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In this article, the backstepping method is employed to stabilize a coupled wave-ODE system with internal anti-
damping by means of decoupling them into a stable cascaded wave-ODE system. At the same time, the existence
of the kernels in backstepping transformation and inverse transformation is proved by iterative method.
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1. Introduction

In this article, we consider the stabilization of a
coupled wave-ODE system

X'(t) = AX(1) + Bu(0, 1),
Uit (X, 1) = e (X, 1) = M) (x, 1) + B(x)ux, 1) + CX(0),
w(0,0)=0, u(l,0)=U(1), X(0)=xo,
u(x,0) = up(x), u,(x,0) =w(x), xe(0,1),
M

where A(-) € CX([0,1]), B(-) € C([0,1]), X(r)cR" is the
ODE state, and the pair (4, B) is assumed to be
stabilisable; u(x,7) €R is the state of wave equation,
and C is a known suitable matrix; xq, uo(x) and u;(x)
are initial data; U(7) is the boundary control. Here, we
call A(x)u/x,t) be anti-damping term, in fact, basic
wave equation is conservative, for stabilising wave
equation, we will add some dissipation through
distributed or boundary damping terms. A(x)u/x, ?) is
distributed damping terms. If A(x) is negative, the
eigenvalues of wave equation wu,(x,?)—u,(x,1)=
Mx)u,(x,t) with zero Dirichlet boundary located in
left half of the complex plane, therefore, it is stable.
However, If A(x) is positive, the eigenvalues of it
located in right half of the complex plane, it is
unstable, in this article, maybe A(x) is not negative,
for this reason, we call A(x)u,(x,?) be anti-damping
term.

Coupled system appeared in many practical control
systems such as electromagnetic coupling, mechanical
coupling and coupled chemical reactions. As for
coupled wave-ODE system, it has a strong physical
background, for example, it can describe the vertical
displacement of the string and the lower rigid body for

the model of two rigid bodies connected by a spring
and hanging from an elastic string. As for controlla-
bility of coupled PDE-ODE system, Weiss and Zhao
(2009) and Zhao and Weiss (2011) have discussed it. As
for stabilization of coupled system, there are many
important tools for constructing explicit stabilising
feedback controller, such as control Lyapunov func-
tion, damping, homogeneity, averaging, backstepping
and forwarding methods. Among these methods,
backstepping method displays several advantages in
feedback controller design such as simplicity and
numerical effectiveness, therefore, it has been widely
used to study the stabilization of PDEs (Liu 2003;
Smyshlyaev and Krstic 2004, 2005; Krstic, Guo,
Balogh, and Smyshlyaev 2008). For cascaded PDE-
ODE system, Krstic (2009a,b,c) and Susto and Krstic
(2010) discussed the stabilization of them by back-
stepping method; for coupled heat-ODE system, Tang
and Xie (2010, 2011a,b) and Tang, Xie, and Zhou
(2011) discussed the stabilization of them through
backstepping method. How to design the boundary
feedback controllers of coupled wave-ODE system
with internal anti-damping is an interesting problem.
If A(x)=A is constant in (1), one can eliminate the
anti-damping term by introducing the new variable
v(x,)=e “u(x,f) transferring the wu-system into
v-system, then one can design the controller for v-system
that achieves a decay rate larger than A. However, this
idea does not work for spatially varying A(x). The main
idea of this article is to use backstepping transformation

w(x, 1) = h(x)u(x, 1) — /0 k(e )y, H)dy

- /0 sCouy, dy — MEOX(WD) ()
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and the state feedback

1

U(t) = m

1 1
{ / k(1 Dy + / s, ), )y
0 0

+M(1)X(l)]» (€)

where the functions & = h(x), M(x), kernels k=k(x, y)
and s=s(x, y) are suitably chosen, converting (1) into

X'(t) = (A + BK)X(1) + Bw,(0, 1),

Wiu(x, 1) — wex(x, £) = —dw,(x, t) — cw(x, 1),

w(0,1) =0, w(l,/)=0, X(0)= xo,

w(x,0) = wo(x), wi(x,0)=wi(x), xe(0,1)

“4)

with K being chosen such that 4 4+ BK be Hurwitz, ¢
and d be positive constant. The emphasis of this article
lies in proving the existence and invertibility of
transformation (2).

This article is organised as follows. In Section 2, we
find the feedback controller and state main theorem.
In Section 3, we prove existence of kernels k(x,y),
s(x,y) and M(x) in backstepping transformation (2).
In Section 4, we prove the invertibility of transforma-
tion (2). In Section 5, we give the proof of Theorem 2.1.
In Section 6, we give some remarks and unsolved
problem.

2. State feedback controller design and main theorem
The transformation (X(7),u(x, 1)) — (X(2), w(x, 1)) is
postulated in the form

w(x, 1) = h(x)u(x, t) — /OX k(x, y)u(y, H)dy

- fo ey, Dy — MEOX(0),

where kernels k(x,y), s(x,y) and M(x) are to be
determined later. The inverse transformation (X(7),
w(x, 1)) — (X(7), u(x, t)) will be postulated in a similar
way later. After some detailed computation, we obtain

Wer(x, 1) = h(X)un(x, 1) — /: ke, p)uy(y,0dy

- fo " SCe (s )dy — M()X'(0)
— W CX)+ RGN x, 1)+ BCCr. 1)+ 1ty (v, )
- fo Koty (D At 1)
By )y — /0 k(x.)CX(Ddy
_/‘~ s(x,y)CX'(t)dy—/> s(x,p)
0 0

x (”yy +A()u+ ﬂ(}’)u>ldy — M(x)X"(2)

= h(x)CX(t) + h(x)(A(x)u(x, 1) + B(xX)u(x, 1) + tiyr(x, 1))

- /0 k(e CX(dy — /0

- { e, )t (6, 1) — k(x, 001 (0, 1) — ey (x, Xu(x, 1)

X

S, 2) CAX () + Bun(0, )y

+ /0 ) Ky (. p)u(y, )dy }

- / ke A,y — / ke ) By, Dy
0 0
- {s(x, Ot (6, 1) — (6, 0)1a (0, £) — 5, Xty (x, 1)

+ [ st

X

- / SOy iy — f S )ANCX(D)
0 0

+B(Wu(y, )+ 1(y)u(y,)dy

- {A(x)s(x, X)uy(x, 1) — 5(x,0)A(0)u,(0,1)

= (A(1)s(x, 1)), (x, XJux, 1)

+ [ GO, ]

— M(x) (A2X(z) + ABu(0, 1)+ B 0, z)). (5)
According to (2), we have

—Wy(x, 1) + dw(x, 1) + ew(x, 1)
=— [h”(x)u(x, 1) 4+ 21 (xX)u(x, 1) + h(X)

— ik(x, X)u — k(x, X)uy
dx

— [t 0y = K 90 = s
0

— 5(x, X)uy(x, )

_ /0 (e (v, B)dy — 520, X, 1) — M”(x)X(t)}

ot~ [ ke uy.0dy
0
— M(x)(AX(1) + Bu,(0,1))
- /0 S (CXO) + A1)+ By, H)dy
—50x, Xt (x, 1) +5,(x, X)u(x, 1) + 5(x, 0)u, (0, 1)
- [ stnurod]
0

+ C{h(x)u(x, 1) — /(; k(x, y)u(y, t)dy

- /0 sy dy — MEOX()]. (©)
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By w,;—wy+dw,+cw=0, (5) and (6), after rearran-
ging the terms, we obtain

O:(h(x)C—/O k(x,y)Cdy—/(; s(x,y)CAdy
—M(x)Az—/o s(x,»)A(y)Cdy.
_cM(x)—d/xs(x,y)Cdy—dM(x)A+M”(x)>X(t)

0

4 / () (s — ey — (B + OOk
0

— () +d)syy = (MP)BY).
+2" (1) +dB(y)s =22/ (y)sy)dy

+ [ 50 (505, =GO+ k= 200)
+dr(y)+ ) +)s)dy
[ HOBOR) Ky )+ 6,0, () = ()
+ %k(x, X) +k(x,x)+ds,(x,x) +ch(x) } u(x,t)
+ {A(x)h(x) + 5 (x, x)+ dis(x, X)

X
+5,(x, x) + dh(x) } u(x, 1)
n [ (%) — A(X)s(x,x) — 21 (x)
+k(x,x) —ds(x,x) } uy(x, 1)
+ [k(x, 0)— / " 5(r ) CBAy 4 A(0)5(x,0)

0

— M(x)AB— dM(x)B + ds(x,0) } 1:(0,7)

n [s(x, 0)— M(x)B} 10, 1), 7)

Next, we choose k(x,y), s(x,y) and M(x) satisfying
coupled PDEs

kxx - kyy - (ﬁ(y) + C)k
—(A(y) + d)syy — MNB(Y) +2"(y)
+dB(y))s = 21 (y)sy =0,

2%1{(}(, x) + (A(x) + d)sy(x, x) + 2/ (x)s(x, x)
+ (B(x) + O)h(x) = h'(x),
k(x,0) = / " s(x,)CBdy — A(0)M(x)B + M(x)4B,
0

®)

Sxx = Sy = (M) + Dk = (22(3) +dM3) + B(3) +¢)s =0,
Z%S(X, x)=—(A(x)+d)h(x),
(A(x)+d)s(x,x) = =2l (x),
s(x,0)=M(x)B
)

and

M(x) — MO + dA + ) — / (1) Cdy
0
- / Cs(ep)CAdy / k(x.p)Cdy + h)C
0 0

[— ) 2 — . 1
d/o s(x,»)Cdy =0 (10)

Choosing 7(0) =1, according to (2) and (4), we obtain
M(@0)=0 and M'(0)=K. By the second and third
equality of (9), we obtain /#'(x)h(x) = s(x, x)%s(x, X).
Integrating it and noticing A(0)=1, we can choose
s(x, x) = —/h?(x) — 1. Hence,

Hx) M0 +d
Vh(x) — 2
which shows h(x) = cosh( Jo a(v)dr), where a(x) is
defined by a(x) := 20 thus, we have

s(x,x) = — Z((;C)) = —sinh(/0 a(r)dt).

Next, we will compute k(x,x) explicitly. Let us
denote f{x)=s,(x,x). Integrating the second equality
of (8) and substituting s(x, x) by — 2% we have

B ‘ )J(t)h (7)
2k(x, x) = I (x) +/O [ 2a() f(D) +— =— a(0)
— (B(r) + c)h(t)]dt. (11)
By {Ls(x,x) = —a(x)h(x), we have s,(x,x)=—a(x)x
h(x) — f(x). By the first equality of (9) and substituting
y with x, we have

Sxx(, X) = 83, (x, X) = (5(x, X) — 5,(x, X))
= 2a(x)k(x, x) + (A*(x) + di(x)
+ B(x) + o)s(x, x)
= (—a(x)h(x) = 2f (x))". (12)
By (11) and (12), we obtain
=2f"(x) — d' (x)h(x) — a(x)I'(x)

- a(x){h’(v) 4 / [ a(0) f (1) +
— (B(x) + c)h(r)i|dt}

+ (Az(x) + di(x) + B(x) + ¢)s(x, x). (13)
Simplifying (13), we get

M (o) (7)
a(t)

22(x) + a(x) /0 2a(7)f(r)dt
— 2a(0)H (x) + d ()h(x) + a(x) /0 [”(Zi’;(’)

— (B(r) + c)h(r)i| dr

— (}L2(x) + di(x) + B(x) + c) sinh( /x a(T)d‘E).
0
(14)
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Hence,

2'(x) — 2a(x) /0 a(r) f(r)dt
= —2a(x)I (x) — d' (x)h(x)

— a(x) /0 i [)‘I(’)h/(’) — () + c)h(r)]dr

a(t)
+ (,\Z(x) +dMx) + B(x) + c) sinh< /0 a(r)dr).

(15)
By (15), s(x,0)=M(x)B, M(0)=0 and M'(0)=K, we
obtain that f(x) satisfies
: 20 = 2a(2) [ a0 /(e = L)
/(0) = —a(0) — KB,
where L(x) is defined by
L(x) : = —2a(x)h'(x) — d'(x)h(x)

X A./(T)h/(f)
—a) [ 20— o+ e Jar

+ (M(x) + d(x) + B(x) + c) sinh( /0 a(r)dr).
(17)

(16)

Differentiating (16) in both sides, f{x) satisfy

2a(x) f'(x) = 2d'(x) f(x) = 2a*(x) f(x) = L'(x)a(x)
—L(x)d'(x),
£(0) = —a(0) — KB, f'(0)=— a(0)

2

(18)

Solving (18), we obtain

£(x) = (—a(0) — KB) cosh( / ) a(t)dr)
0

1 X X
+§/0 L(y)cosh(l a(t)dt)dy. (19)

k(x, x) = m(x) := %h/(x) + % /0 ' [ —2a(7)

X {(—a(O) — KB) cosh</‘r a(s)ds)
0

1 T T
+§/O L(y)cosh(/y a(s)ds)dy}

YORE _ (B(r) + C)h(‘[):|dl'. (20)
a(7)
For simplifying the Equations (8), (9) and (10),
we introduce p(i=1,2,3,4,5) as follows. pi(y)=
M) +d, pay)=B(y) + ¢, p3(¥)=B(¥) +2"(y) +dB(y),

Hence,

+

pa() =20 (), ps(1) =22(P) +d(y) + By +e,  we
obtain the coupled kernels equations

ke (x, y) - kyy(xa y) = plsyy(xa y) + pak(x, y)
+035(X, ¥) + pasy(x, y),
K(x,) = m(v),

k(x,0) = /0 s(x,y)CBdy — AM0)M(x)B + M(x)AB,

(21)
Sxx(X, ) = 83X, ) = prk(x, y) + pss(x, y),
s(x, x) = —sinh( /0 ' a(‘c)d‘l:), (22)
s(x,0) = M(x)B

and
X

M(x) — MO(A2 + dA + cI,) — /0 (e M) Cdy

. / " s(x.y)CAdy — / " k() Cdy + h(x)C
0 X 0
—d/ s(x,y)Cdy =0,
0
M(0) =0,
M(0) = K.

(23)
Introducing the space H} (0, 1) defined by

HL(0,1) := {w e H'(0,1)|w(0) = 0}
and endowed with the H'-norm, and denote domain
T:={(x,))eR0<x<1,0<y<ux}.
We state the following main theorem.

Theorem 2.1: Let A(-) e C*([0,1]), A(-)e C([0,1]),
there exist functions h(-)e CX([0,1]), M(-) e C*([0,1]),
k(-,-) and s(-,-)e CXT), such that for any (xo,u(-),
u'(-) e R" x HL(0,1) x L*(0,1) satisfying boundary
compatibility conditions

1 1 1
uo(1)=m< fo k(Lo (v)dv+ /0 s(l,y>u1(y)dy+M(1)xo> .

there exists unique classical solutions (u(-,-), X(+)) of the
closed-loop system (1) and (3) in the space C([0, 4+00);
H}(0,1)) N C'([0, +00); L*(0, 1)) x C([0, +00)).
Moreover, the closed-loop system is exponentially
stable in the sense of the norm

1 1 1 )
( / u?(x, 1)dx + / u?(x, H)dx + / uf(x,z)dx+||)((z)||2> )
0 0 0

Remark 1: In system (1), if we substitute C with
smooth function C(x), the closed-loop system (1) and
(3) is also exponentially stable, which can be proved by
similar proof procedure of Theorem 2.1 without any
difficulty. Here, it should be pointed out that the
kernels functions k(x, y), s(x, y) and M(x) depend on
C(x), controller (3) is also dependent on C(x).
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3. Existence of the kernels

To prove the existence of solution for Equations (21),
(22) and (23), we use change of variable

‘i: =x+ ) n=x-—-J.
Let us define the functions G = G(&, n), G° = G°(&, n) by

_ (5t E=n S(E ) — <
oen=k(*57557). oen=s(*5055

Setting g1(£):= m(5), g2(§) := —Sinh(fog a(r)dr), bi(§, n):=
P50 =1,2,3,4,5), fi(§) = [y (&, 3)CBdy — A(0)x
M(£)B + M(§)AB and f>(§) = M(£)B, by (21) and (22),
we obtain the coupled PDEs
Genl&, 1) = b1(E, )Gy — 263, + G, + ba(E, )G
+b3(8, )G + ba(§, n)(GE — G)),
G(5,0) = g1(8),

G(.8) =N
(24)
and
G, (&, m) = D15, n)G(§,n) + bs(5, )G (€, n),
G°(£,0) = g2(8), (25)

G'(§.8) = 12(8).

Integrating (24), first with respect to n from 0 to 7, then
with respect to & from 7 to & we obtain

G, n) =g + /1) —g1(n)

E
+ / / bi(r, $)(GY — 2G5, + G5, )dsdr
n JO

5 5
+/ / bz(r,s)Gdsdr—l-/ /[b3(T,S)GS
n JO n JO

+ by(t, s)(Ggl — G;)]ds dr. (26)

Similarly, integrating (25), first with respect to n from 0
to n, then with respect to & from n to &, we get

E
G(E.m) = 22(8) +fo(n) — 22() + / /0 [b1(z. 5)G(x. )
n

+ bs(z,5)G(z, s)|ds dz. (27)
According to (23), define

X

Flx) = /0 s ()Cdy + fo s, ) CAdy

+/‘« k(x,y)Cdy+d/v s(x,y)Cdy,
0 0

we have
M"(x) = M(x)(A%> + dA + cl,) + F(x) — h(x)C,
M(0) =0,
M (0) = K,

(28)

then,

{ Y'(x) = Y(x)L(x) + (0, F(x)), 9)

Y(0) = Yy := (0, K),
where

2
) (o (4 +dA+cI,1))’
1, 0

Y =(M(x), M'(x)) and F(x) := F(x) — h(x)C. Set ®(x)
be fundamental solution matrix for homogeneous
equation ®’(x) = ®(x)L(x), then,
Y(x) = (M(x), M'(x)) = (0, K)(x)
+ / (0, o) d(00~ (),
0

D11(x) Pra(x)
= O’
( IQ( ®r1(x)  Pr(x) )

o Yi(x, 1) Wia(x, 1)
+/0(0’F(T))(‘1’21(X,T) ‘sz(xyf)>dt’ G0)

where we used the fact that the determinant of matrix
®(x) and ® '(x) is non zero and every element of
matrix ®(x) is continuous and differentiable, at the
same time, we divided matrix ®(x) and ®(x)® (1)
into appropriate block matrix. Hence, we obtain

M) = Kdn(x) + / " ) Wan(x, D).
0
Thus,

M(x) = /0 " Kom()dy + /0 /0 " o Wan(y, Ddr dy.

(31)
Substituting M(x) into (26) and (27), we obtain

Ul
GEn) = 1(8) + /0 s1.7)CBdy — 1(0)M(n)B

+ M(n)AB — g1(n)

]
+ f [ b (1, 5)G(t,s)dsdt
n JO
]
+ f [ bi(z,5)(Gg: — 2Gg, + G, )dsd
n JO
]
+ f / [03(7, $)G™" + ba(z, s)(G; — G))ldsdz
n JO

Ul
— )+ fo s(1.7)CBdy

- A((»{ [ xeuar+ [ [

— h(r)C)Wxn(y, 7)dr dy}B
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+{/:K¢'22(y)dy+/on foy(F(t)

— h()C)¥n(y, 1)dt dy}AB —g1(n)
3
+/ /nbz(T,S)G(T,S)deT
n JO
5
bi(t, s)(G3. — 2GE + G° )dsd
+/n/0 1(7, )(Gge ot ,m)s T
s
—i—/n /(; [63(7, )G* + ba(7, )(G; — G))ldsdr
1
— a6 - A(O){ | K@
0
nory
+/(; /0(—11('1:))C\1122(y, r)drdy}B
" noy
+{ [ kontay+ [ [ hmo
X Wy (y, 1)dr dJ’}AB —gi1(n)
1
+/0 s(n,y)CBdy
noy
—A(O){/O /o F(t)Wa( y, r)dtdy}B
nory
+{'/0 /0 F(r)\llzz(y,r)drdy}AB
s
—i—/n /0 by(z, 5)G(z, s)dsdt
&
bi(t, s)(Gi, — 2GL + G° )dsd
+ [ [ e Gy 26y, + 6 asar

s
+ f / [b3G° + b4(G§ — Gf])]ds dr (32)
n JO
and

G'(&.1) = &2(8) + M(n)B — g2(n)

+/: /On[bl(r, $)G(z, s) + bs(t, 5)G(z, s)]dsdt
n n Y
=g2(§)+{ /0 Koa()dy + /0 /0 (F(x)
— (7)C)Wan(y, 7)dr dy}B
E M
- b1G(7, bsG*(t,s)]dsd
gz(ﬁ)+_/n/0[1 (t.5) + bsG'(z, )ds dr
n
=gz(§)+{fo Koy (y)dy
+ /0 " /0 (OO, r)drdy}B )

n 'y
+{ /0 /0 F(r)wzz(y,r)drdy}B

§
+ /n /On[bl G(t,5) + bsG*(t, s)]ds dr. (33)

We use a classical iterative method to prove coupled
integral equations (32) and (33) have a unique classical
solution. We define G°(&, ) and G*°(&, n) as

n
GO(E,U)izgl(é)—l(O){](; K®x»(y)dy
" /0 ! fo () CUna( . r)drdy}B
n
+{/0 K®»(y)dy

n 4
N /0 /0 (—h(f)C)‘I’zz(yaf)dfdy}AB—gl(U),

n
G(E ) = g(8) + { [0 Kdx(y)dy

]
+ /0 ' /0 (—h(DC) (v, Dt dy}B .,

We next construct the following recursion for
n=0,1,2,3,...

n
G () = /0 G (n+ .1 — »)CBdy
Ul 'y
—x(O){ / / F"(r)wn(y,r)drdy}B
0 0
0oy
+{ f / f"(r)wzz(y,r)drdy}AB
0 0
E
—|—f / by(z,5)G"(z,s)dsdz
n JO
E
—|—f / bl(r,s)(G‘;é”—2G§;7+Gf7‘r';)dsdr
n J0O

E
+ / / [63(7,5)G™" +ba(,5)(Gy" — G;")]dsdT
n JO
(34)

and
Ul "y
G (e ) = ( / / PWn(y, r)drdy)B
0 0
s
+ / / [5:G" + bsG*ldsdz, (35
n JO
where
F(r) = /0 G(x + v, — MA(Cdy
+ / G(x 4+ 3.7 — 1)CAdy
0
+[ G'(t+y,t—y)Cdy
0

+ d/ G+ y,t—y)Cdy.
0
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By the definition of G°(&,n) and G*°(&, ), we choose
number M large enough such that

G M < 1| hll~ 16+ 1l + | Kaa(n)

+ [ Chmcrutynde] i
< Ml + 1,
G, )| < M,
1GIE = 181@] < 1 ll~ < N I~E+mE+n)
<4 g =E+n < ME+n
IGoE. ) < M(E+m)~",
G (&), G &) < M,
G EMIGE EL G E < ME+n)™".
Supposing that for some n €N, we have

G < EED

(%__’_ n)nJrl
(n+ 1

n n n (€+ )n71
GL(E ). 1GIE D] < M an

S, S, n +—"

|G™"(&,m)| = MN"

E+n"!
(n—1) "~
(36)
where N chosen later. Next, we prove that (36) holds
for n+ 1. By the expression of F'(r) and (36), there
exists a constant u large enough which change line to
line, such that

|G (€, I, 1G5 (&, )], |Gy (6, )| < MN"

n+1
[F'(7)] < MN" ((2:)_ 1),(II)»C)CIILoc +ICAlT
+ MN"( T) (IdOl=NICl+ 1€t

<y 2 r) (||x( )Cllzs +1CA]
- ||d(-)||Loo||C|| +lcl)e

2"

< uMN"—— P (37)

According to (35), we have
U 2 n
IG”’“(é,n)Is/ / uMN"erdy
0 Jo n!
5
il [ [ 167w asar
n JO

E
+ 1bsl / / Gz, )ds d
n JO

n ) n
< f / uin' T Gz dy
o Jo n!
s n
+MMN”/ / ( :'S) dsdr
n J0 .

(2n)"+? MN"
MN"
= RN T

3
% / ((T+77)n+1 _ _L_VH»l)d.L,
n

L (E+ ) L(E )T
= RMN =T  RMNT =T
n+2
< MN"! % (38)

where N chosen large enough. Next, we estimate
|G" (€, n)|. By (34) and (36), we obtain

/’I Gs,n( N )CBd < UMN" (277))1+1
A n+y,n—y y=un n+ 1)
(%._’_ n)nJrl
< uMN'=>—"—
=H (n+ D

" ., + n+1 n ,1
|G (&) < pMN (i Jf)l), //2 MmN gy

+ lball / / \G"(z.5)dsdr
n J0O
&
TR / / G (z.5)/dsdr
n JO
&
+"b1”[,00/ / (IGH1+21GE + 1G5 hdsdr

1ball / / (1G] +1G")dsde

L (E+n) ! y ”(r+s)
guMN( 1)'+MN// dsdr

(T+S)n 1
—l—,uMN”/ Ty
n Jo (n—1)!

<MNI‘H—] ($+77)n+1
= S

where N chosen large enough and greater than . In a
very similar way, we obtain

dsdt

(39)

GE G, 16 E )] <MN"+‘(’3:")
o . : (E+77)'1+1
G 6l 16, €l = MN™ SR
vn+1($,n)| IG”1+1(§a77)| |Gsn+1(%.’n)|<MNn+1($‘Z’77) )
(40)

Thus, by induction we have proved that (36) holds with
N large enough only depending on the norm of some
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known functions. Once the estimates (36) are proved, it
follows that the solutions (26) and (27) are given by the
series

GEm=) G"Em, GEn =) G'En),
n=0

n=0

which are two continuous functions. By the fact
b+, )(i=1,2,3,4,5) be continuous functions, we
obtain that G(-,-), G*(-,-) and M(-) are C* functions
in terms of (24), (25) and (31). Hence, we obtain the
following existence theorem of kernels k(-,-), s(,-)
and M(-).

Theorem 3.1: Ler A()eCX[0,1]), A(-) e C(0,1]),
¢>0,d>0, hence, Equations (21), (22) and (23) have
unique classical solutions M(-) € C*([0,1]), k(-,-) and
s(-,-) € C(TN).

4. Inverse transformation

Next, we show transformation (2) is invertible and
inverse transformation defined as

u(x, t) = g(x)w(x, 1) + /(; ' [(x, y)w(y, )dy
+ /'\ n(x, y)w,(y, )dy + N(x)X(1), (41)
0

where kernels I(x,y), n(x,y), g(x) and N(x) will be
chosen followed the similar procedure in Section 3.
According to (4) and (41), we have

Uy(x,1)
=+ [ 1m0y
+ /Ox n(x, Y)w (y, 0)dy + N(x) X" (¢)
=g(xX)(=dwi(x, ) — ew(x, 1) + wyr(x, 1))
+ {l(x,x)wx(x, 1) —=1(x,0)w.(0, 1) — [,(x, x)w(x, )

+ [ i)

—d [ tesmcrndy=c [ iesmir.ody
+ {n(x, X)Wy (x, 1) = 1(x, 0)wy (0, 1) — ny(x, X)w (x, 1)

+ [ o]

B Cf() n(x, ) (v, )dy — d/o n(x, y)(—cew(y, 1)

— sz(ya t))dy

- dil’l(x,x)w»\'(x’ 1) —n(x,0)wy(0, 1) — ny(x, x)w(x, 1)
+ /0 My (x,)w(y, dy }

+ N(x)(A 4 BK)>X(1) 4 N(x)(A 4+ BK)Bw,(0,1)
+ N(x)Bw(0,1). (42)

According to (41), we have
_(uxx + A(x)u, + ,B(x)u + CX(I))

=— {g”(x)w + 28" (X)W + g(X)W oy
d
+—1(x, x)w+1(x, x)wy
dx
+ / Loy 0y + Le (e 1)
0

+ in()c, X)W+ n(x, X)Wy (x, 1)
dx

+ / i (e (3 Dy (e, r)+N”<x)X(r>}
0

—Mx){g(x)w,(x, 0+ fo (. y)wi(y,dy

+ N(x)((4+ BK)X(t) + Bw,(0,1))

4 /0 ) —dwi(7,1)— ew(y, H)dy

+n(x, X)wi(x, 1) — ny(x, X)w(x, 1)

(0 (0,1) + / W0, z)dy}
0 .
—ﬂ(X){g(X)W(x, 0+ /0 Iy dy

—i—/xn(x,y)wt(y, t)dy~|—N(x)X(t)} —CX(1). (43)
0

By u;; — . — MX)u; — B(x)u — CX(1) =0, (42) and (43),
after rearranging the terms, we obtain

0 :(N(x)(A + BK): — N"(x) — A(x)N(x)(4 + BK)
— AN = C) X(1)
+ /0> w(y, t){ — Loy + 1y —cl(x,y)
+ cdn(x,y) + dn,,(x, )
AN, ¥) = Ay (%, 3) = B () |dy
+ [ D 0] =y = die) = ent
0
+dn(x, p) — M) (x, )
+ Ao, y) — BCInCe, ) dy
+ { —cg(x) = 1,(x, x) 4+ dny(x, x)
d
—g"(x) - al(x, X) = Ii(x, x)
+ A0y (x, x) — BY) g(x)}w(x, )
+ { —dg(x) — ny(x, x) — din(x, X)
X

— () = () g0 e, 0
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+ [l(x, X) — dn(x, x) — 2¢/(x) — 1(x, x)

— (On(x, x)} WX, 1)

+ {dn(x, 0) + N(x)(4 + BK)B — »(x)N(x)B

+ A(On(x, 0) — (x, 0)}1%(0, D)

+{NB = n(x,0) b0, ). (44)

Next, we choose /(x,y), n(x,y) and N(x) to satisfy
coupled PDEs
Lex(x,y) = Ly (x, ) = —(B(x) + )l (x, »)
+ c(M(x) + d)n(x, )
(=20 + gy (x. )

d
2 8103 = /() — (B0 + )
+ (A(x) + d)ny(x, x),
I(x,0) = N(x)Bd+ N(x)(4 + BK)B,
Her(6,3) — oy (6 ) = — () + ) x. )
(M) — B + & — n(x. ),
28 = )+ d) ),

(A(x) + d)n(x, x) = —2¢'(x),
n(x,0) = N(x)B

(45)

(46)

and

N"(x) = N(x)(4 + BK)> — M(x)N(x)(4 + BK)
— B(x)N(x) — C. (47)
By the similar procedure in Section 3, Choosing

g(0)=1, according to (1) and (41), we obtain
N(0)=0 and N'(0)= K. Then, N(x) satisfy

N'(x) = N(x)(4 + BK)” — M(x)N(x)(4 + BK)
—B(X)N(x) — C,

N(0) = 0,

N'(0) = K.

(48)

Obviously, Equation (48) have a unique classical
solution. By the second and third equation of (46),
we obtain g(x) = cosh( f; b(r)dt), where b(x) is
defined by b(x) := M‘T)J’d Because Equations (45) and
(46) are very similar with Equations (21) and (22), by
the similar proof procedure, we obtain the following
theorem which shows the existence of the kernels /(-, -),
n(-,-) and N(-) in inverse transformation (41).

Theorem 4.1: Let A()e CX[0,1]), () € C([0,1]),
¢>0,d>0, hence, Equations (45), (46) and (48) have
unique classical solutions N(-)e CX([0, 1]), I-,-) and

n(-,-) € C(T).

5. Proof of Theorem 2.1
We give the exponential stability of object system (4) in
the following lemma.

Lemma 5.1: For ¢ >0, d>0, A+ BK be Hurwitz,
there exists w, y >0 such that for any (wo(-),
wi(+), x0) € HY(0,1) x L2(0,1) x R", the solution of (4)
satisfies

Ow(-, ), wi(-, 1), X(f))”H(l)(o, DxL2(0, 1)xR"

< ye N wo()s wi(), Xl o, 1y 220, s (49)

Proof: For equation w in (4), Smyshlyaev, Cerpa, and
Krstic (2010) and Cox and Zuazua (1994) have proved

OG- 1), wiCs D)z 0,1y 2200.1)
<8¢~ |(wo(-), Wil m0.10x 2201, 30,6 >0, Vi >0.

In X'(¢)=(A+ BK)X(¢) + Bw(0, f), we cannot under-
stand the term w(0,7) in the sense of trace, because
w(-, 1) € H'(0, 1), it is meaningless for w(0, 7). In fact,
w,(0, 7) is square integrable, which is known as ‘hidden’
regularity of wave equation (Lasiecka, Lions, and
Triggiani 1986). Here, we can explain it by spectral
approach. Because the functions {«/2sin(kmx)}cn
form a normal orthogonal basis of L*0,1),
{gsin(knx)}keN form a normal orthogonal basis of
H(0, 1), we can expand wo(x) and w;(x) with

wo(x) = Z Wé ;(/—zsin(knx), wi(x) = Z wll‘ 2 sin(kmx),
ken KT keN

where expansion coefficients {wf}ren, (W} ren satisfy

1 1

2 2
k2 k2
Iwoll 0.1y = (2 1wl ) il = (E il ) ;

keN keN

In system (4), we can obtain the solution

) awk\ .
w(x, 1) = Z e {wé cos(ayt) + <w’f + ;—::) sm(oekl)}

keN

X Q sin(k7mx)
km

with a = Vk?n? + ¢. Then

k
w(0,7)= ﬁz ot { wé’ cos(oyt)+ (w’l‘ + c;:?) sin(oyt) },

keN
(50)

obviously, w,(0, 7) is exponential decay. According to
(50), A+ BK be Hurwitz and the second equation
of (4), we know X(f) is exponential decay.
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Therefore, there exists w, y > 0 such that the solution
of (4) satisfies

O8G0, wiles 0, XO) g0, 1)x 2200, 1)xR”
< ye " |(wo(-), w1(-), xO)”H(‘)(O, DxL2(0, ) xR">
which end the proof of Lemma 5.1.

Proof of Theorem 2.1: According to backstepping
transformation (2) and system (4), setting x=1, we
obtain

1

1 1
{ / k(L y)u( v, Dy + / o(L Wiy, Dy
0 0

+ M(I)X(o},

Under this controller, the solution of closed-loop
system lies in the space C([0, +o0); H}(0,1))N
CY([0, +00); L*(0,1)) x C'([0, +00)) by standard
arguments of operator semigroup theory. At the
same time, under this controller, according to
Lemma 5.1 and

(-, 1), w5 1), XA 11 0,1)x 2200, xR
< pllWC, 1), i, 0, XO) i 0,1y< 220, x> 30 >0,

in inverse transformation (41), we know the closed-
loop system is exponentially stable in the sense of the
norm

1 1 1 %
( / WP (x, )dx + / u?(x, H)dx + / uf(x,t)dx+||X(z)||2),

0 0 0

which finish the proof of Theorem 2.1.

6. Further discussion

In future work, there are several extensions of the
results in this article to pursue. Firstly, one would like
to consider the stabilization of coupled wave-ODE
system with Neumann boundary condition and general
space memory kernel, from the design procedure
presented in this article, it is clear that an extension
to coupled wave-ODE system with Neumann bound-
ary condition and general space memory kernel may
not pose any difficulties. Secondly, one would consider
the stabilization of coupled Schrédinger-ODE system,
Euler Bernoulli-beam-ODE system or other coupled
PDE:s system. Finally, eliminating variable X(¢) in (1),
we obtain wave equation

U (X, 1) = e (X, 1) = MX)uy(x, 1) + B(x)u(x, 1)
C At ' A(tfz')B . 0, d ,
+ (xoe —1—'/0 e 1, (0, 7) 7:)

w(0,0)=0, u(l,1)=U(),
u(x,0) = up(x), u,(x,0)=u(x)

with a very especial time memory kernel ¢”“~?B and
inhomogeneous term Cxge®’, this system can be
exponentially stabilized by boundary control shown
in Theorem 2.1, however, the more important and
interesting problem is the stabilization of wave and
heat equation with general time memory kernel and
inhomogeneous term which have mentioned in Ivanov
and Pandolfi (2009), Pandolfi (2009) and the references
therein, as far as we know, the stabilization controller
design method in this article does not carry over
trivially from space memory system to time memory
system which maybe involve some new ideas.
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