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A B S T R A C T   

Accurate positioning of the responsible segment for patients with cervical spondylotic myelopathy (CSM) is 
clinically important not only to the surgery but also to reduce the incidence of surgical trauma and complica
tions. Spinal cord segmentation is a crucial step in the positioning procedure. This study proposed a fully 
automated approach for spinal cord segmentation from 2D axial-view MRI slices of patients with CSM. The 
proposed method was trained and tested using clinical data from 20 CSM patients (359 images) acquired by the 
Peking University Third Hospital, with ground truth labeled by professional radiologists. The accuracy of the 
proposed method was evaluated using quantitative measures, the reliability metric as well as visual assessment. 
The proposed method yielded a Dice coefficient of 87.0%, Hausdorff distance of 9.7 mm, root-mean-square error 
of 5.9 mm. Higher conformance with ground truth was observed for the proposed method in comparison to the 
state-of-the-art algorithms. The results are also statistically significant with p-values calculated between state-of- 
the-art methods and the proposed methods.   

1. Introduction 

Cervical spondylotic myelopathy (CSM) is a clinical manifestation of 
a series of neurological damage caused by degenerative changes of the 
cervical intervertebral disc and intervertebral joints, which leads to the 
compression of cervical spinal cords [4,42]. Generally, CSM with two or 
more segments of cervical spinal cord compression is called multilevel 
cervical spondylotic myelopathy (MCSM), which is a common variation 
of CSM. The morbidity rate of CSM is reported in the literature between 
41 and 2310 in a million [32,33,41]. Surgical treatment is the primary 
approach for patients with clearly diagnosed CSM according to 
evident-based medical reports [15]. The location of the disease-causing 
segment, also known as the responsible segment, that requires surgical 

treatment of CSM is currently highly dependent on imaging, especially 
on magnetic resonance imaging (MRI). However, patients who have no 
clinical symptoms but have asymptomatic compression on MRI images 
are not uncommon [21,27]. For patients with MCSM defined by imag
ing, surgeons currently use individual experience combined with im
aging to locate the disease-causing segment, which may unnecessarily 
expand the scope of surgery due to no recognized and objective criteria 
for locating disease-causing segments. Therefore, accurate localization 
of the pathogenic segment of the CSM will allow for more precise sur
gical procedures and reduce the incidence of surgical trauma and sur
gical complications, reducing the patient surgical costs [14,15,45]. 

Segmenting the spinal cord is an important step for the diagnosis and 
management of CSM. Several techniques were proposed for MRI spinal 
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cord segmentation, most of which are semi-automated, in the past two 
decades. Behrens et al. [3] proposed a robust semi-automated segmen
tation method of tubular structures in 3D medical images by parametric 
object detection and tracking. The method demonstrates impressive 
performance modeling the human spinal cord for segmentation, given 
manual empirical selection of the start point. McIntosh and Hamarneh 
[30] proposed a semi-automatic segmentation approach that focuses on 
3D geometry to delineate the structure from 3D MRI. Mayerich and 
Keyser [28] proposed a hardware-accelerated segmentation tool focused 
on 3D volumetric data and tested on the mouse spinal cord. Another 
semi-automatic segmentation is proposed by Horsfield et al. [19] that 
requires the user to mark approximated cord center-line on a few 
representative slices. Mukherjee et al. [31] proposed an automatic 
segmentation of the spinal cord that assumes the spinal cord is sym
metric in the MRI slice. Due to the degenerative changes and compres
sion nature of CSM patients, the spinal cord pattern could be 
asymmetric. Chen et al. [6] proposed a topology-preserving automatic 
segmentation in MRI which was tested on a set of 20 images. Koh et al. 
[22] proposed an automatic segmentation scheme for the spinal cord 
based on sagittal T2-weighted MR images instead of the axial view. 
There are also semi-automated approaches [17,23] focusing on spinal 
canal segmentation using region growing method that require human 
intervention for initialization. Similarly, De Leener et al. [9] proposed a 
semi-automated segmentation scheme for 2D MRI slices using iterative 
propagation of a deformable model that requires a manual starting point 
and orientation. An extended version of the method is proposed in 
Ref. [10] for the semi-automated segmentation of both spinal cord and 
canal that requires initialization of an approximated spinal cord position 
and orientation. Urban and Tanacs [43] proposed an atlas-based global 
and local segmentation scheme and tested on the spinal cord. There are 
also several studies recently [1,11,35] segmenting gray matter [8] and 
white matter inside the spinal cord in MRI and several on sagittal view 
[38]. 

With the advent of deep learning, a number of approaches were 
proposed recently for spinal cord segmentation most of which rely on 
computed tomography (CT) images. Vania et al. [44] proposed an 
automatic segmentation using convolutional neural network (CNN) 
from CT images and achieved a high Dice score. Inspired by the popular 
U-net based CNN architecture [37], Dong et al. proposed an automatic 
multiorgan segmentation technique and tested the approach on the 
spinal cord in thorax CT images using U-net GAN [12]. Jakubiecek et al. 
[20] proposed another deep learning-based fully automatic spine center 
lie detection in CT images. Although CT imaging offers increased patient 
comfort, faster scanning times and higher resolution images output, MRI 
is often prescribed by physicians due to its better contrast in pictures of 

organs, soft tissues, bone and other internal body structures without the 
use of ionizing radiation or intravenous contrast media [34]. To the best 
of the authors’ knowledge, McCoy et al. [29] proposed the first deep 
learning-based 2D MRI segmentation scheme for the spinal cord with a 
thorough analysis of MRI clinical images. The group achieved a high 
Dice score, however, the detailed CNN architecture information is not 
provided in the paper. Gros et al. [18] also proposed an automatic 
segmentation framework with CNN that relied on 3D input image 
volume. 

In this work, we aim to develop a fully automatic segmentation al
gorithm for 2D MRI axial-view slices without manual initialization and 
improve the convergence performance for the active contour methods. 
Compared with existing 2D MRI segmentation approaches in the liter
ature, our major contributions are: (i) we propose a novel fully auto
matic framework for axial-view 2D MRI slices segmentation from CSM 
patients with little manual ground truth contours for training; (ii) by 
utilizing a CNN architecture, manual initialization of the approximate 
spinal cord position and orientation is no longer required; (iii) the active 
contour method is strengthened with a grayscale regularizer with a 
better convergence in large iterations compared to the previous state-of- 
the-art level set approaches. We tested our proposed algorithm on 
clinical images provided by Peking University Third Hospital and eval
uated with the dice metric, Hausdorff distance, root-mean-square error 
and reliability metric. 

2. Methods 

In typical deep learning-based approaches, larger volumes of data 
generally produce higher prediction accuracy. However, it is very time- 
consuming to generate a large volume of corresponding ground truth 
contours, which are usually segmented manually by clinicians. In order 
to mitigate the trade-off between precise deep learning-based segmen
tation and small data, our method integrates the advantages of strong 
generalization ability from the convolutional neural network with a 
novel level set evolution in a robust and effective fashion without the 
need to segment large medical ground truth for training. The overall 
flowchart is depicted in Fig. 1. 

2.1. Preprocessing 

The 2D MRI slices are firstly center cropped to 256× 256 pixels and 
then processed by a 3 × 3 box blur kernel ω. For the input grayscale 
image I and (x,y) ∈ Ω, we have 

Fig. 1. The overall architecture of our proposed method.  
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IB[x, y] =ω*I =
∑2

dx=0

∑2

dy=0
ω[dx, dy]⋅I[x+ dx, y+ dy] (1)  

where IB is the blurred image and Ω = {0,1, 2,…,255}2 is the entire 
pixel set. 

In order to enhance the boundary difference of the image, we utilize 
the Canny edge detector [5] for IB. The image after Canny operator, 
denoted as IC is then followed with a morphological closing operation 
for further preprocessing, which is implemented as: 

ICLS[x, y] =
(
IC[x, y] ⊕ S

)
⊖ S, (2)  

where ICLS denotes the image after morphological closing; S is the 
structuring element in R7×7;⊕ and ⊖ denote the dilation and erosion 

respectively. The closing operation removes the small holes inside the 
raw edge detected by the Canny operator and provides a pixel map for 
edge enhancement. The pixel on the edge of the final image IF after 
preprocessing is weighted with a larger value to increase the boundary 
difference between the area inside the region of interest (RoI) and the 
area outside RoI. For (x,y) ∈ ΩE, where ΩE is the edge pixel set detected 
by the Canny operator, we have 

IF [x, y] =α max
(s,t)∈Ω

{
ICLS[s, t]

}
+ (1 − α)ICLS[x, y], (3)  

where α = 0.8. For (x,y) ∕∈ ΩE, we have 

IF [x, y] = IB[x, y]. (4)  

Fig. 2. U-net architecture used in our proposed method. Final output is a 256 × 256 image mask corresponding to the U-net spinal cord segmentation.  

Fig. 3. Example of raw U-net segmentation compared to ground truth. Cx
′

and Cy
′

denote the centroid of the contour in x and y dimension respectively. R′ denotes 
the smallest inscribed circle inside the contour bounding box. R denotes the radius of the circle initialization of the active contour post-processing. 
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2.2. U-net initialization 

To obtain an initial location of the RoI, a common U-net architecture 
[37] is implemented to segment the target spinal cord. Fig. 2 showed the 
U-net architecture utilized in our proposed method. We utilized the 
negative of Dice coefficient as our loss function. Deep learning-based 
architectures are usually data-driven and the performance will be 
significantly enhanced when the dataset is larger [48]. However, when 
the number of training sample is limited, the prediction on the boundary 
is inaccurate and hard to manipulate as shown in Fig. 3a. Thus, we 
utilize an improved active contour method after the U-net prediction as 
the global location of the predicted segment is generally accurate. 

In order to ensure the initial area inside the RoI, we transform the U- 
net segmentation by finding the rectangular bounding box shown in 
Fig. 3b. The initial area is a concentric circle of the smallest inscribed 
circle in the bounding box. We determine the center and radius of the 
inscribed circle by computing the geometric center and the width of the 
bounding rectangular, respectively. The radius of the initial area R is set 
to a proportion of the radius of the inscribed circle R′ . 

2.3. Grayscale regularized level set evolution (GRLSE) 

Level-set methods are a common framework for using level sets as a 
tool to make numerical analysis of surfaces and shapes [47]. We assume 
Cφ as the parametric curve also known as fronts, which can be repre
sented by the zero level set: 

Cφ ={(x, y)|φ(x, y, t) = 0}, ∀t ≥ 0 (5)  

where φ(x, y, t) is the level set function (LSF). In the task of image seg
mentation, the boundary curve Cφ, represented by LSF φ, separates the 
foreground object from the background in an image. The foreground and 
background regions are usually denoted by {(x, y)|φ(x, y, t)< 0} and 
{(x, y)|φ(x, y, t)> 0} respectively. The LSF evolution is a powerful tool for 
segmentation task however it generally has two limitations. Firstly, the 
initial level set area needs to be defined manually, which includes human 
intervention making the method a semi-automatic approach instead of 
fully automatic. In last section, we introduce a U-net structed CNN to 
automatically initialize the area. Secondly, although the distance regu
larization effect of LSF demonstrates a significant improvement compared 
with conventional level set methods [25], the convergence of the 
edge-based active contour model is not stable as the stopping condition of 
the propagation is dependent on the iterations. To improve the boundary 
performance and automate the initialization of the active contour 
methods, we added a grayscale regularizer and utilized the automated 
U-net predictions to provide the initial estimate of the target region. 

We firstly follow the standard steps proposed by Li et al. [25] by 
calculating the edge indicator function g 

g=
1

1 +

⃒
⃒
⃒

⃒
⃒
⃒∇

(
Gσ∗IF

)⃒⃒
⃒

⃒
⃒
⃒

2

2

, (6)  

where IF is defined in Eq. (3) and Eq. (4). Gσ is the Gaussian kernel with 

the standard deviation σ = 0.8. To solve the standard curve evolution in 
partial differential equation formulation 

∂φ
∂t

=F
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒φ
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2
, (7)  

where F is the speed function that controls the motion of the contour, we 
formulate the LSF with Neumann boundary condition [13] and follow 
the energy functional defined in Ref. [25], which is 

E(φ, g)= μR p(φ)+ λE (φ, g) + αA (φ, g) (8)  

where the distance, edge, and area energy functional are defined as 

R p(φ)=
∫

Ω

p
( ⃒
⃒
⃒
⃒∇φ

⃒
⃒
⃒
⃒

2

)
dxdy (9)  

E (φ)=
∫

Ω

gδε(φ)|∇φ|dxdy (10)  

A (φ)=
∫

Ω

gHε(φ)dxdy (11)  

and the double-well potential function p( ⋅), Dirac delta function δε, and 
Heaviside function Hε are defined as 

p(x)=

⎧
⎪⎪⎨

⎪⎪⎩

1
(2π)2 (1 − cos(2πx)), x ≤ 1

1
2
(x − 1)2

, x > 1
(12)  

δε(x)=

⎧
⎨

⎩

1
2ε

(

1 + cos
(

πx
ε

)

, |x| ≤ ε

0, |x| > ε
(13)  

Hε(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(

1 +
x
π +

1
π sin

(πx
ε

))

, |x| ≤ ε

1, x > ε

0, x < − ε

(14) 

The energy functional in Eq. (8) could be minimized by solving the 
gradient flow in the following 

∂φ
∂t

= μdiv
(
dp
( ⃒
⃒
⃒
⃒∇φ

⃒
⃒|2
)
∇φ

)
+ λδε(φ)div

(

g
∇φ

⃒
⃒
⃒
⃒∇φ

⃒
⃒|2

)

+ αgδε(φ) (15)  

given the initial LSF, φ0 predicted by U-net. The distance regularization 
term is computed by 

dp(x)=
p′

(x)
x

. (16) 

Level set methods require a sufficient large iteration number for 
segmentation to let the boundary curve Cφ fully extend to the edge. 

Fig. 4. Sample images from different patients per
formed using LSE with the same iterations (iteration =

500), where the first image indicates that the current 
number of iteration is too small to converge, the 
second is enough but LSE doesn’t properly stop at the 
boundary and the third properly match. The number 
of iteration is usually set to a large value in order to 
ensure active fronts fully extend to the boundary. The 
set of image indicates current convergence criterion 
needs to be strengthened as LSE cannot properly stop 
at the edge when the number of iteration is large.   
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However, when the iteration step is large, the contours cannot always 
converge properly as shown in Fig. 4. Thus, we propose a grayscale 
regularizer based on pixel intensity level to ensure the contour propa
gation will properly stop when facing spinal cord boundary. 

We notice that the contour performed by distance regularized level 
set evolution (DRLSE) in large iteration will first approximate the spinal 
cord boundary and then exceed, which demonstrates a clear double- 
peak feature in the image grayscale distribution when plotting the his
togram as shown in Fig. 5. Thus, we find the trough of the first peak and 

set a threshold based on the mode of the grayscale histogram, making it 
stop before it propagates into other regions. 

We calculate the mask from the predicted contour Cφ and then 
compute the grayscale distribution G : R2→R of the input image IF in
side the RoI 

G=
{

IF [x, y]
⃒
⃒(x, y) ∈Mask(Cφ)

}
(17)  

and the grayscale regularization term β : R→R2 is computed by 

β(G)=

{
− 1, IF[x, y] ≥ Mo(G) + Θ and (x, y) ∈ Mask(Cφ)

1, otherwise (18)  

where the threshold Θ = 50. The regularized LSF can be then formu
lated as 

Fig. 5. Histogram of intensities after LSE where the first peak corresponds to the region of interest. We calculate the histogram after flattening the image grayscale 
value inside the LSE fronts and update convergence stopping criterion at each iteration. 

Table 1 
Details of data set used in the proposed study.  

Description Dataset 

Number of subjects 20 
Imaging modality Transversal T2-weighted imaging 
Patient’s sex 11 Males/9 Females 
Patient’s age 39–75 years 
Scanner protocol Discovery MRI750 ws 
Cord coverage C3 – C7 
Magnetic strength 3.0 T 
Number of frames 19–25 
Repetition time 4.15–5.26 ms 
Echo time 12.24–12.91 ms 
Image size (272,192) – (288, 256) pixels  
Field of view (190,190) – (210, 210) mm   

Table 2 
Evaluation of automated segmentation over 12 patients’ data with 207 MRI slices using the DC, HD, and RMSE. The results of the proposed method are compared with 
U-net with random rotation and horizontal flipping (indicated by †), U-net using patch-based training (indicated by ‡), Deepseg, and Distance Regularized Level Set 
Evolution (DRLSE) against expert manual ground truth produced by clinicians.  

Metric U-net† U-net‡ Deepseg DRLSE Proposed 

Dice coefficient (%) 83.7 ± 12.0  82.7 ± 11.9  71.2 ± 24.4  85.8 ± 18.0  87.0 ± 18.4  
Hausdorff distance (mm) 8.4 ± 8.5  8.7 ± 9.6  14.9 ± 31.6  9.8 ± 7.9  9.7 ± 7.9  
Root-mean-square error (mm) 6.6 ± 12.6  6.7 ± 14.7  13.3 ± 19.8  6.4 ± 7.3  5.9 ± 7.3   

Table 3 
Statistical comparison between the proposed methods and U-net with random 
rotation and horizontal flipping (indicated by †), U-net using patch-based 
training (indicated by ‡), Deepseg, and DRLSE.  

Metric U-net† U-net‡ Deepseg DRLSE 

Dice coefficient (%) 0.0272 0.0040 < 0.001  0.0468 
Hausdorff distance (mm) 0.0272 0.2474 0.0159 0.3393 
Root-mean-square error (mm) 0.4294 0.4457 < 0.001  < 0.001   
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φ= β(G) ⊙ φi, (19)  

where ⊙ is the element-wise multiplication; and Mo is the mode of the 
image grayscale histogram. The regularization is updated iteratively 
until reaching the maximum iteration. The proposed GRLSE could be 
summarized in Alg. 1. 

Algorithm 1. Grayscale regularized level set evolution (GRLSE) 
algorithm   

3. Experiments 

3.1. Clinical data 

The clinical data is collected and provided by the Peking University 
Third Hospital. The details of the dataset used in the proposed study are 
listed in Table 1. The MRI scans were performed on a 3.0 T scanner 
(Discovery MRI750ws, GE Healthcare, Chicago, Illinois, United States) 
and the transversal T2-weighted imaging was performed using 2D 
Multiple Echo Recombined Gradient Echo (MERGE) sequence ant the 
disc level from C3 to C7 of each patient. The repetition and echo times 
were set to the range from 4.15 ms to 5.26 ms, and 12.24 ms–12.91 ms, 
respectively. The data is selected based on a number of excluding con
ditions, including:  

• patients who have taken multiple cervical surgeries;  
• patients with a history of cervical spine injury leading to spinal cord 

dysfunction;  
• patients with cervical kyphosis;  
• patients with spinal cord dysfunction due to iatrogenic factors, 

including surgical trauma or hematoma in the perioperative period; 
• patients with C5 nerve root palsy or other cervical nerve root dam

age, causing irreversible damage to nerve function in the perioper
ative period. 

The ground truth annotations for the 2D MRI slices used in this 
article are segmented manually and then corrected by an expert radi
ologist with 152 images from 8 CSM patients for training and 207 images 
from 12 CSM patients for testing. The neural network in the proposed 
study was trained using 114 images acquired from 6 subjects and 38 
images acquired from 2 additional subjects were used as the validation 
set. The training and validation split is 0.75 for the U-net training. 

3.2. Experiment setup 

The U-net based model is implemented in Python programming 

Table 4 
Hyperparameter optimization with the size of morphological structuring element and alternative edge detection algorithm. The best value for each comparison is 
indicated with bold font.  

Hyperparameter k = 3  k = 5  k = 7  k = 9  Sobel 

Dice coefficient (%) 86.1 ± 9.3  85.8 ± 9.5  87.0 ± 18.4  86.2 ± 9.4  86.2 ± 9.3  
Hausdorff distance (mm) 12.1 ± 16.6  12.3 ± 16.5  9.7 ± 7.9  11.5 ± 16.6  11.8 ± 16.5  
Root-mean-square error (mm) 10.3 ± 26.0  10.7 ± 25.9  5.9 ± 7.3  9.9 ± 25.8  10.3 ± 25.8   

Fig. 6. The reliability metric versus Dice metric is calculated for U-net with 
random rotation (indicated by †), U-net with patch-based training (indicated by 
‡), DRLSE, and the proposed method. The evaluations are performed over 207 
MRI slices acquired from 12 CSM patients. Lines closer to the upper right corner 
in the plot are considered more ideal and robust according to the definition of 
the reliability metric. 
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language using Keras with Tensorflow backend and NVIDIA CUDA Deep 
Neural Network library (cuDNN). We utilize a linear variable learning 
rate with Adam optimizer with 1e− 4 in initial and the decay is uniform 
per epoch. The total number of epochs is 100. Inner and outer iterations 
of the level set methods are set as 5 and 25, respectively. We set Δt = 1, 
μ = 0.2, λ = 4, α = − 9, ε1 = 1e− 10, ε2 = 2. The structuring parameters 
in closing operation are embedded in the OpenCV library. We also run 

several simulations to optimize the size of the structuring element and 
test Sobel filter as an alternative edge detection algorithm. We report the 
results in Table 4. The results reported in the table demonstrate that the 
proposed method yielded better conformance compared with other 
hyperparameter settings. The experiment is conducted on the laptop 
with Intel Core i7-7700 HQ CPU with 16 GB RAM and the neural net 
models were trained and tested with an NVIDIA GTX 1050 GPU with 4 
GB memory. The pre-processing for a single MRI slice took less than 10 
ms on our laptop CPU. 

3.3. Evaluation metrics 

The proposed algorithm is evaluated quantitatively using the Dice 
coefficient (DC), Hausdorff distance (HD), root-mean-square error 
(RMSE) and reliability metric. We define set A as the automatic pre
diction region generated by predicted contour Cφ and denote M as 
manual segmentation ground truth. 

3.3.1. Dice coefficient 
DC measures the overlap between two delineated regions [39]: 

DC =
2|A ∩ M|

|A| + |M|
(20)  

3.3.2. Hausdorff distance 
HD measures maximum deviation between the automatic contour 

and manual segmentation ground truth in terms of Euclidean distance 
[36]: 

dH(A,M)=max
{

sup
a∈A

inf
m∈M

(a,m), sup
m∈M

inf
a∈A

(a,m)

}

(21)  

where sup denotes supremum and inf infimum. 

3.3.3. Root mean square error 
RMSE measures the root-mean-square surface distance between 

predicted and ground truth contours [2]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

x∈A
d2(x,M) +

∑

y∈M
d2(y,A)

|A| + |M|

√
√
√
√
√

.
(22)  

3.3.4. Reliability metric 
The reliability function measures how reliable an algorithm is when 

yielding an accuracy d, which is evaluated using the reliability function 
[2]. 

R(d)=Pr(DC > d) =
Images with DC higher than d

Total images
. (23)  

4. Results 

4.1. Quantitative assessment 

The quantitative assessments using DC, HD, RMSE of the 207 images 
from 12 CSM patients are presented in Table 2. The best performances 
for our testing data in terms of DC and RMSE are obtained from using our 
proposed method. Compared to the state-of-the-art level set method 
DRLSE, our method improves the quantitative result by showing a 
higher score in all the metrics. Although DRLSE has already demon
strated accurate segmentation accuracy in terms of Dice metric, it re
quires manual initialization and is less robust in boundaries. We 
compare our method with U-net with random rotation and flipping 
augmentation and state-of-the-art method, DeepSeg, specifically 
designed for spinal cord segmentation. As shown in Table 2, our pro
posed method achieves higher conformance with ground truth in all 
quantitative metrics. The results are also statistically significant with p- 

Fig. 7. Quantitative evaluation of spinal cord segmentation on a test set using 
207 MRI slices from 12 CSM patients. Box plots for DC, HD, and RMSE for the 
proposed method are presented and compared with U-net with with random 
rotation and horizontal flipping (indicated by †), U-net with patch-based 
training (indicated by ‡), Deepseg and DRLSE. Boxes lower and upper edges 
are 25th and 75 the percentile respectively and the mean values are shown in 
the green triangles. Whiskers show the extreme values and data points beyond 
the whiskers are displayed using diamonds. 

X. Zhang et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine 132 (2021) 104345

8

values calculated between state-of-the-art methods and the proposed 
method which are reported in Table 3. Similar performance is also 
observed in reliability metric shown in Fig. 6, boxplots shown in Fig. 7, 
and visual assessment shown in Fig. 8. Although the proposed method 
yields high conformance overall, U-net shows strengths in several as
pects including higher conformance measured in terms of mean HD and 
achieved a smaller standard deviation for Dice score. 

The reliability assessment is depicted in Fig. 6. According to its 
definition, the ideal reliability curve ought to be as close as possible to 
the right upper corner. Higher accuracy is observed from U-net seg
mentation in the Dice score range from [0, 0.69] but our proposed 
method shows critical improvement in (0.69,1] compared with U-net. A 
similar improvement is also observed compared with DRLSE which 

further confirms our statement in the quantitative assessment in terms of 
DC, HD, and RMSE. 

The improvement of accuracy is also observed using box plots shown 
in Fig. 7. Box plots graphically display groups of numerical data through 
their quartiles. The highest median value in terms of DC and the lowest 
value in terms of RMSE are obtained from our proposed method. 

Fig. 8 shows example automatic contours by our proposed method as 
well as U-net with data augmentation, U-net with patch-based training, 
Deepseg, and DRLSE in the blue curve. The data augmentation is per
formed in the baseline U-net model to increase the data size by 4 times 
and the augmentation techniques include random rotation of 90, 180, 
and 270◦ and horizontal flipping. The patch-based training was imple
mented by random cropping the image with size 128 × 128 patches. 

Fig. 8. Prediction examples of five frames from a patient in the testing set. The blue curves in the figure are predictions from U-net with random rotation and 
horizontal flipping (indicated by †), U-net with patch-based training (indicated by ‡), Deepseg, DRLSE, and the proposed method, respectively. The red curves are 
ground truth (GT) segmented by expert radiologists. Higher conformance was observed between expert manual segmentation and the results by the proposed fully 
automated approach. 

Fig. 9. Examples of the failed segmentation by our 
proposed method. The first example shows that the U- 
net fails to correctly localize the initial estimation; the 
second example shows that the grayscale intensity of 
the target spinal cord contour is similar to the back
ground in the upper right corner and yields in the 
inaccurate segmentation; the third example shows 
that the intensity level inside the target spinal cord is 
distributed in a large difference and results in early 
evolution termination.   
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Each image contains 4 random patches. The examples are also compared 
with the ground truth in the red curve. The U-net segmentation result in 
the example demonstrates accurate initial localization of the spinal cord 
but is lack of precise prediction on the boundaries compared with our 
proposed method. The result segmented by the DRLSE yields a higher 
tightness in the boundary compared with U-net. However, this alone 
requires manual initialization and lacks stable convergence on bound
aries, where a proportion of the predicted contour extends to the nearby 
region with similar grayscale intensity. Our proposed method improves 
the result by adding a grayscale regularizer on the image intensity and 
demonstrates a higher convergence performance in boundaries. The 
integration of the U-net model with the level set approach also reduces 
the need of time-consuming manual initialization. The visual assessment 
further confirms the observation obtained in the quantitative 
assessment. 

5. Discussion 

In this study, we propose and validate a fully automated segmenta
tion approach for 2D axial-view MRI sequences from CSM patients using 
convolutional neural network and an improved level set evolution. A 
large portion of previous studies in spinal cord segmentation are usually 
conducted in CT images [12,44], DTI images [16,24,26,40,46] instead 
of MRI. The related studies in MRI segmentation approaches are 
semi-automatic [9,10,19] instead of fully automatic, focusing on 3D 
spinal canal [17,18,23,28,30] instead of 2D spinal cord slices, sagittal 
view [22,38] instead of axial view, healthy patients [6,9,10,31] instead 
of CSM patients. To the best of the authors’ knowledge, this is the first 
study that proposes a fully automated segmentation approach and 
thoroughly analyzed in terms of various evaluation metrics on the 
clinical 2D axial-view MRI data from CSM patients. Our focus is to 
develop an approach to help surgeons to localize the disease-causing 
segment of CSM. As designing the method with normal cases will not 
guarantee sufficient accuracy on pathological images, we devote our 
efforts to training and validating the method on pathological images 
directly. 

Our method integrates the generalization ability of the U-net archi
tecture with the accurate boundary prediction of the level set evolution. 
The deep learning-based approach usually needs large datasets to 
Ref. [48] achieve a high segmentation accuracy, which requires 
time-consuming manual ground truth segmentation and heavy compu
tation hardware support. Level set evolution generally requires the 
manual initial approximation of contour location and orientation, and it 
is not robust enough in boundary convergence. As our proposed method 
introduces a grayscale regularizer in the active contour model, it ach
ieves a better convergence performance on the contour boundary and is 
robust to different hyperparameter settings. Based on the literature [7, 
10,22], spinal cord segmentation can be considered as accurate with the 
DC against manual segmentations higher than 0.85. 

Although our proposed method yields an accurate prediction in 
various evaluation metrics, it still has several limitations. Firstly, the 
CNN model used for initial estimation is a supervised approach. Despite 
the reduction of the number of training samples, it still requires manual 
segmentation from clinicians. Secondly, our proposed method relies on 
the U-net model for contour initialization based on the clear assumption 
that U-net correctly localized all the initial points of the dataset. We 
notice that images with severely suppressed spinal cord resulted in lower 
Dice scores compared to other images. The diminished performance 
might due to the lack of accurate initialization of U-net as shown in 
Example 1 from Fig. 9. Thirdly, the grayscale regularizer is less effective 
when the grayscale intensity level of the target spinal cord is similar to 
the background or the intensity level inside the target spinal cord is 
distributed in a large difference shown in Example 2 and 3 in Fig. 9 
respectively. In addition, the evaluations are performed on 207 images 
acquired from 12 patients and some of these images might have been 
similar. Future studies will be devoted to the segmentation and 

evaluation of volumetric data. Although the proposed method yielded 
promising results when tested on 12 subjects, its generalization ability 
on larger datasets remains to be explored in the future. The applicability 
of the method in other scenarios such as multi-center context or different 
MR modalities also remains to be explored in the future. 

6. Conclusion 

This paper proposes a fully automated approach to segment the 
spinal cord using clinical 2D axial-view MRI slices from CSM patients. 
The proposed method introduces CNN to provide initialization for the 
improved level set-based method. The level set-based method introduces 
a grayscale regularizer to improve the convergence performance on 
contour boundaries. The proposed algorithm is evaluated with clinical 
data using both quantitative evaluation metrics and visual assessment. 
The quantitative assessment shows that our proposed framework out
performs the state-of-the-art algorithms in terms of DC, HD, RMSE and 
reliability metrics. 
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