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a Linear 2 x 2 Hyperbolic System with Boundary Input Disturbance 

Shuxia Tang and Miroslav Krstic 

Abstract- In this paper, sliding mode control approach is 
used to stabilize a 2x2 system of first-order linear hyperbolic 
PDEs subject to boundary input disturbance. Disturbance 

rejection is achieved, and with the designed first-order sliding 
mode controller, the resulting closed-loop system admits a 
unique (mild) solution without chattering. Convergence to the 
chosen infinite-dimensional sliding surface of state trajectories 
takes place in a finite time. Then on the sliding surface, the 
system is exponentially stable with a decay rate depending on 
the spatially varying system coefficients. A simulation example 
is presented to illustrate the effectiveness and performance of 
sliding mode control method. 

Index Terms- Linear 2x2 hyperbolic system; First-order 
sliding mode control; Disturbance rejection; Backstepping. 

I. INTRODUCTION 

Linear 2 x2 hyperbolic systems have wide physical back­
grounds, such as oil wells [1], transmission lines [2], road 
traffic [3], open channels [4], and so on. Due to their practical 
and theoretical values, stabilization of these systems has been 
a topic of active research (see, e.g., [5], [6], [7]). Also, 
quasilinear 2 x 2 systems of hyperbolic PDEs have received 
some attention (see, e.g., [8], [9]). 

System uncertainties and disturbances are COlmnon prob­
lems, which sometimes can worsen the system performance 
or even lead to instability, and thus need to be taken into 
account. Disturbance attenuation and disturbance rejection 
are desirable in system control design. There have been 
some research results utilizing different methods to deal with 
particular types of boundary input disturbances (see, e. g., 
[10], [11], [12]) in distributed parameter systems. 

Sliding mode control technique has been studied for 
decades and is characterized by its high simplicity and ro­
bustness among the existing methods. Recently, this approach 
has been generalized to distributed parameter systems. For 
example, it is used to reject the more general boundary input 
disturbance in wave equation [13], Euler-Bernoulli beam 
equation [14] and Schrodinger equation [15]. 

The system considered in this paper is a 2 x2 system 
of first-order linear hyperbolic PDEs with spatially varying 
coefficients and a boundary input disturbance. The control 
objective is to stabilize the system while rejecting the dis­
turbance. The control method employed is sliding mode 
boundary control. Since the designed controller is first­
order and thus continuous (see, e. g. [16], [17], [18], [19]), 
chattering is avoided in the resulting closed-loop system. 
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sht015@ucsd.edu; krstic@ucsd.edu) 

II. PROBLEM STATEMENT 

In this paper, we intend to employ sliding mode control 
to stabilize the following system (see, Fig. 1): 

Ut (x,t) = -C[ (x)uAx,t)+C[ (x)v (x,t) (1) 
vt (x,t) =c2 (x) vAx, t) +C2 (X)U (X,t) (2) 
u (O,t) =qv (O,t) (3) 
v (1,t) =U (t) +d (t), (4) 

where u (x,t), v (x,t) are system states with x E [0,1], t > 
0; U (t) is control input; d (t) is external disturbance at the 
control end. 

Here are some assumptions: 
l. C[ (X),c2 (X) E C[[O, 1], C[ (X),c2 (X) > 0, 
2. C[ (X),C2 (X) E qo, 1], 
3. q =1= 0, 
4. d (t) and d (t) are bounded measurable, that is, Id (t)1 "5:.M, 
Id (t)1 "5:. M for some M> 0 and all t 2: 0, 
5. Initial data uo (x), vo (x) E L2[O, 1]. 

Following [7], we introduce a backstepping transformation 

a (x,t) =u (x,t) - foX KUU (x,�)u (�,t)d� 

- foX KUV (x,�)v (�,t)d� 

f3 (x,t) =v (x,t) - foX KVU (x,�)u (�,t)d� 

- foX KVV (x,�)v (�,t)d�, 

(5) 

(6) 

in which the continuous kernel functions are uniquely deter­
mined by the following system: 

C[ (x)K�U + C[ (�)Kt = -c( (�)KUU - C2 ( �)KUV (7) 

C[ (x)K�V - c2 ( �)Kr = £:f( �)KUV - C[ (�)K"U (8) 

c2 (x)K;U - cj (�)Kt = c( (�)KVU +c2 (�)KVV (9) 

c2 (x)K;V +c2 (�)Kr = _c� (�)KVV +Cj (�)KVU (10) 

d(t) 
(t) + v(i,t) (u,v) + 2 x 2 Transport PDE 

(u(x,t), v(x,t)) 

Fig. 1. Block diagram of the system (1) - (4) 
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with boundary conditions 

KUU(x 0) = £2(0) KUV(x 0) KUV(x x) = CI(X) , q£I(O) " , £1 (X) + £2 (X) 
(11) 

KVll(X x) = _ C2(X) KVV(x 0) = q£I(O) KVll(X 0) , £1 (x) + £2 (X) , , £2(0) , . 
(12) 

The transformation (5) - (6) is invertible and the inverse is: 

u(x,t) =a(x,t) + fox Laa(x,�)a(�,t)d� 
+ fox Laf3(x,�)f3(�,t)d� (13) 

v(x,t) =f3(x,t)+ fox Lf3a(x,�)a(�,t)d� 
+ fox Lf3f3(x,�)f3(�,t)d�, (14) 

where the continuous kernel functions are uniquely deter­
mined by the following system: 

£1(x)L�a+£I(�)L�a = _£;(�)Laa+CI(X)Lf3a (15) 
£1 (x)L�f3 -£2 (�)L�f3 = £� (�)L af3 + CI (x)Lf3f3 (16) 
£2(x)L�a -£1 (�)L�a = £; (�)Lf3a -c2(x)L aa (17) 
£2(x)L�f3 +£2(�)L�f3 = -�(�)Lf3f3 -c2(x)Laf3 (18) 

with boundary conditions 

The transformation (5) - (6) maps the system (1) -(4) into 
the following system (see, Fig. 2): 

at (x,t) = -£1 (x)ax(x,t) 
f3t(x,t) =£2(X)f3x(x,t) 
a(O,t) =qf3(O,t) 
f3(l,t) =U(t) +d(t) -fol a(�,t)(KVll(1,�) 

+ hi KVll(l,T/)Laa(T/,�)dT/ 

+ hi KVV(l, T/ )Lf3a( T/, � )dT/ ) d� 

-fo 
1 f3 ( � , t )( KVV (1 , � ) 

+ hi KVll(1,T/)Laf3(T/,�)dT/ 

+ hi KVV(1, T/)Lf3f3(T/,�)dT/) d�. 

(21) 
(22) 
(23) 

(24) 

III. CONTROL DESIGN 
Consider the systems (1) -(4) and (21) -(24) in the state 

Hilbert space H= (L2(0,1))2 with the norm induced by the 
following inner product 

«fl, gJ)T, (12, g2f > 

rl ( 2-X - 2q2(1+x) -) = Jo £I(x)fl(x)h(x) + £2 (x) gl(X)g2(X) dx, 
I;j (!J, gJ)T, (12, g2f E H. (25) 

A. Sliding surface 
Define energy of the system (21) -(24) by: 

110
1 ( 2-x 2 2q2(1+x) 2) E(t) = - -(-) la(x,t)1 + ( )  1f3(x,t)1 dx, 2 0 £1 x £2 x 

then 

E(t) =-�la(1,t)12+2llf3(1,t)12 
1 t - 2 Jo (la(x,t)12 +2q21f3(x,t)12) dx. 

(26) 

(27) 
Choose a sliding surface 

i.e., 

S(a,f3)T(t) = f3(1,t) = 0, (28) 

S(a,f3)T = {(f,gf E H I g(l) = O}, (29) 
then on S(a,f3)T, the system (21) -(24) becomes 

at(x,t) = -£1 (x)aAx,t) 
f3t (x, t) =£2 (x) f3x(x, t) 
a(O,t) =qf3(O,t) 
f3(l,t) =0, 

and we can obtain that 

E(t) :::; -aE(t), 
where 

(30) 
(31) 
(32) 
(33) 

(34) 

1 . a = - nun {£I (x), £2 (x)} > 0. (35) 2 XE[O,I] 
The following lemma can then be proved. 

(aJ)) 

Fig. 2. Block diagram of systems (21) - (24) (HI and H2 are operators, 
of which the meaning should be clear from (24).) 
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Lemma 1: For any initial data (aCO),{3CO))T E S(a,{3)T' 
there exists a unique (mild) solution to (30) - (33) such that 

(aCt),{3Ct)l E C([O,oo);H). (36) 
Moreover, the system (21) -(24) is exponentially stable in 
S(a,{3)T: 

II (aCt),{3Ct))T IIH � e-a/2tll (aCO),{3CO))T)IIH. (37) 
Transforming S(a,{3l through (5) - (6), that is, 

S(u,v)T(t) =v(1,t) -11 KVU(l,;)u(;,t)d; 
-11 KVV(1,;)v(;,t)d;, (38) 

we get the sliding surface for the system (1) - (4) as 

S(u,v)T ={ (j,gl E H I g(1) -11 KVU(l,;)f(;)d; 
-11 KVV(1,;)g(;)d; =o} , (39) 

on which the original system (1) - (4) becomes 

(40) 
vt(x,t) =£2(X)Vx(X,t) +C2(X)U(X,t) (41) 
u(O,t) =qv(O,t) (42) 
v(l,t) = 11 KVU(l,;)u(;,t)d; + 11 KVV(l,;)v(;,t)d;, 

(43) 

which is also exponentially stable by (37 ) and the equiva­
lence between (5) - (6) and (13) -( 14). Thus, the following 
theorem can be presented. 

Theorem 1: For any initial data (uCO), vCO))T E S(u,vl' 
there exists a unique (mild) solution to (40) -(43) such that 

(uCt), vCt)l E C([O,oo);H). (44) 

Moreover, the system (1) - (4) is exponentially stable in 
S(u,v)T, i.e., there exists Ms > ° such that 

II (uCt), vCt))T IIH � Mse-a/2t II (uCO), vCO))T)IIH. (45) 

B. Reaching condition 
Differentiating (38 ) with respect to t, we get 

5(u,v)T(t) =V(t) +d(t) -11 KVU(l,;)Ut(;,t)d; 
-11 KVV(l,;)Vt(;,t)d;. (46) 

If choosing a sliding mode controller such that 

V(t) = 11 KVU(I,;)Ut(;,t)d; + 11 KVV(1,;)Vt(;,t)d; 

-K S(u,v)T(t) " S ( ) .../.. 
° (47) I ( ) I lor (u,v)T t T , S(u,v)T t 

where K > M, then 

. . S(u,v)T(t) S(u,v)T(t) = d(t) -K I . ( )I for S(u,v)T(t) =I- 0. (48) S(u,v)T t 

Thus the following holds: 

d 2 ( . ) 
dt IS(u,v)T(t) I = 2Re S(u,vl (t )S(u,vl (t) 

= 2Re (S(U,V)T (t )d(t)) -2KIS(u,v)T (t) I 
:::; -2(K -M)IS(u,v)T(t)l, (49) 

which is the finite time "reaching condition" for the system 
(21) -(24). Existence of 5 is to be proved rigorously in 
Section IV. 

C. Sliding mode controller 
Choose the sliding mode boundary controller as 

then the resulting closed-loop system is 

Ut(x,t) = -£1 (x)ux(x,t) +Cl (x)v(x,t) (51) 
vt(x,t) =£2 (x)vx(x, t) + c2 (x)u(x, t) (52) 
u(O,t) =qv(O,t) (53) 

v(1,t) = 11 KVU(l,;)u(;,t)d; + 11 KVV(1,;)v(;,t)d; 
lo t S(u,v)T( '!') . -K I ( )I d'!'+d(t) for S(u v)T(t) =1-0. 

a S(u,v)T '!' ' 
(54) 

From transformation (13) -(14), the corresponding con­
troller for the system (21) -(24) is 

U(t) = 11 a(; ,t) ( KVU(l,;) + hi KVU(l, 1])L aa( 1], ;)d1] 

+ hi KVV(1,1])L{3a(1],;)d1]) d; 

+ 11 {3(;,t) (KVV(l,;) + hi KVU(l, 1])La{3(1],;)d1] 

+ hi KVV(1,1])L{3{3(1],;)d1]) d;. 
t {3(1, '!') . -K ia 1{3(I,'!')ld'!' for S(a,{3)T(t) =1-0, (55) 

and thus the corresponding closed-loop control (a, {3f­
systems are 

at (x,t) = -£1 (x)ax(x,t) 
{3t(x,t) =£2(X){3x(X,t) 
a(O,t) =q{3(O,t) 

t {3(1,'!') ",-{3(l,t) =d(t) -K ia 1{3(1, '!')I d'!' = d(t) 

(56) 
(57) 
(58) 

for S(a,[3)1(t) =I- 0. 
(59 ) 
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IV. SOLUTION OF CLOSED-LOOP SYSTEMS 

Define an operator d :  D(d)(c H) -7 H as follows: 

d(f,gf = (-cI(X)!', c2(X)g,)T, \:I(f,gf E D(d), 
(60) 

D(d) = {(f,gf E (HI(O, 1))2 1 1(0) = qg(O),g(l) = O}, 
(61) 

of which the adjoint operator is 

d*(q" IJIf 
= ( CI(X) (q,'+ X�2) '-C2(X) (IJf'+ X:l))T, 

\:I(q" IJIf E D(d*), (62) 
D(d*) = {(q" IJI)T E (HI (0, 1))2 1 q,(0) = qlJl(O), 

q,(I) = O}. (63) 
Lemma 2: d-I exists and is compact on H. Moreover, 

d and d* are dissipative in H, and d generates a Co­
semigroup edt of contractions in H. 

Proof For any given (f,gl E H, solve 

d(/J,glf = (-cI(x)I[, c2(x)gDT = (f,g)T, (64) 
/J(O) =qgl(O),gl(1) =0 (65) 

to get 

(66) 

(67) 

which is the unique solution (f1,gdT E D(d). Hence, d-I 
exists and is compact on H by the Sobolev embedding 
theorem. 

Let (f,gl E D(d) and (q" IJIl E D(d*), then 

Re < d(f,gf, (f,g)T >H 
1 1 rl = -21/(1)12 - 2 io (1/(x)12 +2q2Ig(x)12)dx:s 0, (68) 

Re < (q" IJIf, d*(q" IJIf >H 
= -2q211J1(1)12 -� fal (1q,(x)12 +2q211J1(x)12)dx:S O. 

(69) 
Hence d and d* are dissipative in H, and d generates a 
Co-semigroup edt of contractions in H by the Lumer-Philips 
theorem. 

• 
For any (q" IJIl E D(d*), we can get from (56) - (59) 

that 

:t ( ( ; ) , ( � ) ) H = ( ( ; ) , d* ( � ) ) H 
+ / ( 2 0 

) d(t) ,  ( q, ) ) , (70) \ 4q 8(x-l) IJI D(d*)'xD(d*) 

then the system (56) - (59) can be written as follows: 

:t ( ; ) = d ( ; ) +&8d(t), (71) 

&8= ( 4q28�-I) ) ' (72) 
where 8 (.) denotes the Dirac distribution. 

Lemma 3: &8 is admissible for the Co-semigroup edt 
generated by d. 

Proof Consider the observation problem of dual system 
of (71) -(72): 

d 
( 

a* 
) ( 

a* 
) dt 13* = d* 13* (73) 

y* = &8* ( ;: ) . (74) 
(Part One) Differentiate 

E(a* ,/3*)r(t) 
1 rl ( 2-X * 2 2q2(I+x) * 2) = 2 io cI(X) la (x,t)1 + c2(X) 113 (x,t)1 dx, 

(75) 
with respect to t along the solution of (73) -(74), then we 
can get 

E(a*,/3*)r(t) =-2q2If3*(I,t)12 
1 j'l -- (la*(x,t)12 +2llf3*(x,t)12) dx 2 ° 

:SO, (7� 
and hence 

E(a*,/3*)T(T ) :S E(a*,/3*)r(O), \:IT > O. (77) 
By some lengthy calculation, we can get that for any T > 0, 
faT ly*(t)12dt = 16q4 faT If3*(1,t)12dt 

16q2 :S -(-) max { c2(X)} c2 1 XE[O,lj 
x (T max {I I-X C2(X)+X c�(x)I}+-2

1) E(a*/3*)T(0). XE[O,lj X + 1 ' 

(Part Two) A direct computation shows 

d*-I (q" IJIf = (q,I, IJId T 

and 

1 rl q,(T/) q,1(X) = 2-x ix cI(T/) (T/ -2)dT/ 
1 rl q,(T/) IJII(X) = 2q(x+ 1) io cI(T/) (T/ -2)dT/ 

__ 1_ r IJI(T/) (1 +T/)dT/, 1 + x io c2 (T/) 

(78) 

(79) 
(80) 

(81) 

(82) 
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Hence, g]* d*-I is bounded on H. 
Results from Part One and Part Two show that g]* is 

admissible for the Co-semigroup ed*t generated by d*, and 
so is g] for edt. • 

Therefore, if for some T > 0, S(a,{W E qo, T ] and 
S(a,/3)T(t) i- 0, V t E [0, TJ, then for any initial data 
(aC,O),f3c,O))T E H, systems (71) -(72) admit a unique 
solution (a(-,t),f3c,t)l E C([O, T ];H). 

Suppose that for some T > 0, S(a,J3)1 (t) i- ° for all 
t E [O,T]. Take the inner product with (l/>, IfI)T = (O,xf E 
D( d*) on both sides of (71) to get the left hand side as 

d 101 2q2(1 +x) j'l -d ( )  f3(x,t)xdx = 2q2(1 +x)f3x(x,t)xdx t 0 £2 X 0 

= 4q2f3(I,t) _2q2 101 f3(x,t)(1 +2x)dx, Vt E [0, T] a.e., 
(83) 

and the right hand side as 

< (a,f3l,d*(O,xl > + < (0,4q28(x-l)J(t)l,(0,xl > 

= -101 2q2f3(x,t)(1 + 2x)dx + 4q2J(t) , Vt E [0, T] a.e . .  
(84) 

Since q i- 0, we have 

f3(I,t) = J(t), Vt E [0, T] a.e., (8S) 

that is, 

. -" . S(a,/3)T(t) S(a /3)1 (t) = d(t) = d(t) -K I ( )l 'Vt E [0, T] a.e., , S(a,/3)T t 
(86) 

which is equivalent to (48). 
Lemma 4: There exists a unique, continuous, nonzero 

solution to (86) on some interval [O,7;nax], 
Proof Suppose that for some To ;::: 0, S(a,/3)T(To) = 

So i- 0, then (86) is equivalent to: 

i t . i t S(a,/3)T(-r) S(a,/3)T(t) = So + d( -r)d-r -K I ( ) I d-r, Vt;::: To· 
To To S(a,/3)7 -r 

Define a closed subspace of C [To, To + 3(��K) ] by 

Q= {SEC [To,TO+3(��K) ] I S(To)=So, 

IS(t)l;::: � ISol, V t E [To,To+ 3(��K) ] }, 
and define a mapping F on Q by 

(FS)(t) = So + t d(-r)d-r-K t I
S(-r

)
)
ld-r, lTo lTo S(-r 

then VS E Q, V t E [To, To + 3(��K) ] ' we have 

2 I(FS)(t)1 ;::: ISol-(M + K)(t -To) ;::: 31Sol, 

(87) 

(88) 

(89) 

(90) 

that is, FQ c Q. Since 

I(FSI)(t)-(FS2)(t)1 �2K t ISI(-r)-S2(-r)ld-r lTo ISI(-r)1 
K �M+K IISI-S211n, (91) 

where IISIIn = IISII [ �l' then the mapping F is 
C To,To+ 3(M+K) 

a contraction mapping on Q. By the Banach fixed point 
theorem, the proof can be completed. 

• 
Thus, the following lemma is obtained. 
Lemma 5: Suppose that d and d are bounded measurable 

in time, then for any initial data (aC,O),f3c,O))T E H, there 
exists Tmax ;::: 0, depending on initial data, such that the 
system (S6) -(S9) admits a unique solution 

(aC,t),f3c,t))T E C([O,Tmax];H), (92) 
and f3 (1, t) = ° for all t ;::: Tmax. Moreover, S(a,/3)T (t) = f3 (1, t) 
is continuous and monotone in [0, Tmax]. 

By the equivalence between (S) - (6) and (13) -(14), the 
following main theorem can be proved. 

Theorem 2: Suppose that d and d is bounded measurable 
in time, then for any initial data (uC,O), vc,O)l E H, there 
exists Tmax ;::: 0, depending on initial data, such that the 
system (SI) -(S4) admits a unique solution 

(uC,t), v(-,t))T E C([O, Tmax];H) (93) 

and 

S(u,v)T(t) =v(1,t) -101 Kvu(1,';)u(';,t)d'; 
-101 KVV(I,';)v(';,t)d'; =0 (94) 

for all t;::: Tmax. Moreover, S(u,v)T(t) is continuous and mono­
tone in [0, Tmax]. On the sliding mode surface S(u,v)T (t) = 0, 
the system (1) -(4) becomes (40) -(43), which is exponen­
tially stable. 

V. NUMERICAL SIMULATION 
Consider the system (1) -(4) with £1 (x) = 0.1, £2(X) = 

0.2, CI(X) = 0.3, C2(X) = 0.4, q = 1/4 and d(t) = lOsint. 
Set the initial data as u(x,O) = �(I-x), v(x,O) = lO(l-x). 

Take the time length, steps of time and space as SO, 0.01 
and 0.01, then open-loop system response and and closed­
loop system response with sliding mode controller (choosing 
£ = 0.001) are shown in Fig. 3 and Fig. 4, respectively. 
As can be seen from these figures, although the open-loop 
system blows up, the designed controller can stabilize it. It's 
also worth noting that chattering is avoided in the closed­
loop control system. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, a 2 x 2 system of first-order linear hyperbolic 

PDEs subject to boundary input disturbance is stabilized by 
sliding mode control approach. Disturbance rejection and 
finite time stability is achieved for the resulting closed-loop 
control system. 

1031 



50 

(a) 

50 

(b) 

Fig. 3. Simulation results for the open-loop system 

Firstly, the employed first-order (and thus non-chattering) 
sliding mode controller is effective only when the distur­
bance has bounded derivative. For the case of unbounded 
disturbance derivatives, some other methods and techniques 
might be needed. Secondly, sliding mode control has the 
restriction that it does not work for non-matched disturbance, 
and one possible future work would be stabilization of 
linear 2 x2 hyperbolic systems with non-matched boundary 
output disturbances. Thirdly, only the case of q i= 0 has been 
considered in this paper. However, for the case of q = 0, we 
may expect that similar results (see, [7]) could be obtained. 
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