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This note is devoted to stabilizing a coupled PDE-ODE system with interaction at the interface. First,
a state feedback boundary controller is designed, and the system is transformed into an exponentially
stable PDE-ODE cascade with an invertible integral transformation, where PDE backstepping is employed.
Moreover, the solution to the resulting closed-loop system is derived explicitly. Second, an observer
is proposed, which is proved to exhibit good performance in estimating the original coupled system,
and then an output feedback boundary controller is obtained. For both the state and output feedback
boundary controllers, exponential stability analyses in the sense of the corresponding norms for the
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1. Introduction

In control engineering, topics concerning coupled systems are
popular, which have rich physical backgrounds such as coupled
electromagnetic, coupled mechanical, and coupled chemical
reactions. Many results on controllability of the coupled PDE-PDE
systems have been achieved such asin [1-3]. Applicable controllers
of state and output feedback for coupled PDE-PDE systems as
well as coupled PDE-ODE systems, however, are original areas.
As a beginning, control design of cascaded PDE-ODE systems
were considered in [4-9], where through decoupling and PDE
backstepping, boundary controllers were successfully established.

The system considered in this note is a coupled PDE-ODE
system with interaction between the ODE and the PDE. At the
interface, the ODE acts back on the PDE at the same time as the
PDE acts on the ODE. It models the solid-gas interaction of heat
diffusion and chemical reaction, where the interaction occurs at
the interface; see Fig. 1. This system is certainly more complex than
just a single ODE or a single PDE, and even more complex than a
cascade of PDE and ODE, in which only the PDE acts on the ODE,
or only the ODE acts on the PDE. Thus, it is needed to overcome
some difficulties in control design. Some special techniques and
PDE backstepping are used to develop controllers.

This note is organized as follows. In Section 2, the problem is
formulated. In Section 3, a state feedback boundary controller is
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designed to stabilize the coupled PDE-ODE system. In Section 4, an
observer, as well as an output feedback boundary controller, is de-
signed. And a scalar coupled PDE-ODE system is given in Section 5
as an example, where the controller, the observer and solutions to
the closed-loop systems are obtained explicitly. In Section 6, some
comments are made on the coupled PDE-ODE systems.

2. Problem formulation

Consider the following coupled PDE-ODE system

X(t) = AX(t) + Buy(0, t) (1)
ur(x, t) = u(x, t), x€(0,0) (2)
u(0, t) = CX(t) (3)
u(l, t) = U(t) (4)

where X (t) € R" is the ODE state, the pair (A, B) is assumed to be
stabilizable, u(x, t) € Risthe PDE state, CT is a constant vector, and
U(t) is the scalar input to the entire system. The coupled system is
depicted in Fig. 2. The control objective is to exponentially stabilize
the system signal (X(t), u(x, t)).

3. State feedback controller

Admittedly, if an invertible transformation (X, u) — (X, w)
can be sought to transform the system (1)-(4) into an exponen-
tially stable target system companied with a controller, e.g., the
following system

X(t) = (A + BK)X(t) + Bwy(0, t) (5)
we(x, t) = we(x,t), x€(0,]) (6)
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Fig. 1. A physical background of the coupled system.
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Fig. 2. Control configuration of the coupled system.

w(0,t) =0 (7)
w(l, t) =0 (8)

where K is chosen such that A + BK is Hurwitz, then, exponential
stabilization of the original closed-loop system can be achieved.
Here the transformation (X, u) +— (X, w) is postulated in the
following form

X(t) = X(t) (9)

wx, t) =ulx,t) — /X/c(x,y)u(y, tydy — @ (x)X(t) (10)
0

where the gain functions x (x,y) € R and ®(x)T € R" are to be
determined.
The partial derivatives of w(x, t) with respect to x are given by

wy(Xx, t) = uy(x, t) — k(x, x)u(x, t)

- / x(x, Y)u(y. Ody — ' (X (0) (1)
0

wXX(Xs t) = uXX(X7 t) - K(X7 X)ux(xa t)

— (gx(x, X) + kx(x, x)) u(x, t)
dx

- / (X, YUY, Dy — B (OX(0) (12)
0

where the notation %K(X, X) = kx(x,X) + ky(x,x) is used. The
derivative of w(x, t) with respect to t is

We(X, 1) = U (X, 1) — K (X, XUy (X, £) + Ky (X, X)u(x, t)

- / iy (YUY, Oy
0
+ (k(x,0) — @ (X)B)uy (0, t) — ky(x, 0)u(0, t)
— D (X)AX(t). (13)

Setting x = 0 in the Eqs. (10) and (11), and by (12) and (13), the
following equations hold:

w(0,t) = (C — @(0))X(t)
wy(0, t) = (0, t) — (@'(0) + «(0, 0)C)X(t)

we(x, t) — wy(x, t) = 2 <i/<(x, x)) u(x, t)
dx

+ / (k% 3) — K3y (6 YIUG. D)y
0

+ (. 0) — G(X0B) (0, )

+(@"(x) — @ (XA — ky(x,0)0)X (L)

where the fact that u(0, t) = CX(t) is used. To satisfy (5)-(7), it is
sufficient that « (x, y) and @ (x) satisfy

kX, ) = Kkyy(X, ) (14)
ilc(x, x) =0, k(x,0) = &(x)B (15)
dx
and
D" (x) — P(x)A — ky(x,00C =0 (16)
®(0) =C, @'(0) =K —x(0,0)C. a7

Although the PDE (14)-(15) and the ODE (16)-(17) are still
coupled, they can be decoupled and solved explicitly through some
techniques of algebra and analytical mathematics.

First, the solution to the PDE (14)-(15) is

k(x,y) = &(x —y)B. (18)

Second, substituting (18) into (16) and (17) respectively, it is
obtained that

" (x) + D' (X)BC —P(x)A=0 (19)
and
®'(0) = K — ®(0)BC = K — CBC.

Let I be an identity matrix, then the explicit solution to the ODE
(16)—(17) is obtained:

@(x) = (C K — CBC)e™ (g)

where

0 A
b= (1 —BC>

and the explicit solution to the PDE (14)-(15) is

k(x,y) = (C K — CBC)eP*™) (g) B.

The integral transformation (X,u) +— (X, w) defined by
(9)-(10)is invertible. Suppose the inverse transformation (X, w) —
(X, u) as the following form

X(t) =X(t) (20)

ulx,t) = w(x,t) +/ tx, )wy, t)ydy + & x)X(t) (21)
0

where the kernel functions ¢(x,y) € R and ¥ (x)T e R" are to be
determined.

Following the same procedure of determination of the kernels
k(x,y) and @(x), compute the derivatives u,, uy, and u, and
a sufficient condition for t¢(x,y) and ¥ (x) to satisfy (1)-(3) is
obtained as

(X, ) = Lyy(x, y) (22)
iL(x, x) =0, t(x,0) = ¥(x)B (23)
dx
and
' (x) — P (x)(A+BK) =0 (24)
¥v(0)=C, v'(0) =K. (25)

This cascade system can also be solved explicitly. First, the explicit
solution to the ODE (24)-(25) is

w(x) = (C K)e (g)

where
(0 A+BK
E— (, ] ) .
Second, the explicit solution to the PDE (22)-(23) is

(X, y) =¥ (x—y)B=(C K)eF*» (i)) B
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Thus, the direct and inverse transformations are written as

wx, t) =ux,t) — /-x @ (x —y)u(y, t)dyB — @ (x)X(t) (26)
0

u(x, t) = wx, t) + fx ¥ (x —y)w(y, t)dyB + ¥ (x)X(t). (27)
0

Evaluating (26) at x = [, and by the boundary condition (4) and
(8), a controller is obtained as follows:

1
Uut) = / @ (1= y)u(y, t)dyB + @ (DX (t). (28)
0

Furthermore, the explicit solution to the closed-loop system
(1)-(4) under the controller (28) can also be obtained if the
initial state (X(0), u(x, 0)) is known. First, the solution to the heat
equation (6)-(8) is

wx, t) = % n; e mzﬂﬂz "sin (anx) Um (29)

where

= [ woe) sin (") e (30
0 1

and the initial condition wg(x) is calculated by the initial state
u(x, 0) through (26). Second, signal X (t) is obtained by

t
X(t) = X(0)eBOr 4 f eAHBO=DBY (0, 7)dr (31)
0

and signal u(x, t) is obtained from (21).

Theorem 1. For any initial data X(0) € R and u(-,0) € H'(0, I,
the closed-loop system consisting of the plant (1)-(4) and the control
law (28) has a classical solution, which is exponentially stabilized in
the sense of the norm

IX@©), uC I = IXOP + lut, Ol 0,
where | - | denotes the Euclidean norm.

Proof. Consider the following Lyapunov function
VO = XX + 2w Ol g + (- DI
( - 2||w s )”LZ(OJ) 2||wx(» )||L2(o,l)

where the matrix P = PT > 0 is the solution to the Lyapunov
equation

P(A+BK)+ (A+BK)'P = —Q

for some Q = QT > 0, and the parameter a > 0 is to be chosen
later.

For simplicity, in the following proof, the symbol || - || denotes
the L2(0, I) norm. From the backstepping transformations (26) and
(27), it can be obtained that

lwli? < e flull® + a2|X|? (32)
[l < Billwll* + B21X |2 (33)
lwell® < aslltel® + aallull + as|X|? (34)
ludll® < Ballwell® + Ballwll + Bs1X |2 (35)

where

ar =30 +1|®BI*), o =3|®|?
B1 =30 +1¥B|*, B =3|¥|
a3 =4, ag=4((CB*+1|®,B|%),
as = 4] @'|?

Bs=4,  Pa=A4(CB +1|¥%BI*),  ps=A4ll¥'|>

Then, it can be obtained that
SUXP + llullf o) <V < SUXP + llull? o)

where

- aoly 05 adq Oy4 O3

5 = ma [Py 4 22 4 2,9y 28 03]
ax max()+2+2 2+2 B

5= min{%a%vkmin(lj)}

max{Bs, B1 + Ba, B2 + s + 1}
Calculate the derivative of the Lyapunov function along the
solutions to the system (5)-(8), then
_)\min(Q) |PB|2
2 )”min (Q)

By Agmon’s inequality, it can be proved that the following
inequality holds:

V< IX]* 42 wy (0, £)* — allwyll® — [lwll*.

1+1
_||wxx||2 = f”wxnz — wx(0, t)2~

Thus

. 2
g oo @ o (o IPBE_THDN
2 )Lmin(Q) l

— wy(0, )%
Now take
|PB|? 1+1

+
)\min(Q) l

then by Poincaré inequality, it can be shown that

a>2

V < —bv
where

[ Amin(Q) 2 |PB|? 1+1
b=min{ ——, 1-2—— — .

2)Lmax(P) 1+ 412 a}\min (Q) al

Therefore,
V(t) < V(0)e ™,
Let § = §/8, then

XOP + uC, Ol 0, < SUXO@P + lut, 0714, )e ™

holds for all t > 0, which completes the proof. O

4. Observer and output feedback controller

Assume that only u(0, t) is available for measurement, or for
economic consideration, only (0, t) is measured. To manipulate
a control for the system (1)-(4), an observer is designed to
reconstruct the state in the domain.

With Dirichlet actuation, observer of the following form

X(t) = AR(E) + Buy(0, ) + Po(u(0, £) — i1,(0, £)) (36)
(%, £) = (X, £) + P10OU(0, ) — (0, 1)), x € (0, (37)
(0, £) = CX(£) + p2(ux(0, t) — (0, )) (38)
il t) = U(t) (39)

is considered, where the constant vector Py, the function p;(x), and
the constant p, are to be determined.
Write the observer error as

ix, 0) = ulx, t) — i(x, 0), X&) = X () — X(t)
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then, to achieve exponential stability of the observer error system

X(t) = AX(t) — Poily (0, t) (40)
Ui (x, t) = i (x, £) — p1 () (0, 1), x€ (0,1 (41)
(0, t) = CX(t) — paiiy(0, t), @l t) =0 (42)

the following transformation

Wx, t) = U, t) — O ®)X(t) (43)

is introduced to transform (40)-(42) into the exponentially stable
system

X(t) = (A — Py@ (0)X () — Pyiy(0, ) 44)
we(X, t) = Wy(x, t), x€(0,0) (45)
w(0,t) =0, w(l, t) =0 (46)

where ®(x) is to be determined, and Py is chosen such that A —
Py®’(0) is a Hurwitz matrix.

By matching (40)-(42) and (44)-(46), a sufficient condition is
obtained:

O"xX)—OKA=0 (47)
®0) =C, el =0 (48)
and

p1(x) = O ()P (49)
p2 =0. (50)

So, it is only needed to solve the problem of differential equation
(47)-(48). To construct the solution to the ODE (47)-(48), a lemma
is shown first.

Lemma 1. Write

F:(? ’3), G=(0 I)e”(f)>

then G is a nonsingular matrix if and only if the matrix A has no
eigenvalues of the form —k?m? /I for k € N.

Proof. First, there exists an invertible matrix H such that H~'AH
is the Jordan’s canonical form, that is

H'AH =diag(Ji -+ Jp)

where each Jordan block J;, 1 < q < p, is a square matrix of lower-

triangular type, and all the elements on its main diagonal are the

eigenvalues of A, which are denoted by ¢j,j = 1,2,...,n.
Second, a simple calculation gives that

o0 12m+1
G= — A"
— (2m+1)!
Thus
; [ 2m+-1
L:=H 'GH = ——diagyyt - JV
i 1(Pgy)" 0
= (2m+ 1!
. o l(Pgp)™
= (2m+ 1!
1
sinh(l¢; 2
i (151 ) 0
G12
) 1
sinh(lg,2)
* 1

Gn?

Therefore, matrix L is singular if and only if Igjl/2 = kmi for some
G, 1 < j < nandk e N, where i stands for the imaginary unit,
namely, the square root of — 1. Thus, G is a nonsingular matrix if and
only if A has no eigenvalues of the form —k*72/P fork e N. O

The solution to the Egs. (47)-(48) can be represented by

Ox) = (C O'(0))™ (g) . (51)
Especially, for x = [, it holds that
(C ©'(0))e <g> =00 =0.

When A has no eigenvalues of the form —k?72/ for k € N, it can
be obtained that

@'(0) = —C(  0)e" (g) G,

Thus the explicit solution to the Eqs. (47)-(48) is

@(x):(C —cd 0 (g)w)w({)). (52)

Choose Py such that A—Py®’(0) is Hurwitz, then p; (x) and p, are
determined through (49) and (50). Thus, all the quantities needed
to implement the observer (36)-(39) are determined.

The system (44)-(46) is a cascade of the exponentially stable
heat equation (45)-(46) and the exponentially stable ODE (44). The
entire observer error system is exponentially stable.

Theorem 2. Assume that the matrix A has no eigenvalues of the form
—k?m? /P for k € N, then the observer (36)-(39) with gains defined
through (49), (50) and (52), guarantees that the observer error system
is exponentially stable in the sense of the norm

1K@, @, I = XOF + ¢, Ol

that is, )?(t) and 1i(t) exponentially track X (t) and u(t) in the sense of
above norm.

Proof. From the transformation (43), the following relations
> < 2[1all* + 2110”17 1X ]
1> < 2[l,1® + 21017 X

ll? < 20al* + 2101 1X %,
I1a)? < 2lwl* + 21101%1X |2,

are obtained. With the Lyapunov function
y cTae , - 2, 1= 2
V() =X PX + illw(-, OlI° + Ellwx(-, Ol

where P = PT > 0 is the solution to the Lyapunov equation
P(A—Py®'(0)) + (A — Py@'(0)'P = —Q
for some Q = QT > 0, it can be obtained that
QUXOF + 15O 1710,) < V <BUXOF + 5O 1719,
where
min i%a %7 )\min(f))}
max{2, 1+ (18”12 + @l ©12)/Amin (P))
2 =max{a, 1, |0'|]> + all@ > + Amax(P)}.

Calculate the time derivative of the Lyapunov function along the
solutions to the system (44)-(46), then

: Amin(Q) < PP 141
V5—‘ﬁfnm?-G—2;4%)—T)HmW

|

- lz}x(()’ t)z



544 S. Tang, C. Xie / Systems & Control Letters 60 (2011) 540-545

where the last inequality is obtained by Agmon’s inequality and the
following inequality

- 1+1 . -
_||wxx||2 =< T”wxnz — wy(0, t)z-

Take
. IPPo[> 141
a>2 = —_—
)\min(Q) !
and by Poincaré inequality, then
V< -—bv
where

) @ 2 PP 1+1
b = min — =, > —2~7~_~7 > 0.
2hmax(P) 1+ 4l Amin(Q) al
Hence
XOP + 1C, D110, < 0UXOF + 3¢, 0)lIf1 o, e
forallt > 0 with o = ©/0, which means that the error system
(40)-(42) is exponentially stable in the sense of the norm
" ~ 2 7 ()12 ~ 2
X @), AC, )12 = IXOF + 17, Ol
and thus completes the proof. O

Replace u(y, t) and X(t) by ii(y, t) and )A((t) in (28) respectively,
then an output feedback control law is obtained as follows

1
Ut) = / @ (I — y)i(y, t)dyB + @ (DX (t). (53)
0

Theorem 3. Assume that the matrix A has no eigenvalues of the form
—K*m2/ for k € N, then for any initial data X(0), X(0) € R and
u(-, 0),4(-,0) € H(0, 1), the closed-loop system consisting of the
plant (1)-(4), the controller (53) and the observer (36)-(39) has a
classical solution which is exponentially stabilized in the sense of the
norm

X (), uC-, 0, X(0), B¢, )P = XOF + [luC, 3] A

HIXOP +18C, Ol g

Proof. The transformation

wx, t) =, t) — /-x @ (x — y)ii(y, t)dyB — @ (X)X (t) (54)
0
transforms (36)-(39) into the system

X(t) = (A+ BK)X(t) + Bidy (0, £)
+ (B + Po)(x(0, t) + @' (0)X (1)) (55)

We(x, £) = WX, t) + (P1(x) — P(X)(B+ Po)
- f <1>(x—y)p1(v)dy3>

0
x (0,0, t) + @ (0)X(t)), x € (0,]) (56)

w(0, t) =0, w(l, t) = 0. (57)

The ()~( , )-system (44)-(46) and the homogeneous part of the
(X, w)-system (55)-(57) (without X (t), w(0, t)) are exponentially
stabilized. The interconnection of the two systems (X, w, X, w)

is a cascade. The combined ()A( W, X, w)-system is exponentially
stabilized. In fact, this fact can be proved through the weighted
Lyapunov function

orhe L G 2, 1. 2 y
Et) =X PX+5||w(~,t)II +5||wx(-,t)|| +ev(t) (58)

where the matrix P = PT > 0 is the solution to the Lyapunov
equation

P(A+BK)+ (A+BK)'P= -0

for some Q = QT > 0, the constant a and the weighting constant
e are to be chosen later.
Calculate the time derivative of (58), then

E < —XTQX + 2X"P(Bib (0, t) + (B + Py) (i, (0, £)

1
+ O OX(0)) — dllixl? +a / D00
0

X <p1(x) — & (x)(B+ Py) — / D(x— y)pl(v)dy3>
0
x (x(0, £) + O (0)X (£))dx — ||ty

1
+ / () (pﬁ(x) — 0/ (X)(B+ Po) — CBpy(x)
0

- / ' (x — Y)pl(.V)dyB> ((0, t) + O'(0)X(t))dx
0
(0 5 2
+e<_)\mm(Q)|5z|2_ (a_z |PPO|~ _W> ”77})(”2)
2 )\min(Q) !

Let
6 = max {m(x) — OB+ P — / @(x—y)plcy)dyB}
0

9 = max {pj(x) — ®'(x)(B+ Po) — CBp;(x)

- / &' (x —y)m(y)dys}
0

then by Poincaré, Agmon’s and Young inequalities and after some
complex calculations, it can be obtained that

: 712 A2 712 ~ 2
E = —eilX]" — ex|wxll” — e3]X[" — eq|wxll

where
Amin (Q
e — %(Q) — €[P(B+ o).
a1 PB> 1+
er=—-— - — 4 AN
2 2 @ !
e (O 1.
e = %(Q)e - (7 + 44078 + 1921> &)
€
) PPy |2 141 |P(B + Py)|?
e = efa—2-—"0 — —4 5
)Lmin(Q) l )\mm(Q)
— 480%P — ¥

Choose positive constants a and € such that

)\min(é)

a>38 —_—
2|P(B+Po)|?

)‘min(Q) !
further choose a positive constant e to satisfy

|PB|? 31+2
+

)

2 1
e > _ ( + 43628 + 1921) |©(0)?
)\min(Q) €

and positive constant a so that

1+1 1 P(B + Py)|? R
1+ (47| B+ AO)l +4a9213—|—z921>
)Lmin(Q)

|PP, |2

a>2 =
)\min(Q) ! e
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then through a lengthy calculation, it can be obtained that E<-— fE,
where

f= min{ & 2e es 2ey }
Amac(P)” 81 +42) ern(P) €d(1+4R) |~

Hence, the ()2 W, X, w)-system is exponentially stabilized.

Since the transformations ( 43) and (54) are invertible, exponen-
tial stabilization of the (X W, X, w)-system ensures exponential
stabilization of the (X 0, X, i1)-system. This directly implies stabi-
lization of the closed-loop (X, u, )A(, i1)-system. O

5. Example

As an example, consider the following scalar coupled control
system

X(t) = X(£) + ue(0, t) (59)
U (X, £) = Uye(x, ) (60)
u(0, t) = =X(t),  u(1,t) =U(t). (61)

The state feedback controller, observer, output feedback controller
and solutions to the closed-loop systems are derived.

5.1. State feedback controller and solutions

The feedback gain is taken as K = —2 such that A + BK is
Hurwitz, then

D=<(1) }) o) =—(1 3)eD"(g)>

and the backstepping controller can be derived explicitly through
(28), which is

1

u(t) = / @ (1 —yyuly, t)dy + (DX (). (62)
0

The target system is

X(£) = =X(t) + wy(0, £) (63)
w(0,t) =0, w(l,t) =0. (64)

Furthermore, the solution to the system (59)-(61) and (62) is
explicitly available. Suppose an initial condition is u(x, 0) = —5x

and X(0) = —10. First, the explicit solution to the heat equation
(64) is obtained by (29), where

4am’z? 49
(1 3)€D( 2_2 5)

m-m

we (X, t) = wy(x, t),

5mu cos (mmr)
mér4 + 3m?n? + 1
5mr (m*n? — 6) 5
Comint +3m2n2+ 1 mm
Then, the solution to the closed-loop system (59)-(61) and (62) can
be obtained explicitly from (31) and (21), which is

Mm =

—m?x t( (mzrrz—l)t

X(t) = —10e”" +22 — Dpm(65)

m221

o0
u(x, t) = 10~ (cosh(ix) — 2isinh(ix)) +2 Y e ™ suvy, (66)

m=1

where

Vi = ((m + 1) sin(mmx) + mm cos(mmx)

m2m

- mne(m 72Dt (cosh(ix) — 2i sinh(ix))).

From (65) and (66), it is evident that X (t) and u(x, t) exponentially
converges to zero as t tends to the infinity.

5.2. Observer, output feedback and solutions

Here
©'(0) = coth 1, O (x) = coth 1sinhx — coshx.
Take Py = 2 tanh 1, then the backstepping observer is
X(t) = X(t) + ux(0, t) + 2 tanh 1 (u,(0, £) — (0, t))
U (X, t) = U (X, t) + 2(sinh x — tanh 1 cosh x) (u, (0, t) — 11,(0, t))

1
00, t) = —X(t), a(1,t) = / (1 —y)ii(y, Hdy + @ (DX (t).
0

Taking the observer initial condition {i(x,0) = 0, X(0) = 0 and
following the similar steps as seeking for the solution to the closed-
loop system in Section 5.1, the explicit solution to the resulting
error system can also be obtained as follows

~ > mm 2.2
X(t) = —10e™" 4+ 4tanh1 —mtt
® + ; m2m? —1
x (1= emm*=Dtyg (67)
ii(x, t) = 10e”“(coshx — coth 1sinhx) + 2 Ze"" ™ “ U (68)
m=1
where
10 mm n 5cos(mﬂ)
Hom = m2mw2 +1 mrm

Vm

mm
sin(mmx) + 2 (tanh 1 cosh x — sinh x)
m?mz? — 1

2.2
X (e(m o=t _ 1)

From (67) and (68), it is obvious that the error system is
exponentially stabilized.

6. Comments

Control design of coupled PDE-ODE systems is an original area.
There are many open problems to be considered. This paper is
just a beginning for studying the coupled PDE-ODE systems with
interaction between the ODE and the PDE. Other coupled PDE-ODE
systems with interaction between the ODE and the PDE, such as the
coupled system consisting of an ODE and a wave equation, are also
subjects of the ongoing research.
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