the agent in the continuous communication topol-
ogy Ω. Assume that the topology domain Ω is bounded
with a C∞ boundary ∂Ω. For each agent α, let the vector

w(α, t) = (w1(α, t),w2(α, t), · · · ,wn(α, t))T ⊂ Rn

represent its real-time position in an n-dimensional state
space, with each element wi(α, t), i ∈ {1,2, · · · ,n} denot-
ing the coordinate in the i-th dimension.

Noticing that the consensus control protocol on the right
hand side of (1) is the discretized version of the Laplace
operator [23], the system of ODEs (1) is then written into
a wave PDE:

wtt(α, t) = k1∆w(α, t),

where k1 > 0, wtt(α, t) denotes the acceleration of the
agent α ∈ Ω, and ∆ denotes the Laplace operator.

2.2. Formation tracking control problem
This paper is mainly concerned about the formation

tracking problem, i.e., to make sure that all the agents as
a whole, while keeping some pre-designated formation,
track some pre-designated trajectory. Denote the desired
formation as

wd(α) = (w1,d(α),w2,d(α), · · · ,wn,d(α))T

∈ Hm(Ω,Rn),

and denote the trajectory which the agents would track
uniformly as

f(t) = ( f1(t), f2(t), · · · , fn(t))T ∈C3(R≥0,Rn).

Given that the MAS is linear, the aimed moving formation
that the agents would track as a whole can be formulated
as a simple superposition of the desired formation and tra-
jectory:

wr(α, t) = wd(α)+ f(t). (2)

The leader-follower strategy is employed. More pre-
cisely, we choose the agents on boundary ∂Ω as leaders,
which have the information of both their desired (rela-
tive) positions wd(α)|α=∂Ω in the formation and the de-
sired positions in the trajectory f(t). In other words, the
boundary agents α ∈ ∂Ω follow the moving formation
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wr(α, t)|α∈∂Ω, which gives the following boundary con-
dition for the MAS:

w(α, t)|α∈∂Ω = wr(α, t)|α∈∂Ω = wd |α∈∂Ω + f(t).
(3)

On the other hand, all the other agents are treated as fol-
lowers, which only know their own relative positions to
the topology neighbors. In order for all the agents (in-
cluding the followers) to achieve the desired formation
tracking, we would like to seek a distributed feedback con-
troller u(α, t) such that the state of the resultant controlled
PDE

wtt(α, t) = k1∆w(α, t)+u(α, t) (4)

tracks wr(α, t). The initial condition is denoted as

w(α,0) = w0(α), wt(α,0) = w1(α). (5)

3. FORMATION TRACKING CONTROL

3.1. Formation tracking control design
Introduce the tracking error w̃ = w−wr, then it imme-

diately follows from (4) and (2) that the error dynamics is
governed by

w̃tt(α, t) = k1∆w(α, t)+u(α, t)− f′′(t). (6)

If choosing the inner controller as

u(α, t) =−k1∆wd(α),

then the error system becomes

w̃tt(α, t) = k1∆w̃(α, t)− f′′(t),
w̃(α, t)|α∈∂Ω = 0,
w̃(α,0) = w̃0(α), w̃t(α,0) = w̃1(α).

It is well known that for the case of f′′(t) = 0,∀t ∈ (0,∞),
the above system is energy conservative, which further im-
plies that the agents cannot track the desired formation
wr(α, t) even when f′′(t) = 0.

Consider instead the following distributed controller:

u(α, t) =−k1∆wd(α)+ k2∆wt(α, t), (7)

by which a Kelvin-Voigt damping [24, Chapter 7] with the
weight k2 > 0 is incorporated into the resultant controlled
system. wt(α, t) denotes the velocity of the agent α ∈ Ω,
and the operator ∆ further denotes the information (i.e.,
position or velocity) exchange among the agent with its
neighbors. From (2), (3), (6) and (7), the resultant tracking
error system is

w̃tt(α, t) = k1∆w̃(α, t)+ k2∆w̃t(α, t)− f′′(t),
w̃(α, t)|α∈∂Ω = 0,
w̃(α,0) = w̃0(α), w̃t(α,0) = w̃1(α),

where it follows from (5) that

w̃0(α) = w0(α)−wr(α,0), w̃1(α) = w1(α)− f′(0).

3.2. Stability of the formation tracking error system
Note that the equation for each coordinate i = 1, · · · ,n

is of the same type and is independent from each other,
we consider only the dynamics of w̃1(α, t) in the sequel,
keeping in mind that the same result holds for the dynam-
ics of the other coordinates as well. For the denotation
convenience, we write w̃1, f1 by w̃, f . Therefore, the track-
ing error system in consideration is rewritten as

w̃tt(α, t) = k1∆w̃(α, t)+ k2∆w̃t(α, t)− f ′′(t), (8)
w̃(α, t)|α∈∂Ω = 0, (9)
w̃(α,0) = w̃0(α), w̃t(α,0) = w̃1(α). (10)

Define the space

Hk = {x ∈ L2(Ω)| ▽p x(α, t) ∈ L2(Ω) for |p|≤ k},

with the norm

∥x∥Hk =

(

∑
|p|≤k

∫

Ω
|▽p x|2

) 1
2

,

and let the space

H1
0 = {x ∈ H1(Ω)| x = 0 on ∂Ω},

then the following theorem can be derived.
Theorem 1: Suppose the acceleration of the moving

formation is bounded by as constant γ , i.e., | f ′′(t)| ≤
γ, ∀t ≥ 0, then for any initial condition

(w̃0, w̃1) ∈ (Hm(Ω)∩H1
0 (Ω))2

satisfying the compatibility condition

w̃0(α,0)|α=∂Ω = 0, w̃1(α,0)|α=∂Ω = 0, (11)

there exists a unique solution

w̃(·, t) ∈C([0,∞);H1(Ω))∩C1([0,∞);L2(Ω))

to the error system (8) – (10). Moreover, there exist posi-
tive constants ω , C1 and C2, such that

∥w̃(·, t)∥1 ≤C1 + e−ω1t (C2∥w̃(·,0)∥1 −C1) , (12)

where the norm ∥ ·∥1 := ∥ ·∥H1 +∥ ·t ∥L2 .

Proof: Well-posedness of the error system (8) – (10)
can be referred to [25, Theorem 2.3].

Define a Lyapunov function candidate as

V (t) =
1
2

∫

Ω

(
w̃t(α, t)2 +(k1 + ck2)|▽ w̃(α, t)|2

)
dα

+ c
∫

Ω
w̃t(α, t)w̃(α, t)dα, (13)

where the constant c > 0 is to be determined later.
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Postive definiteness of V (t). By the use of Young’s In-
equality, we have

∫

Ω
w̃t(α, t)w̃(α, t)dα≤1

2

∫

Ω
w̃t(α, t)2dα

+
1
2

∫

Ω
w̃(α, t)2dα.

Moreover, from the Friedrichs’ inequality
∫

Ω
z(α, t)2dα≤C

∫

Ω
|▽ z(α, t)|2dα

for z|∂Ω = 0, (14)

where the positive constant C depends on the dimensional
number n and the domain Ω, it can be obtained that

(
ρ2 −

c
2

)∫

Ω
w̃2

t dα+

(
ρ2 −

cC
2

)∫

Ω
|▽ w̃|2dα

≤V (t)

≤ (ρ1 +
c
2
)
∫

Ω
w̃2

t dα+

(
ρ1 +

cC
2

)∫

Ω
|▽ w̃|2dα,

(15)

where

ρ1 =
1
2

max{1,k1 + ck2}, ρ2 =
1
2

min{1,k1 + ck2}.
(16)

Without loss of generality, assume that C ≥ 1. Then, by
choosing the positive constant c to satisfy

0 < c < min
{

1
C
,

k1

|C− k2|

}
, (17)

it immediately follows from (15) that

0 < c < 2ρ2 min
{

1,
1
C

}
, (18)

and thus the positive definiteness of V (t) is guaranteed.
Moreover, it can be obtained from (15) that

m1∥w̃∥2
2 ≤V ≤ m2∥w̃∥2

2, (19)

where the norm

∥ ·∥2 := ∥▽ ·∥L2 +∥ ·t ∥L2 ,

and the constants

m1 =
1
2

(
ρ2 −

cC
2

)
, m2 = ρ1 +

cC
2
. (20)

Calculation of V̇ (t). Taking the time derivative of V (t)
along the trajectory of the error system (8) – (10), we have

V̇ =
∫

Ω
w̃t w̃ttdα+(k1 + ck2)

∫

Ω
▽w̃t ·▽w̃dα

+ c
∫

Ω
(w̃tt w̃+ |w̃t |2)dα

=− k2

∫

Ω
|▽ w̃t |2dα− ck1

∫

Ω
|▽ w̃|2dα

+ c
∫

Ω
w̃2

t dα− f ′′
∫

Ω
(w̃t + cw̃)dα, (21)

where the Green’s formula
∫

Ω
▽u ·▽vdx =−

∫

Ω
u∆vdx+

∫

∂Ω

∂v
∂ν udS

is used. Here, ν is the outward-pointing unit normal vec-
tor of ∂Ω, and dS denotes the integration element on ∂Ω.
From the Friedrichs’ inequality (14), we have

V̇ ≤−
(

k2

C
− c
)
∥w̃t∥2

L2 − ck1∥▽ w̃∥2
L2

+ | f ′′|(∥w̃t∥L2 + c
√

C∥▽ w̃∥L2).

Choose the positive parameter c to satisfy k2/C − c > 0,
which, together with (17), gives the bound for c as

0 < c < min
{

1
C
,

k1

|C− k2|
,

k2

C

}
. (22)

Let

a1 = min
{

k2

C
− c,ck1

}
, b = max{1,c

√
C}, (23)

then

V̇ ≤−a1

2
∥w̃∥2

2 + | f ′′|b∥w̃∥2 ≤− a1

2m2
V +

b
√

m1
γ
√

V ,

where the inequality (19) is used. Let W =
√

V , then Ẇ =
V̇/(2

√
V ), which leads to

Ẇ ≤− a1

4m2
W +

bγ
2
√

m1
, (24)

and thus the comparison principle for ODE gives

W (t)≤exp
(
− a1

4m2
t
)

W (0)

+
4bγm2

2a1
√

m1

(
1− exp

(
− a1

4m2
t
))

=
4bγm2

2a1
√

m1

+ exp
(
− a1

4m2
t
)(

W (0)− 4bγm2

2a1
√

m1

)
. (25)

From the Friedrichs’ inequality (14), there exist positive
constants m3 and m4 such that

m3∥w̃∥2
2 ≤ ∥w̃∥2

1 ≤ m4∥w̃∥2
2, (26)

where

m3 = 1, m4 = 1+C. (27)
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The inequalities (19) and (26) then further gives

m3

m2
V ≤ ∥w̃∥2

1 ≤
m4

m1
V. (28)

From the inequalities (19) and (28), we obtain (12), where

C1 =
4bγm2

2a1m1

√
m4, ω1 =

a1

4m2
, C2 =

√
m2m4

m1m3
. (29)

Here, a1, b are defined in (23) with c chosen based on (22).
The proof is thus completed. !

From Theorem 1, the formation tracking error resulted
from the designed control law (7) is uniformly ultimately
bounded by a constant directly proportional to the acceler-
ation of the desired trajectory. Furthermore, if the desired
formation is moving with a constant velocity, then under
the controller (7), the formation tracking error system is
exponentially convergent, which is stated in the following
corollary.

Corollary 1: Suppose the acceleration of the moving
formation | f ′′| = 0, ∀t ≥ 0, then for any initial condition
(w̃0, w̃1) ∈ (Hm(Ω)∩H1

0 (Ω))2 satisfying the compatibil-
ity condition (11), the unique solution w̃(·, t) to the error
system (8) – (10) is exponentially convergent:

∥w̃(·, t)∥1 ≤C2e−ω1t∥w̃(·,0)∥1,

where C2,ω1 are defined in (29), with m1,m2,m3,m4 de-
fined by (20), (27) and (16), (22).

In other words, the formation tracking error is elimi-
nated exponentially in the case that all the agents moves
in a constant velocity. This is an advantage of applying
the control law onto the acceleration of the agents over
applying the controller onto their velocity [21].

4. ROBUSTNESS TO THE UNCERTAINTY IN
THE VELOCITY FEEDBACK

It is thus important to study robustness of the controlled
formation tracking system to a small perturbation in the
velocity feedback, i.e., the system (4) under the controller

u(α, t) =−k1∆wd(α)+ k2(1+ ε)∆wt(α, t),

where the parameter ε denotes a maximal possible uncer-
tainty of the velocity, which is allowed to be either positive
or negative. Without loss of generality, we assume |ε|< 1.

In this case, consider the dynamics of the resultant
closed-loop multi-agent system as follows:

wtt(α, t) = k1(∆w(α, t)−∆wd(α))

+ k2(1+ ε)∆wt (α, t) , (30)

w(α, t)|α∈∂Ω = wd(α, t)|α∈∂Ω + f(t), (31)
w(α,0) = w0(α), wt(α,0) = w1(α), (32)

Then the error system becomes
Then,we examine the new w̃1 = w̃-error (scalar) system:

w̃tt(α, t) = k1∆w̃(α, t)+ k2(1+ ε)∆w̃t(α, t)− f ′′(t),
(33)

w̃(α, t)|α∈∂Ω = 0, (34)

w̃(α,0) = w̃0(α), w̃t(α,0) = w̃1(α) (35)

Theorem 2: Suppose there exists a constant γ such that
| f ′′(t)|≤ γ, ∀t ≥ 0, then there exists a constant ε∗ > 0 such
that for any positive constant ε satisfying |ε|< ε∗, for any
initial condition (w̃0, w̃1) ∈ (Hm(Ω)∩H1

0 (Ω))2 satisfying
the compatibility boundary conditions

w̃0(α)|α∈∂Ω = 0, w̃1(α)|α∈∂Ω = 0,

the new error system (33) – (35) admits a unique solution
w̃(·, t) ∈ C([0,∞);H1(Ω))∩C1([0,∞);L2(Ω)). Moreover,
there exist positive constants ω2 and C3 such that

∥w̃(·, t)∥1 ≤C3 + e−ω2t (C2∥w̃(·,0)∥1 −C3) , (36)

where the norm ∥ ·∥1 := ∥ ·∥H1 +∥ ·t ∥L2 .

Proof: Calculating the time derivative of the Lyapunov
function V (t), defined in (13) with c satisfying (22), along
the trajectory of the new error system (33) – (35), we have

V̇ (t) =− k2(1+ ε)
∫

Ω
|▽ w̃t |2dα+ ck2ε

∫

Ω
w̃t∆w̃ dα

− ck1

∫

Ω
|▽ w̃|2dα+ c

∫

Ω
w̃2

t dα

− f ′′
∫

Ω
(w̃t + cw̃)dα

=− k2(1+ ε)
∫

Ω
|▽ w̃t |2dα

− ck2ε
∫

Ω
▽w̃t ▽ w̃ dα

− ck1

∫

Ω
|▽ w̃|2dα+ c

∫

Ω
w̃2

t dα

− f ′′
∫

Ω
(w̃t + cw̃)dα

≤− 1
2

k2 (2(1+ ε)− c|ε|)
∫

Ω
|▽ w̃t |2dα

− c(k1 −
1
2

k2|ε|)
∫

Ω
|▽ w̃|2dα

+ c
∫

Ω
w̃2

t dα − f ′′
∫

Ω
(w̃t + cw̃)dα,

where integration by parts is used in the second equality,
the Cauchy-Schwarz inequality and the Young’s inequal-
ity are used in the inequality. then

V̇ (t)≤−
(

k2
2(1+ ε)− c|ε|

2C
− c
)∫

Ω
w̃2

t dα

− c(k1 −
1
2

k2|ε|)
∫

Ω
|▽ w̃|2dα
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+ γ
(
∥w̃t∥L2 + c

√
C∥▽ w̃∥L2

)

=−
(

k2

C
− c− k2

C

(
1− c

2

)
|ε|
)∫

Ω
|w̃t |2dα

− (ck1 −
1
2

ck2|ε|)
∫

Ω
|▽ w̃|2dα

+ γ
(
∥w̃t∥L2 + c

√
C∥▽ w̃∥L2

)
, (37)

where the Friedrichs’ inequality is used in the first in-
equality. For any ε satisfying

|ε|< min
{

2(k2 − cC)

k2(2− c)
,

2k1

k2

}
= ε∗, (38)

with positive constant c satisfying

0 < c < min
{

1
C
,

k1

|C− k2|
,2,

k2

C

}
, (39)

we have

V̇ ≤−a2

2
∥w̃∥2

2 + γb∥w̃∥2 ≤− a2

2m2
V +

bγ
√

m1

√
V ,

(40)

where b is defined in (23) and

a2(ε)

= min
{

k2

C
− c−

(
k2

C
+

1
2

ck2

)
|ε|, ck1 −

1
2

ck2|ε|
}
.

(41)

Thus, similarly as the proof for Theorem 1, for W =
√

V ,
we have

Ẇ ≤− a2

4m2
W +

bγ
2
√

m1
, (42)

and then,

W (t)≤ 4bγm2

2a2
√

m1

+ exp
(
− a2

4m2
t
)(

W (0)− 4bγm2

2a2
√

m1

)
. (43)

Thus, (36) is derived with the choices of

C3 =
4bγm2

2a2m1

√
m4, ω2 =

a2

4m2
, (44)

which completes the proof. !

It can be seen from (41) and (43) that as the velocity
bias |ε| increases, the decay rate of the error system would
decrease. Although the inaccuracy of the velocity would
slow down the convergence of the system, the equation
(38) gives a certain range of the velocity bias, which guar-
antees the converge rate is always larger than zero. The
range depends on cC, where the constant C ≥ 1 is esti-
mated from the Friedrichs’ inequality, and the choice of
c follows from (22). Thus, as long as the bias, if there is
any, is limited within this range, our method proposed in
this paper can achieve formation tracking control.

5. FORMATION TRACKING CONTROL
IN THE 3-D SPACE

It is worth emphasizing that this result is general for for-
mation tracking control in any n-dimensional state space
and any m-dimensional topology space. In other words,
the proposed formation tracking control framework can
be applied to high dimensional spaces together with di-
versified communication topologies. In this section, sev-
eral simulation examples are presented for the formation
tracking control of MAS with a 2-D topology in the 3-D
space, more specifically, on a spherical surface.

5.1. The model under spherical coordinates
Consider the PDE system (3)-(5) with the controller

(7) in the 3-D state space under the spherical coordinates
(r,θ ,φ), where the radius is constant: r = 1, the polar an-
gle θ ∈ [θ1,θ2] with 0 < θ1,θ2 < π , and the azimuthal an-
gle φ ∈ [0,2π]. For the sake of simplicity, the coordinate
r is omitted from the context in the sequel.

Denote the state as

w(θ ,φ , t) := (x(θ ,φ , t),y(θ ,φ , t),z(θ ,φ , t))T ,

then each of the states x(θ ,φ , t), y(θ ,φ , t) and z(θ ,φ , t)
satisfies the following PDE:

wtt(θ ,φ , t) =k1

(
cot(θ)wθ +wθθ +

wφφ

sin2(θ)

)

− k1

(
cot(θ)wd

θ +wd
θθ +

wd
φφ

sin2(θ)

)

+ k2

(
cot(θ)wtθ +wtθθ +

wtφφ

sin2(θ)

)
,

(45)

where k2 > 0 is the control gain and the Laplacian in
spherical coordinates is used. The corresponding bound-
ary conditions and initial conditions are thus

w(θ1,φ , t) = wd(θ1,φ , t)+ fi(t), (46)

w(θ2,φ , t) = wd(θ2,φ , t)+ fi(t), (47)
w(θ ,φ ,0) = w0(θ ,φ), wt(θ ,φ ,0) = w1(θ ,φ),

(48)

where fi, i = 1,2,3, denoting the projection of the target
orbit along the x, y and z axes, corresponds to the x,y,z-
PDEs respectively. Note that with the spherical surface
being the topology space, the control algorithm requires
only two groups of agents to serve as leader, where the
number depends on the way of discretization to φ .

The spherical harmonics {Y m
l (θ ,φ); l ∈N,m∈Z, |m|≤

l} forms an orthogonal basis for L2([θ1,θ2]× [0,2π]) in
the spherical coordinates [26], where

Y m
l (θ ,φ) =

√
2l +1

4π
(l −m)!
(l +m)!

Pm
l (cos(θ))w̃jmφ ,
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(a) (b)

Fig. 1. Communication topology of the agents. (a) The
frontal view. (b) The top view (for half the sphere).

with the associated Legendre polynomial Pm
l defined as

Pm
l (s) =

1
2l l!

(1− s2)
m
2

dl+m

dsl+m (s2 −1)l .

Therefore, any desired formation manifold in L2([θ1,θ2]×
[0,2π]) can be represented as follows:

wd(θ ,φ) =
∞

∑
l=0

l

∑
m=−l

wm
l Y m

l (θ ,φ), (49)

where

wm
l =

∫ 2π

0

∫ π

0
wd(θ ,φ)Y m∗

l (θ ,φ)sin(θ)dθdφ .

Here, ∗ denotes the (complex) conjugate operator when
Y m

l is complex harmonics.

5.2. Distributed control law
By discretizing the PDE model (45)–(47), a distributed

control algorithm for the agents is obtained. The dis-
cretized topology in spherical surface shown in Fig. 1, in
which there are (M+1)×(N+1) agents labeled by identi-
fication number (i, j) ∈ {0, ..,M}×{0, ...,N} correspond-
ing to the location (ihθ , jhφ ) on topology with the polar
angle step hθ = θ2−θ1

M and azimuthal angle step hφ = 2π
N .

The agents on the boundary are chosen as leaders, la-
beled by i = 0 and i = M for all j = 0,1, · · · ,N and the
other agents are followers. The protocol for the leaders is
directly from the boundary condition (46) and (47):

x0, j(t) = xd(θ1,φ)+ f1(t),

xM, j(t) = xd(θ2,φ)+ f1(t).

Discretizing (45) through finite difference methods in
spherical coordinates, we get the following coordinated
control protocol for each follower (i, j), i = 1, · · · ,M − 1
and j = 0, · · · ,N −1:

ẍi, j(t) =k1

(
cot(ihθ )

2hθ
(xi+1, j − xi−1, j)

+
xi+1, j −2xi, j + xi−1, j

h2
θ

+
xi, j+1 −2xi, j + xi, j−1

h2
φ sin2(ihθ )

)

− k1

(
cot(ihθ )

2hθ
(xd

i+1, j − xd
i−1, j)

+
xd

i+1, j −2xd
i, j + xd

i−1, j

h2
θ

+
xd

i, j+1 −2xd
i, j + xd

i, j−1

h2
φ sin2(ihθ )

)

+ k2

(
cot(ihθ )

2hθ
(ẋi+1, j − ẋi−1, j)

+
ẋi+1, j −2ẋi, j + ẋi−1, j

h2
θ

+
ẋi, j+1 −2ẋi, j + ẋi, j−1

h2
φ sin2(ihθ )

)
.

From the above control protocol, the followers only need
to use local information from their neighbors. For period-
ical properties of spherical coordinates, let xi,−1 = xi,N or
xi,N+1 = xi,0, respectively. The control protocol along the
y and z axes can be written in a similar form, so we omit
them.

5.3. Simulations
Consider the PDE system (3)-(5) with k1 = 1.6, where

the controller is designed as (7) with the gain k2 = 0.7.
All simulations are carried on with 41× 51 agents, i.e.,
M = 40, N = 50.

First, four examples of the desired formation with
x,y,z all governed by (49) are shown in Fig 2. In these
numerical examples, we let θ1 = 0.01 and θ2 = π −
0.01. In particular, the manifolds are described by (a)
sphere xd = sin(φ)cos(θ), yd = sin(φ)sin(θ) and zd =
cos(φ); (b) spherical harmonics Y 2

3 with functions xd =
|Y 2

3 (θ ,ψ)|2 sin(φ)cos(θ), yd = |Y 2
3 (θ ,ψ)|2 sin(φ)sin(θ)

and zd = |Y 2
3 (θ ,ψ)|2 cos(φ); (c) hyperbolic surface xd =

cosh(φ)cos(θ), yd = cosh(φ)sin(θ) and zd = 1.2sinh(φ)
and (d) spherical harmonics Y 2

2 .
Fig. 3 depicts a formation tracking process that the

multi-agent system track the target on a circular orbit and
at the same time keep the desired formation. The agents
begin at initial position (0,b0,0) with b0 = 0.2 and in
the initial formation Y 2

2 (Fig. 2(f)). After that, the de-
sired formation becomes spherical harmonics Y 2

3 . At the
same time, the agents in formation are required to move
on a target orbit governed by x = b0 cos(a0t)cos(ψ), y =
b0 cos(a0t)sin(ψ) and z = b0 sin(a0t), where a0 = 1, ψ =
π/9.

The desired trajectory has a varying velocity which is
only known to the leaders, so there exist tracking errors.
However, the errors are almost unnoticeable in Fig. 3.
The readers could also refer to the simulation video from
[27]. The tracking errors versus time are shown in Fig. 4.
After the transient evolution is settle down, the tracking
errors converges and bounded by the acceleration peak
(0.16). The mean of the squared position errors w̃(α, t)
is bounded by a sine-like function, and the velocity errors
are much smaller and almost converge to zero.
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(a) (b)

(c) (d)

Fig. 2. Agent formation manifolds. (a) Sphere. (b) Spher-
ical harmonics Y 2

3 . (c) Hyperbolic surface. (d)
Spherical harmonics Y 2

2 .

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Formation tracking snapshots. The formation be-
gins with a tire tread pattern (a) t = 0. And then
the formation transform to Spherical harmonics Y 2

3
and at the same time moving to the top of the target
orbit (b) t = 1.84s. After that the formation keep
unchanged and move on the target circular orbit at
t = 9.84s (c), t = 16.8s (d), and t = 24.4s (e). Fi-
nally the formation (f) t = 31.4s.

Consider the perturbation of the velocity (within a
range) through assignment of parameter ε to be a white
noise with variance 0.5. It is obvious from Fig. 5 that al-
though the tracking errors with velocity uncertainty con-
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Fig. 4. Position and velocity tracking errors with ε = 0
along the x-axis (a) (b), y-axis (c) (d) and z-axis
(e) (f).

verge more slowly and their transient fluctuations are
greater than the case without velocity uncertainty, the er-
rors still converge and bounded.

In order to check the capability of the system tracking
a target with rapid speed, we consider an example that the
agents track an orbit on a straight line with a rapid speed.
The target orbit is f(t) = 2t(1,1,1)T , and the desired for-
mation still use Y 2

3 . As shown in Figure 6, the tracking
errors converge almost to zero within 8s. Furthermore, it
is worth testing the performance of the control algorithm
in the case that one or two agents suddenly lose connec-
tion with its neighbors when the system is moving along
the desired orbit. Fig. 7 (a) and (b) show the simulation
results of followers (20,25), (20,28) losing connection
with the system at t = 7.2s for 2 seconds. Fig. 7(c) and
(d) show another simulation results of leaders (31,25),
(31,42) losing connection at t = 7.2s for 2 seconds. Once
communication fails, the information from the neighbors
that cannot be obtained is replaced by the previous one
until the communication is reconnected. The simulation
results illustrate that temporal communication failure has
little effect on the system by utilizing the proposed control
protocol.

For all the above simulations, the computation com-
plexity is O((M + 1)(N + 1)L) with L being the number
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Fig. 5. Position (a) and velocity (b) tracking errors along
x-axis when ε is a white noise with variance 0.5.
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Fig. 6. Position (a) and velocity (b) tracking errors along
x-axis when all the agents move quickly along a
straight line.
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Fig. 7. Position (a) and velocity (b) tracking errors along
the x-axis with ε = 0 when followers (20,25) and
(20,28) lose connection with the system. Position
(a) and velocity (b) tracking errors along the x-axis
with ε = 0 when leaders (31,25) and (31,42) lose
connection.

of iterations [28].

6. CONCLUSION AND FUTURE WORKS

A wave PDE is introduced to model the distributed
large-scale MAS. In order for the agents to track some de-

sired formation moving along some desired trajectory, a
leader-follower strategy is employed. The desired forma-
tion and trajectory are only known by the leaders, while
each follower knows only its relative position and veloc-
ity with respect to those of its neighbors. A distributed in-
ner controller consisting of a Kelvin-Voigt damping term
is then designed, actuating on the followers. The track-
ing error between the desired and actual positions of the
agents is uniformly ultimately bounded by a constant di-
rectly proportional to the agent acceleration. Moreover,
robustness of the control law to a perturbation in the ve-
locity measurement is also proved.

The extension of this control algorithm to more com-
plicate communication topologies can be considered as a
future research topic, and it can possibly be achieved by
using different discretization schemes and multi-indices
[23, Chapter 3]. It is also worth considering the corre-
sponding problem with the dynamics of non-point agent
systems, such as the nonholonomic wheel robots and the
rigid body systems. Furthermore, due to the limitation
of the physical systems, the amplitude saturation problem
[29] of the acceleration actuator can be investigated.

REFERENCES

[1] L. Fang and P. J. Antsaklis. “Decentralized formation
tracking of multi-vehicle systems with nonlinear dynam-
ics,” Proc. of the 14th Mediterranean Conf. on Control and
Automation, MED’06, pp. 1-6, 2006.

[2] K. K. Oh, M. C. Park, and H. S. Ahn, “A survey of multi-
agent formation control,” Automatica, vol. 53, pp. 424-440,
March 2015. [click]

[3] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of
recent progress in the study of distributed multi-agent co-
ordination,” IEEE Transactions on Industrial Informatics,
vol. 9, no. 1, pp. 427-438, February 2013. [click]

[4] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino,
“Decentralized time-varying formation control for multi-
robot systems,” The International Journal of Robotics Re-
search, vol. 33, no. 7, pp. 1029-1043, May 2014.

[5] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus
and cooperation in networked multi-agent systems,” Proc.
of the IEEE, vol. 95, no. 1, pp. 215-233, January 2007.
[click]

[6] M. Rubenstein, A. Cornejo, and R. Nagpal, “Pro-
grammable self-assembly in a thousand-robot swarm,” Sci-
ence, vol. 345, no. 6198, pp. 795-799, August 2014. [click]

[7] F. Y. Hadaegh, S. J. Chung, and H. M. Manohara, “On de-
velopment of 100-gram-class spacecraft for swarm appli-
cations,” IEEE Systems Journal, vol. 10, no. 2, pp. 673-
684, June 2016. [click]

[8] T. Vicsek, A. Zafeiris, “Collective motion”. Physics Re-
ports, vol. 517, no. 3, pp. 71-140, 2012. [click]

[9] A. Sarlette, and R. Sepulchre, “A PDE viewpoint on basic
properties of coordination algorithms with symmetries,”

http://dx.doi.org/10.1016/j.automatica.2014.10.022
http://dx.doi.org/10.1109/TII.2012.2219061
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1126/science.1254295
http://dx.doi.org/10.1109/JSYST.2014.2327972
http://dx.doi.org/10.1016/j.physrep.2012.03.004


Formation Tracking Control for Multi-agent Systems: A Wave-equation based Approach 2713

Proc. of the 48th IEEE Conf. on Decision and Control and
28th Chinese Control Conf., pp. 5139-5144, 2009.

[10] G. Ferrari-Trecate, A. Buffa, and M. Gati, “Analysis of
coordination in multi-agent systems through partial differ-
ence equations,” IEEE Transactions on Automatic Control,
vol. 51, no. 6, pp. 1058-1063, June 2006. [click]

[11] T. Meurer, and M. Krstic, “Finite-time multi-agent deploy-
ment: A nonlinear PDE motion planning approach,” Auto-
matica, vol. 47, no. 11, pp. 2534-2542, November 2011.
[click]

[12] P. Frihauf, and M. Krstic, “Leader-enabled deployment
onto planar curves: A PDE-based approach,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 8, pp. 1791-
1806, August 2011. [click]

[13] J. Qi, R. Vazquez, and M. Krstic, “Multi-agent deployment
in 3-D via PDE control,” IEEE Transactions on Automatic
Control, vol. 60, no. 4, pp. 891-906, April 2015. [click]

[14] N. Ghods, and M. Krstic, “Multi-agent deployment over a
source,” IEEE Transactions on Control Systems Technol-
ogy, vol. 20, no. 1, pp. 277-285, January 2012. [click]

[15] H. Hao, P. Barooah, and P. G. Mehta, “Stability margin
scaling laws for distributed formation control as a function
of network structure,” IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 923-929, April 2011. [click]

[16] C. Xu, Y. Dong, Z. Ren, H. Jiang, and X. Yu, “Sensor de-
ployment for pipeline leakage detection via optimal bound-
ary control strategies,” Journal of Industrial and Manage-
ment Optimization, vol. 11, no. 1, pp. 199-216, January
2015.

[17] V. D. Blondel, J. M. Hendrickx, and J.N. Tsitsiklis,
“Continuous-time average-preserving opinion dynamics
with opinion-dependent communications,” SIAM Journal
on Control and Optimization, vol. 48, no. 8, pp. 5214-5240,
October 2010.

[18] H. Rastgoftar and S. Jayasuriya, “Evolution of multi-agent
systems as continua,” Journal of Dynamic Systems, Mea-
surement, and Control, vol. 136, no. 4, pp. 041014, April
2014. [click]

[19] Y. Zhao, Z. Duan, G. Wen, and Y. Zhang, “Distributed
finite-time tracking control for multi-agent systems: an
observer-based approach,” Systems & Control Letters, vol.
62, no. 1, pp. 22-28, January 2013.

[20] Y. Cao and W. Ren, “Multi-vehicle coordination
for double-integrator dynamics under fixed undi-
rected/directed interaction in a sampled-data setting,”
International Journal of Robust and Nonlinear Control,
vol. 20, no. 9, pp. 987-1000, May 2010.

[21] J. Qi, F. Pan, and J.-P. Qi, “A PDE approach to formation
tracking control for multi-agent systems,” Proc. of the 34th
Chinese Control Conference, pp. 7136-7141, 2015.

[22] X. Dong, B. Yu, Z. Shi, and Y. Zhong, “Time-varying for-
mation control for unmanned aerial vehicles: Theories and
applications,” IEEE Transactions on Control Systems Tech-
nology, vol. 23, no. 1, pp. 340-348, January 2015.

[23] T. Meurer, Control of Higher-dimensional PDEs: Flatness
and Backstepping Designs, Springer Science & Business
Media, 2012. [click]

[24] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs:
A Course on Backstepping Designs, SIAM, 2008.

[25] S. Kawashima, and Y. Shibata, “Global existence and
exponential stability of small solutions to nonlinear vis-
coelasticity,” Communications in Mathematical Physics,
vol. 148, no. 1, pp. 189-208, August 1992.

[26] H. Groemer, Geometric Applications of Fourier Series and
Spherical Harmonics, Cambridge University Press, 1996.
[click]

[27] J, Qi, “Simulation movie of a 3-D formation track-
ing example 2016,” https://www.dropbox.com/s/
ipnan4c1b6x478r/formationtrackingwave.mp4?dl=0;
or http://pan.baidu.com/s/1bbOrHc

[28] A. R. Mitchell and D. F. Griffiths, The Finite Differ-
ence Method in Partial Differential Equations, John Wiley,
1980.

[29] N. Sun, Y. Fang, H Chen, and L Biao, “Amplitude-
saturated nonlinear output feedback antiswing control for
underactuated cranes with double-pendulum cargo dynam-
ics,” IEEE Transactions on Industrial Electronics, vol. 64,
no. 3, pp. 2135-2146, March 2017. [click]

Shu-Xia Tang received her Ph.D. in Me-
chanical Engineering in 2016 from the De-
partment of Mechanical & Aerospace En-
gineering, University of California, San
Diego, USA. She is currently a postdoc-
toral research fellow and lecturer at the
Department of Applied Mathematics, Uni-
versity of Waterloo, Canada. Her main re-
search interests are control and estimation

in distributed parameter systems. Recent research also includes
optimal actuator and sensor design problems.

Jie Qi received the Ph.D. degree in Sys-
tems Engineering (2005) and the B.S. de-
gree in Automation (2000) from North-
eastern University in Shenyang, China.
She is currently a Professor in Automation
Department, Donghua University, China.
Her research interests include multi-agent
cooperative control, the control of dis-
tributed parameter systems, complex sys-

tem modeling and intelligent optimization.

Jing Zhang is currently pursuing the
Ph.D. degree with the College of Infor-
mation Science and Technology, Donghua
University, Shanghai, China. She received
the M.S. degree in Control Science and
Engineering (2017) from Donghua Uni-
versity and the B.S. degree in Automation
(2013) from Shanxi University, Taiyuan,
China. Her research interests include

boundary control and multi-agent cooperative control.

http://dx.doi.org/10.1109/TAC.2006.876805
http://dx.doi.org/10.1016/j.automatica.2011.08.045
http://dx.doi.org/10.1109/TAC.2010.2092210
http://dx.doi.org/10.1109/TAC.2014.2361197
http://dx.doi.org/10.1109/TCST.2011.2104959
http://dx.doi.org/10.1109/TAC.2010.2103416
http://dx.doi.org/10.1137/090766188
http://dx.doi.org/10.1109/TCST.2014.2314460
http://dx.doi.org/10.1007/BF02102372
https://www.dropbox.com/s/ipnan4c1b6x478r/formationtrackingwave.mp4?dl=0
https://www.dropbox.com/s/ipnan4c1b6x478r/formationtrackingwave.mp4?dl=0
http://pan.baidu.com/s/1bbOrHc
http://dx.doi.org/10.1109/TIE.2016.2623258

	25
	25.[2704-2713] 295) 16-00562R1

