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a b s t r a c t

This note is devoted to stabilizing a coupled PDE–ODE system with interaction at the interface. First,
a state feedback boundary controller is designed, and the system is transformed into an exponentially
stable PDE–ODE cascadewith an invertible integral transformation,where PDE backstepping is employed.
Moreover, the solution to the resulting closed-loop system is derived explicitly. Second, an observer
is proposed, which is proved to exhibit good performance in estimating the original coupled system,
and then an output feedback boundary controller is obtained. For both the state and output feedback
boundary controllers, exponential stability analyses in the sense of the corresponding norms for the
resulting closed-loop systems are provided. The boundary controller and observer for a scalar coupled
PDE–ODE system as well as the solutions to the closed-loop systems are given explicitly.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In control engineering, topics concerning coupled systems are
popular, which have rich physical backgrounds such as coupled
electromagnetic, coupled mechanical, and coupled chemical
reactions. Many results on controllability of the coupled PDE–PDE
systemshave been achieved such as in [1–3]. Applicable controllers
of state and output feedback for coupled PDE–PDE systems as
well as coupled PDE–ODE systems, however, are original areas.
As a beginning, control design of cascaded PDE–ODE systems
were considered in [4–9], where through decoupling and PDE
backstepping, boundary controllers were successfully established.

The system considered in this note is a coupled PDE–ODE
system with interaction between the ODE and the PDE. At the
interface, the ODE acts back on the PDE at the same time as the
PDE acts on the ODE. It models the solid–gas interaction of heat
diffusion and chemical reaction, where the interaction occurs at
the interface; see Fig. 1. This system is certainlymore complex than
just a single ODE or a single PDE, and even more complex than a
cascade of PDE and ODE, in which only the PDE acts on the ODE,
or only the ODE acts on the PDE. Thus, it is needed to overcome
some difficulties in control design. Some special techniques and
PDE backstepping are used to develop controllers.

This note is organized as follows. In Section 2, the problem is
formulated. In Section 3, a state feedback boundary controller is
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designed to stabilize the coupled PDE–ODE system. In Section 4, an
observer, as well as an output feedback boundary controller, is de-
signed. And a scalar coupled PDE–ODE system is given in Section 5
as an example, where the controller, the observer and solutions to
the closed-loop systems are obtained explicitly. In Section 6, some
comments are made on the coupled PDE–ODE systems.

2. Problem formulation

Consider the following coupled PDE–ODE system

Ẋ(t) = AX(t) + Bux(0, t) (1)
ut(x, t) = uxx(x, t), x ∈ (0, l) (2)
u(0, t) = CX(t) (3)
u(l, t) = U(t) (4)

where X(t) ∈ Rn is the ODE state, the pair (A, B) is assumed to be
stabilizable, u(x, t) ∈ R is the PDE state, CT is a constant vector, and
U(t) is the scalar input to the entire system. The coupled system is
depicted in Fig. 2. The control objective is to exponentially stabilize
the system signal (X(t), u(x, t)).

3. State feedback controller

Admittedly, if an invertible transformation (X, u) → (X, w)
can be sought to transform the system (1)–(4) into an exponen-
tially stable target system companied with a controller, e.g., the
following system

Ẋ(t) = (A + BK)X(t) + Bwx(0, t) (5)
wt(x, t) = wxx(x, t), x ∈ (0, l) (6)
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Fig. 1. A physical background of the coupled system.

Fig. 2. Control configuration of the coupled system.

w(0, t) = 0 (7)
w(l, t) = 0 (8)
where K is chosen such that A + BK is Hurwitz, then, exponential
stabilization of the original closed-loop system can be achieved.
Here the transformation (X, u) → (X, w) is postulated in the
following form
X(t) = X(t) (9)

w(x, t) = u(x, t) −

∫ x

0
κ(x, y)u(y, t)dy − Φ(x)X(t) (10)

where the gain functions κ(x, y) ∈ R and Φ(x)T ∈ Rn are to be
determined.

The partial derivatives of w(x, t) with respect to x are given by
wx(x, t) = ux(x, t) − κ(x, x)u(x, t)

−

∫ x

0
κx(x, y)u(y, t)dy − Φ ′(x)X(t) (11)

wxx(x, t) = uxx(x, t) − κ(x, x)ux(x, t)

−


d
dx

κ(x, x) + κx(x, x)

u(x, t)

−

∫ x

0
κxx(x, y)u(y, t)dy − Φ ′′(x)X(t) (12)

where the notation d
dxκ(x, x) = κx(x, x) + κy(x, x) is used. The

derivative of w(x, t) with respect to t is
wt(x, t) = uxx(x, t) − κ(x, x)ux(x, t) + κy(x, x)u(x, t)

−

∫ x

0
κyy(x, y)u(y, t)dy

+ (κ(x, 0) − Φ(x)B)ux(0, t) − κy(x, 0)u(0, t)

− Φ(x)AX(t). (13)
Setting x = 0 in the Eqs. (10) and (11), and by (12) and (13), the

following equations hold:
w(0, t) = (C − Φ(0))X(t)
wx(0, t) = ux(0, t) − (Φ ′(0) + κ(0, 0)C)X(t)

wt(x, t) − wxx(x, t) = 2


d
dx

κ(x, x)

u(x, t)

+

∫ x

0
(κxx(x, y) − κyy(x, y))u(y, t)dy

+ (κ(x, 0) − Φ(x)B) ux(0, t)
+ (Φ ′′(x) − Φ(x)A − κy(x, 0)C)X(t)

where the fact that u(0, t) = CX(t) is used. To satisfy (5)–(7), it is
sufficient that κ(x, y) and Φ(x) satisfy
κxx(x, y) = κyy(x, y) (14)

d
dx

κ(x, x) = 0, κ(x, 0) = Φ(x)B (15)

and
Φ ′′(x) − Φ(x)A − κy(x, 0)C = 0 (16)

Φ(0) = C, Φ ′(0) = K − κ(0, 0)C . (17)
Although the PDE (14)–(15) and the ODE (16)–(17) are still

coupled, they can be decoupled and solved explicitly through some
techniques of algebra and analytical mathematics.

First, the solution to the PDE (14)–(15) is
κ(x, y) = Φ(x − y)B. (18)
Second, substituting (18) into (16) and (17) respectively, it is
obtained that
Φ ′′(x) + Φ ′(x)BC − Φ(x)A = 0 (19)
and
Φ ′(0) = K − Φ(0)BC = K − CBC .

Let I be an identity matrix, then the explicit solution to the ODE
(16)–(17) is obtained:

Φ(x) = (C K − CBC)eDx

I
0


where

D =


0 A
I −BC


and the explicit solution to the PDE (14)–(15) is

κ(x, y) = (C K − CBC)eD(x−y)

I
0


B.

The integral transformation (X, u) → (X, w) defined by
(9)–(10) is invertible. Suppose the inverse transformation (X, w) →

(X, u) as the following form
X(t) = X(t) (20)

u(x, t) = w(x, t) +

∫ x

0
ι(x, y)w(y, t)dy + Ψ (x)X(t) (21)

where the kernel functions ι(x, y) ∈ R and Ψ (x)T ∈ Rn are to be
determined.

Following the same procedure of determination of the kernels
κ(x, y) and Φ(x), compute the derivatives ux, uxx and ut , and
a sufficient condition for ι(x, y) and Ψ (x) to satisfy (1)–(3) is
obtained as
ιxx(x, y) = ιyy(x, y) (22)

d
dx

ι(x, x) = 0, ι(x, 0) = Ψ (x)B (23)

and
Ψ ′′(x) − Ψ (x)(A + BK) = 0 (24)

Ψ (0) = C, Ψ ′(0) = K . (25)
This cascade system can also be solved explicitly. First, the explicit
solution to the ODE (24)–(25) is

Ψ (x) = (C K)eEx

I
0


where

E =


0 A + BK
I 0


.

Second, the explicit solution to the PDE (22)–(23) is

ι(x, y) = Ψ (x − y)B = (C K)eE(x−y)

I
0


B.
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Thus, the direct and inverse transformations are written as

w(x, t) = u(x, t) −

∫ x

0
Φ(x − y)u(y, t)dyB − Φ(x)X(t) (26)

u(x, t) = w(x, t) +

∫ x

0
Ψ (x − y)w(y, t)dyB + Ψ (x)X(t). (27)

Evaluating (26) at x = l, and by the boundary condition (4) and
(8), a controller is obtained as follows:

U(t) =

∫ l

0
Φ(l − y)u(y, t)dyB + Φ(l)X(t). (28)

Furthermore, the explicit solution to the closed-loop system
(1)–(4) under the controller (28) can also be obtained if the
initial state (X(0), u(x, 0)) is known. First, the solution to the heat
equation (6)–(8) is

w(x, t) =
2
l

∞−
m=1

e−
m2π2

l2
t sin

mπ

l
x


µm (29)

where

µm =

∫ l

0
w0(ξ) sin

mπ

l
ξ

dξ (30)

and the initial condition w0(x) is calculated by the initial state
u(x, 0) through (26). Second, signal X(t) is obtained by

X(t) = X(0)e(A+BK)t
+

∫ t

0
e(A+BK)(t−τ)Bwx(0, τ )dτ (31)

and signal u(x, t) is obtained from (21).

Theorem 1. For any initial data X(0) ∈ R and u(·, 0) ∈ H1(0, l),
the closed-loop system consisting of the plant (1)–(4) and the control
law (28) has a classical solution, which is exponentially stabilized in
the sense of the norm

‖(X(t), u(·, t))‖2
= |X(t)|2 + ‖u(·, t)‖2

H1(0,l)

where | · | denotes the Euclidean norm.

Proof. Consider the following Lyapunov function

V (t) = XTPX +
a
2
‖w(·, t)‖2

L2(0,l) +
1
2
‖wx(·, t)‖2

L2(0,l)

where the matrix P = PT > 0 is the solution to the Lyapunov
equation

P(A + BK) + (A + BK)TP = −Q

for some Q = Q T > 0, and the parameter a > 0 is to be chosen
later.

For simplicity, in the following proof, the symbol ‖ · ‖ denotes
the L2(0, l) norm. From the backstepping transformations (26) and
(27), it can be obtained that

‖w‖
2

≤ α1‖u‖2
+ α2|X |

2 (32)

‖u‖2
≤ β1‖w‖

2
+ β2|X |

2 (33)

‖wx‖
2

≤ α3‖ux‖
2
+ α4‖u‖2

+ α5|X |
2 (34)

‖ux‖
2

≤ β3‖wx‖
2
+ β4‖w‖

2
+ β5|X |

2 (35)

where

α1 = 3(1 + l‖ΦB‖2), α2 = 3‖Φ‖
2

β1 = 3(1 + l‖Ψ B‖2), β2 = 3‖Ψ ‖
2

α3 = 4, α4 = 4((CB)2 + l‖ΦxB‖2),

α5 = 4‖Φ ′
‖
2

β3 = 4, β4 = 4((CB)2 + l‖ΨxB‖2), β5 = 4‖Ψ ′
‖
2.
Then, it can be obtained that

δ(|X |
2
+ ‖u‖2

H1(0,l)) ≤ V ≤ δ(|X |
2
+ ‖u‖2

H1(0,l))

where

δ = max

λmax(P) +

aα2

2
+

α5

2
,
aα1

2
+

α4

2
,
α3

2


δ =

min
 a
2 ,

1
2 , λmin(P)


max{β3, β1 + β4, β2 + β5 + 1}

.

Calculate the derivative of the Lyapunov function along the
solutions to the system (5)–(8), then

V̇ ≤ −
λmin(Q )

2
|X |

2
+ 2

|PB|2

λmin(Q )
wx(0, t)2 − a‖wx‖

2
− ‖wxx‖

2.

By Agmon’s inequality, it can be proved that the following
inequality holds:

−‖wxx‖
2

≤
1 + l
l

‖wx‖
2
− wx(0, t)2.

Thus

V̇ ≤ −
λmin(Q )

2
|X |

2
−


a − 2

|PB|2

λmin(Q )
−

1 + l
l


‖wx‖

2

− wx(0, t)2.

Now take

a > 2
|PB|2

λmin(Q )
+

1 + l
l

then by Poincaré inequality, it can be shown that

V̇ ≤ −bV

where

b = min


λmin(Q )

2λmax(P)
,

2
1 + 4l2


1 − 2

|PB|2

aλmin(Q )
−

1 + l
al


.

Therefore,

V (t) ≤ V (0)e−bt .

Let δ = δ/δ, then

|X(t)|2 + ‖u(·, t)‖2
H1(0,l) ≤ δ(|X(0)|2 + ‖u(·, 0)‖2

H1(0,l))e
−bt

holds for all t ≥ 0, which completes the proof. �

4. Observer and output feedback controller

Assume that only ux(0, t) is available for measurement, or for
economic consideration, only ux(0, t) is measured. To manipulate
a control for the system (1)–(4), an observer is designed to
reconstruct the state in the domain.

With Dirichlet actuation, observer of the following form

˙̂X(t) = AX̂(t) + Bux(0, t) + P0(ux(0, t) − ûx(0, t)) (36)

ût(x, t) = ûxx(x, t) + p1(x)(ux(0, t) − ûx(0, t)), x ∈ (0, l) (37)

û(0, t) = CX̂(t) + p2(ux(0, t) − ûx(0, t)) (38)

û(l, t) = U(t) (39)

is considered, where the constant vector P0, the function p1(x), and
the constant p2 are to be determined.

Write the observer error as

ũ(x, t) = u(x, t) − û(x, t), X̃(t) = X(t) − X̂(t)
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then, to achieve exponential stability of the observer error system

˙̃X(t) = AX̃(t) − P0ũx(0, t) (40)

ũt(x, t) = ũxx(x, t) − p1(x)ũx(0, t), x ∈ (0, l) (41)

ũ(0, t) = CX̃(t) − p2ũx(0, t), ũ(l, t) = 0 (42)
the following transformation

w̃(x, t) = ũ(x, t) − Θ(x)X̃(t) (43)
is introduced to transform (40)–(42) into the exponentially stable
system

˙̃X(t) = (A − P0Θ ′(0))X̃(t) − P0w̃x(0, t) (44)

w̃t(x, t) = w̃xx(x, t), x ∈ (0, l) (45)

w̃(0, t) = 0, w̃(l, t) = 0 (46)
where Θ(x) is to be determined, and P0 is chosen such that A −

P0Θ ′(0) is a Hurwitz matrix.
By matching (40)–(42) and (44)–(46), a sufficient condition is

obtained:
Θ ′′(x) − Θ(x)A = 0 (47)
Θ(0) = C, Θ(l) = 0 (48)
and
p1(x) = Θ(x)P0 (49)
p2 = 0. (50)
So, it is only needed to solve the problem of differential equation
(47)–(48). To construct the solution to the ODE (47)–(48), a lemma
is shown first.

Lemma 1. Write

F =


0 A
I 0


, G = (0 I)eFl


I
0


then G is a nonsingular matrix if and only if the matrix A has no
eigenvalues of the form −k2π2/l2 for k ∈ N.
Proof. First, there exists an invertible matrix H such that H−1AH
is the Jordan’s canonical form, that is

H−1AH = diag(J1 · · · Jp)

where each Jordan block Jq, 1 ≤ q ≤ p, is a squarematrix of lower-
triangular type, and all the elements on its main diagonal are the
eigenvalues of A, which are denoted by ςj, j = 1, 2, . . . , n.

Second, a simple calculation gives that

G =

∞−
m=0

l2m+1

(2m + 1)!
Am.

Thus

L : = H−1GH =

∞−
m=0

l2m+1

(2m + 1)!
diag(Jm1 · · · Jmp )

=



∞−
m=0

l(l2ς1)
m

(2m + 1)!
0

. . .

∗

∞−
m=0

l(l2ςn)
m

(2m + 1)!



=



sinh(lς1
1
2 )

ς1
1
2

0

. . .

∗
sinh(lςn

1
2 )

ςn
1
2

 .
Therefore, matrix L is singular if and only if lςj
1/2

= kπ i for some
ςj, 1 ≤ j ≤ n and k ∈ N, where i stands for the imaginary unit,
namely, the square root of−1. Thus,G is a nonsingularmatrix if and
only if A has no eigenvalues of the form −k2π2/l2 for k ∈ N. �

The solution to the Eqs. (47)–(48) can be represented by

Θ(x) = (C Θ ′(0))eFx

I
0


. (51)

Especially, for x = l, it holds that

(C Θ ′(0))eFl

I
0


= Θ(l) = 0.

When A has no eigenvalues of the form −k2π2/l2 for k ∈ N, it can
be obtained that

Θ ′(0) = −C(I 0)eFl

I
0


G−1.

Thus the explicit solution to the Eqs. (47)–(48) is

Θ(x) =


C −C(I 0)eFl


I
0


G−1


eFx

I
0


. (52)

Choose P0 such thatA−P0Θ ′(0) is Hurwitz, then p1(x) and p2 are
determined through (49) and (50). Thus, all the quantities needed
to implement the observer (36)–(39) are determined.

The system (44)–(46) is a cascade of the exponentially stable
heat equation (45)–(46) and the exponentially stable ODE (44). The
entire observer error system is exponentially stable.

Theorem 2. Assume that the matrix A has no eigenvalues of the form
−k2π2/l2 for k ∈ N, then the observer (36)–(39) with gains defined
through (49), (50) and (52), guarantees that the observer error system
is exponentially stable in the sense of the norm

‖(X̃(t), ũ(·, t))‖2
= |X̃(t)|2 + ‖ũ(·, t)‖2

H1(0,l)

that is, X̂(t) and û(t) exponentially track X(t) and u(t) in the sense of
above norm.

Proof. From the transformation (43), the following relations

‖w̃‖
2

≤ 2‖ũ‖2
+ 2‖Θ‖

2
|X̃ |

2, ‖w̃x‖
2

≤ 2‖ũx‖
2
+ 2‖Θ ′

‖
2
|X̃ |

2

‖ũ‖2
≤ 2‖w̃‖

2
+ 2‖Θ‖

2
|X̃ |

2, ‖ũx‖
2

≤ 2‖w̃x‖
2
+ 2‖Θ ′

‖
2
|X̃ |

2

are obtained. With the Lyapunov function

Ṽ (t) = X̃T P̃ X̃ +
ã
2
‖w̃(·, t)‖2

+
1
2
‖w̃x(·, t)‖2

where P̃ = P̃T > 0 is the solution to the Lyapunov equation

P̃(A − P0Θ ′(0)) + (A − P0Θ ′(0))T P̃ = −Q̃

for some Q̃ = Q̃ T > 0, it can be obtained that

ϱ(|X̃(t)|2 + ‖ũ(t)‖2
H1(0,l)) ≤ Ṽ ≤ ϱ(|X̃(t)|2 + ‖ũ(t)‖2

H1(0,l))

where

ϱ =

min


ã
2 ,

1
2 , λmin(P̃)


max{2, 1 + (‖Θ ′‖2 + ã‖Θ‖2)/λmin(P̃)}

ϱ = max{ã, 1, ‖Θ ′
‖
2
+ ã‖Θ‖

2
+ λmax(P̃)}.

Calculate the timederivative of the Lyapunov function along the
solutions to the system (44)–(46), then

˙̃V ≤ −
λmin(Q̃ )

2
|X̃ |

2
−


ã − 2

|P̃P0|2

λmin(Q̃ )
−

1 + l
l


‖w̃x‖

2

− w̃x(0, t)2
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where the last inequality is obtained byAgmon’s inequality and the
following inequality

−‖w̃xx‖
2

≤
1 + l
l

‖w̃x‖
2
− w̃x(0, t)2.

Take

ã > 2
|P̃P0|2

λmin(Q̃ )
+

1 + l
l

and by Poincaré inequality, then
˙̃V ≤ −b̃Ṽ

where

b̃ = min


λmin(Q̃ )

2λmax(P̃)
,

2
1 + 4l2


1 − 2

|P̃P0|2

ãλmin(Q̃ )
−

1 + l
ãl


> 0.

Hence

|X̃(t)|2 + ‖ũ(·, t)‖2
H1(0,l) ≤ ϱ(|X̃(0)|2 + ‖ũ(·, 0)‖2

H1(0,l))e
−b̃t

for all t ≥ 0 with ϱ = ϱ/ϱ, which means that the error system
(40)–(42) is exponentially stable in the sense of the norm

‖(X̃(t), ũ(·, t))‖2
= |X̃(t)|2 + ‖ũ(·, t)‖2

H1(0,l)

and thus completes the proof. �

Replace u(y, t) and X(t) by û(y, t) and X̂(t) in (28) respectively,
then an output feedback control law is obtained as follows

U(t) =

∫ l

0
Φ(l − y)û(y, t)dyB + Φ(l)X̂(t). (53)

Theorem 3. Assume that the matrix A has no eigenvalues of the form
−k2π2/l2 for k ∈ N, then for any initial data X(0), X̂(0) ∈ R and
u(·, 0), û(·, 0) ∈ H1(0, l), the closed-loop system consisting of the
plant (1)–(4), the controller (53) and the observer (36)–(39) has a
classical solution which is exponentially stabilized in the sense of the
norm

‖(X(t), u(·, t), X̂(t), û(·, t))‖2
= |X(t)|2 + ‖u(·, t)‖2

H1(0,l)

+ |X̂(t)|2 + ‖û(·, t)‖2
H1(0,l).

Proof. The transformation

ŵ(x, t) = û(x, t) −

∫ x

0
Φ(x − y)û(y, t)dyB − Φ(x)X̂(t) (54)

transforms (36)–(39) into the system

˙̂X(t) = (A + BK)X̂(t) + Bŵx(0, t)
+ (B + P0)(w̃x(0, t) + Θ ′(0)X̃(t)) (55)

ŵt(x, t) = ŵxx(x, t) + (p1(x) − Φ(x)(B + P0)

−

∫ x

0
Φ(x − y)p1(y)dyB


× (w̃x(0, t) + Θ ′(0)X̃(t)), x ∈ (0, l) (56)

ŵ(0, t) = 0, ŵ(l, t) = 0. (57)

The (X̃, w̃)-system (44)–(46) and the homogeneous part of the
(X̂, ŵ)-system (55)–(57) (without X̃(t), w̃(0, t)) are exponentially
stabilized. The interconnection of the two systems (X̂, ŵ, X̃, w̃)
is a cascade. The combined (X̂, ŵ, X̃, w̃)-system is exponentially
stabilized. In fact, this fact can be proved through the weighted
Lyapunov function

E(t) = X̂T P̂ X̂ +
â
2
‖ŵ(·, t)‖2

+
1
2
‖ŵx(·, t)‖2

+ eṼ (t) (58)
where the matrix P̂ = P̂T > 0 is the solution to the Lyapunov
equation

P̂(A + BK) + (A + BK)T P̂ = −Q̂

for some Q̂ = Q̂ T > 0, the constant â and the weighting constant
e are to be chosen later.

Calculate the time derivative of (58), then

Ė ≤ −X̂T Q̂ X̂ + 2X̂TP(Bŵx(0, t) + (B + P0)(w̃x(0, t)

+ Θ ′(0)X̃(t))) − â‖ŵx‖
2
+ â

∫ l

0
ŵ(x)

×


p1(x) − Φ(x)(B + P0) −

∫ x

0
Φ(x − y)p1(y)dyB


× (w̃x(0, t) + Θ ′(0)X̃(t))dx − ‖ŵxx‖

2

+

∫ l

0
ŵx(x)


p′

1(x) − Φ ′(x)(B + P0) − CBp1(x)

−

∫ x

0
Φ ′(x − y)p1(y)dyB


(w̃x(0, t) + Θ ′(0)X̃(t))dx

+ e


−

λmin(Q̃ )

2
|X̃ |

2
−


ã − 2

|P̃P0|2

λmin(Q̃ )
−

1 + l
l


‖w̃x‖

2


.

Let

θ = max

p1(x) − Φ(x)(B + P0) −

∫ x

0
Φ(x − y)p1(y)dyB


ϑ = max


p′

1(x) − Φ ′(x)(B + P0) − CBp1(x)

−

∫ x

0
Φ ′(x − y)p1(y)dyB


then by Poincaré, Agmon’s and Young inequalities and after some
complex calculations, it can be obtained that

Ė ≤ −e1|X̂ |
2
− e2‖ŵx‖

2
− e3|X̃ |

2
− e4‖w̃x‖

2

where

e1 =
λmin(Q̂ )

2
− ϵ|P(B + P0)|2,

e2 =
â
2

−
1
2

− 4
|PB|2

λmin(Q̂ )
−

1 + l
l

e3 =
λmin(Q̃ )

2
e −


1
ϵ

+ 4âθ2l3 + ϑ2l


|Θ ′(0)|2

e4 = e


ã − 2

|P̃P0|2

λmin(Q̃ )
−

1 + l
l


− 4

|P(B + P0)|2

λmin(Q̂ )

− 4âθ2l3 − ϑ2l.

Choose positive constants â and ϵ such that

â > 8
|PB|2

λmin(Q̂ )
+

3l + 2
l

, ϵ <
λmin(Q̂ )

2|P(B + P0)|2

further choose a positive constant e to satisfy

e >
2

λmin(Q̃ )


1
ϵ

+ 4âθ2l3 + ϑ2l


|Θ ′(0)|2

and positive constant ã so that

ã > 2
|P̃P0|2

λmin(Q̃ )
+

1 + l
l

+
1
e


4
|P(B + P0)|2

λmin(Q̂ )
+ 4âθ2l3 + ϑ2l
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then through a lengthy calculation, it can be obtained that Ė ≤ −fE,
where

f = min


e1
λmax(P̂)

,
2e2

â(1 + 4l2)
,

e3
eλmax(P̃)

,
2e4

eã(1 + 4l2)


.

Hence, the (X̂, ŵ, X̃, w̃)-system is exponentially stabilized.
Since the transformations (43) and (54) are invertible, exponen-

tial stabilization of the (X̂, ŵ, X̃, w̃)-system ensures exponential
stabilization of the (X̂, û, X̃, ũ)-system. This directly implies stabi-
lization of the closed-loop (X, u, X̂, û)-system. �

5. Example

As an example, consider the following scalar coupled control
system

Ẋ(t) = X(t) + ux(0, t) (59)
ut(x, t) = uxx(x, t) (60)
u(0, t) = −X(t), u(1, t) = U(t). (61)

The state feedback controller, observer, output feedback controller
and solutions to the closed-loop systems are derived.

5.1. State feedback controller and solutions

The feedback gain is taken as K = −2 such that A + BK is
Hurwitz, then

D =


0 1
1 1


, Φ(x) = −(1 3)eDx


1
0


and the backstepping controller can be derived explicitly through
(28), which is

U(t) =

∫ 1

0
Φ(1 − y)u(y, t)dy + Φ(1)X(t). (62)

The target system is

Ẋ(t) = −X(t) + wx(0, t) (63)
wt(x, t) = wxx(x, t), w(0, t) = 0, w(1, t) = 0. (64)

Furthermore, the solution to the system (59)–(61) and (62) is
explicitly available. Suppose an initial condition is u(x, 0) = −5x
and X(0) = −10. First, the explicit solution to the heat equation
(64) is obtained by (29), where

µm =
5mπ cos (mπ)

m4π4 + 3m2π2 + 1
(1 3)eD


4m2π2

+ 9
−m2π2

− 5


−

5mπ(m2π2
− 6)

m4π4 + 3m2π2 + 1
−

5
mπ

.

Then, the solution to the closed-loop system (59)–(61) and (62) can
be obtained explicitly from (31) and (21), which is

X(t) = −10e−t
+ 2

∞−
m=1

mπ

m2π2 − 1
e−m2π2t(e(m2π2

−1)t
− 1)µm (65)

u(x, t) = 10e−t(cosh(ix) − 2i sinh(ix)) + 2
∞−

m=1

e−m2π2tµmνm (66)

where

νm =
1

m2π2 − 1
((m2π2

+ 1) sin(mπx) + mπ cos(mπx)

−mπe(m2π2
−1)t(cosh(ix) − 2i sinh(ix))).
From (65) and (66), it is evident that X(t) and u(x, t) exponentially
converges to zero as t tends to the infinity.

5.2. Observer, output feedback and solutions

Here

Θ ′(0) = coth 1, Θ(x) = coth 1 sinh x − cosh x.

Take P0 = 2 tanh 1, then the backstepping observer is

˙̂X(t) = X̂(t) + ux(0, t) + 2 tanh 1

ux(0, t) − ûx(0, t)


ût(x, t) = ûxx(x, t) + 2(sinh x − tanh 1 cosh x)(ux(0, t) − ûx(0, t))

û(0, t) = −X̂(t), û(1, t) =

∫ 1

0
φ(1 − y)û(y, t)dy + Φ(1)X̂(t).

Taking the observer initial condition û(x, 0) = 0, X̂(0) = 0 and
following the similar steps as seeking for the solution to the closed-
loop system in Section 5.1, the explicit solution to the resulting
error system can also be obtained as follows

X̃(t) = −10e−t
+ 4 tanh 1

∞−
m=1

mπ

m2π2 − 1
e−m2π2t

× (1 − e(m2π2
−1)t)µ̃m (67)

ũ(x, t) = 10e−t(cosh x − coth 1 sinh x) + 2
∞−

m=1

e−m2π2t µ̃mν̃m (68)

where

µ̃m = −10
mπ

m2π2 + 1
+ 5

cos(mπ)

mπ

ν̃m = sin(mπx) + 2
mπ

m2π2 − 1
(tanh 1 cosh x − sinh x)

× (e(m2π2
−1)t

− 1) .

From (67) and (68), it is obvious that the error system is
exponentially stabilized.

6. Comments

Control design of coupled PDE–ODE systems is an original area.
There are many open problems to be considered. This paper is
just a beginning for studying the coupled PDE–ODE systems with
interaction between the ODE and the PDE. Other coupled PDE–ODE
systemswith interaction between theODE and the PDE, such as the
coupled system consisting of an ODE and a wave equation, are also
subjects of the ongoing research.
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