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a b s t r a c t

In cable elevators, large axial vibrations appear when a cage subject to disturbance is lifted up via a
compliant cable. The axial vibration dynamics can be described by a wave partial differential equation
(PDE) on a time-varying spatial interval with an unknown boundary disturbance. In this paper, we
design an output feedback controller actuating at the boundary anti-collocated with the disturbance to
regulate the state on the uncontrolled boundary of the wave PDE based on the backstepping idea and
the active disturbance rejection control (ADRC) approach. The control law uses the state and disturbance
information recovered from the state observer and the disturbance estimator, respectively, which are
constructed via limited boundary measurements. The exponential convergence of the state on the
uncontrolled boundary and uniform boundedness of all states in the closed-loop system are proved by
Lyapunov analysis. Effective vibration suppression in the cable elevator with the designed controller is
verified via numerical simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Cable elevators are widely used for transportation of heavy
objects to a large height or depth inmany industrial environments.
For instance, amining cable elevator is used to transport the cargos
andminers between the ground and theworking platformwhich is
as deep as 2 km by a cage at the bottom of the cable (Kaczmarczyk
& Ostachowicz, 2003, Wang, Pi et al., 2017). The external distur-
bances exerted on the cage, such as airflow, and the compliance
property of cables would cause large vibrations, which would lead
to the fatigue failure and degrade the performance of system (He &
Ge, 2016). The vibrations are particularly obvious in the ascending
process because the vibratory energy increases when the cable
length is being shortened (Zhu & Ni, 2000). Therefore, in the
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ascending process of mining cable elevators, a controller acting
at the head sheave to attenuate the disturbance and suppress the
vibrations at the moving cage through a time-varying length cable
is required. Mathematically, this means attenuation of an anti-
collocated disturbance and regulation of the uncontrolled bound-
ary state in a wave PDE on a time-varying interval.

1.2. PDE control systems with moving boundary

The stabilization problem of a cascaded system of a trans-
port PDE and a nonlinear ordinary differential equation (ODE)
where the moving boundary of the transport PDE depends on the
boundary values of the PDE state itself was addressed in Bekiaris-
Liberis and Krstic (2018). Control problem of the bizone model of
the extruder consisting of the transport PDE and the ODE with
a moving interface was solved in Diagne, Bekiaris-Liberis, and
Krstic (2017). Output feedback control of the one-phase Stefan
problem mathematically formulated as a 1-D diffusion PDE on a
time-varying spatial interval described by an ODEwas proposed in
Koga, Diagne, and Krstic (2016). Stabilization of a cascade system
of a nonlinear ODE and a wave PDE with a moving uncontrolled
boundary was developed in Cai and Krstic (2016) by using the
predictor-based feedback control. However, these research did not
consider external disturbances which appear frequently in the
industrial environments.
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1.3. PDE control systems with disturbances

Most current research about attenuation of disturbances in PDE
systems focuses on disturbances collocated with control. Sliding
mode control (SMC) was designed for heat, Euler–Bernoulli beam,
and Schrödinger equations with boundary input disturbances in
Guo and Jin (2013a), Guo and Liu (2014) and Wang, Liu, Ren, and
Chen (2015). Adaptive controlwas used in output feedback asymp-
totic stabilization of 1-D wave equations that were subject to
harmonic disturbances at the controlled end and at the measured
output in Guo andGuo (2013a, 2013b, 2013c) respectively. Internal
model principle (Francis & Wonham, 1976) on the basis of the es-
timation/cancellation strategy was utilized in the beam (Rebarber
& Weiss, 2003). ADRC proposed by Han (2009) was developed in
the state feedback or output feedback design of wave PDEs with
matcheddisturbances in Feng andGuo (2017), Guo and Jin (2013b),
Guo and Jin (2015), Guo and Zhou (2015), Tang, Guo, and Krstic
(2014) and Zhou, Guo, and Wu (2016).

Comparedwith the above literaturewhich focuses on the atten-
uation of collocated disturbances, the problem of anti-collocated
disturbance attenuationwould bemore difficult. Actually, systems
with anti-collocated disturbances are widespread in practical en-
gineering systems. For example, the airflow disturbance at the
cage is not collocated with the control input at the top floating
sheave in a cable elevator. Some results on the attenuation of anti-
collocated disturbances have been achieved in ODE systems. A
generalized extended state observer (ESO) based control approach
was proposed for ODE systems with mismatched uncertainties
and non-integral chain form in Li, Yang, Chen, and Chen (2012).
By using ADRC, desired performance was achieved for a class
of multi-input multi-output (MIMO) lower-triangular nonlinear
systems with mismatched uncertainties via state feedback in Xue
and Huang (2014). ADRC was also applied in output tracking for
a class of nonlinear ODE systems with vast matched and mis-
matched uncertainties in Guo andWu (2017). Less literature exists
on the problem of anti-collocated disturbance attenuation in PDE
systems. A state feedback controller that practically stabilizes the
Schrödinger equation-ODE cascade system in the presence of an
unmatched disturbance which is assumed as small and measur-
able was presented in Kang and Fridman (2016). For the output
feedback design problem which is more complicated, output ref-
erence tracking of a wave equation with an anti-collocated har-
monic disturbance at a stable damping boundary via the output
feedback controller was presented in Guo and Guo (2016). The
output regulation problem for a wave equation with a harmonic
anti-collocated disturbance at a free boundary was dealt with in
Guo, Shao, and Krstic (2017). However, the authors of Guo et al.
(2017) only focus on the attenuation of a harmonic disturbance
with known frequencies in a fixed interval wave equation and
only achieve the asymptotic convergence of the output state of
the wave equation. The problem we deal with is more complex:
attenuation of an anti-collocated general harmonic disturbance
with unknown amplitudes and frequencies in a wave PDE on a
time-varying interval, and ensuring the exponential convergence
of this uncontrolled boundary state.

1.4. Main contributions

(1) We achieve attenuation of an anti-collocated disturbance in
a wave equation on a time-varying interval, which is more
challenging than the problem solved in Feng andGuo (2017)
about attenuation of a collocated disturbance in a fixed-
interval wave equation.

(2) We attenuate a general harmonic disturbance with un-
known amplitudes and frequencies via designing a distur-

Fig. 1. The mining cable elevator.

bance estimator convergent to the actual disturbance, while
the only available result for anti-collocated disturbance at-
tenuation in wave PDEs is (Guo et al., 2017) which deals
with a harmonic disturbance with known frequencies.

(3) Moreover, we obtain the exponential convergence result
instead of the asymptotic convergence result in Guo et al.
(2017).

(4) This is the first result on output feedback exponential regu-
lation for a payloadwhich is driven through a varying-length
cable and is subject to a general harmonic disturbance anti-
collocated with the control.

1.5. Organization

The rest of the paper is organized as follows. The vibration
dynamics of a cable elevator with an airflow disturbance at the
moving cage is presented in Section 2. A disturbance estimator
and a state observer for the wave PDE with the anti-collocated
disturbance are designed in Section 3 and Section 4 respectively.
In Section 5, we design the output feedback controller via the
backstepping method (Krstic & Smyshlyaev, 2008), and prove the
exponential convergence of the uncontrolled boundary state and
uniform boundedness of all states in the closed-loop system. The
simulation results are provided in Section 6. The conclusions and
future work are presented in Section 7.

2. Problem formulation

The schematic of a mining cable elevator with an axial distur-
bance at the cage is depicted in Fig. 1. The drum drives the cable
through the floating sheave to lift a cage which is subject to the
disturbance. Uv(t), where the subscript v denotes vibration, driven
by the hydraulic actuator at the floating sheave is a control force
to attenuate the disturbance and suppress vibrations. Ua(t) at the
drum is a separate control force to regulate motion dynamics.

The actual axial displacement z∗(x, t) of each point in the cable
can be considered as the sum of the motion l(t) in the equal
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Table 1
Physical parameters of the mining elevator.

Parameters (units) Values

The time-varying length of the cable (m) l (t)
Initial length (m) L
Cable effective steel area (m2) Aa
Cable effective Young’s modulus (N/m2) E
Cable linear density (kg/m) ρ

Total hoisted mass (kg) m
Maximum hoisting velocity (m/s) v̄

rigid-body model and the additional axial vibrations u(x, t) of the
compliant one, i.e., z∗(x, t) = l(t) + u(x, t). x ∈ [0, l(t)] denotes
position coordinates along the cable in amoving coordinate system
associated with the motion l(t) where the origin is located at the
cage at the initial moment. t represents time. Using Hamilton’s
principle (Mciver, 1973), a simplified dynamic model of axial
vibration u(x, t) can be built Wang, Koga, Pi and Krstic (2018) as
follows,

utt (x, t) = quxx(x, t), ∀(x, t) ∈ (0, l(t)) × (0, ∞),
∀x ∈ (0, l(t)), ∀t ∈ (0, ∞), (1)

ux(0, t) = −
m
r
utt (0, t) −

1
r
d(t), (2)

ux(l(t), t) = U(t), (3)

where the physical parameters are shown in Table 1 and r = E ·Aa,
q = E · Aa/ρ. u(x, t) denotes the axial vibration displacements
distributed in the cable. (2) describes the cage dynamics. (3) comes
from rux(l(t), t) = Uv(t)with the definition ofUv(t) = rU(t),where
U(t) is the controller to be designed in this paper. Uv(t) can be
obtained via multiplying the designed U(t) here by the constant
gain r . Please refer to Wang, Koga, Pi and Krstic (2018) for the
detailed modeling processes. The disturbance force d(t) caused by
airflow at the cage x = 0 is anti-collocated with the control input
U(t).

Remark 1. We ignore the effect of the vibration dynamics on
the motion dynamics because the vibration displacement u(x, t)
is much smaller than the hoisting motion l(t) from 2000 m under
ground to the surface platform. Because the motion dynamics-l(t)
is regulated by the separate controller Ua(t), we can consider that
l(t) from motion dynamics which is an independent ODE driven
by Ua(t) is the known hosting trajectory, and focus on the control
design U(t) of the PDE vibration dynamics (1)–(3), where l(t) acts
as a known time-varying function.

Remark 2. We only consider the airflow disturbance acting on
the cage and ignore the ones acting at the cable. In fact, the axial
vibration displacement is parallel to the direction of the airflow
disturbance and the cross section of the cable is much smaller than
that of the cage. Therefore, the airflow disturbance affects the cage
more obviously.

Available measurements here are u̇(l(t), t), utt (0, t) and u(0, t).
u̇(l(t), t) is at the controlled boundary, which can be directly ob-
tained from the velocity feedback signals of the servo actuator
acting at the floating sheave. The vibration acceleration utt (0, t)
is measured directly by an accelerometer placed at the cage, and
then we obtain the vibration displacement u(0, t) by integrating
twice the measured acceleration with known initial conditions
ut (0, 0), u(0, 0). The control objective in this paper is to ensure the
exponential convergence of u(0, t) and the uniform boundedness
of all states in the closed-loop system with the controller realized
by the hydraulic actuator.

Assumption 1. l(t) ∈ C2(0, ∞). The ascending process of the cable
elevator is concerned, which implies l(t) is decreasing. Moreover,
l(t) is bounded: 0 < l ≤ l(t) ≤ L, ∀t ≥ 0, where L denotes the
initial length of the cable and l := limt→∞l(t).

Assumption 2. The hoisting velocity l̇(t) is bounded:

− v̄ ≤ l̇(t) ≤ 0,

where v̄ which is the maximum hoisting velocity satisfies v̄ ≤
√
q.

Note: in the mining cable elevator, the value of
√
q = r/ρ =

7.5 × 103 is much larger than the value of the maximum hoisting
velocity v̄ = 18 m/s, thus v̄ <

√
q. According to the conclusion

in Gugat (2007a, 2007b), the fact that the derivative of the moving
boundary l̇(t) is smaller than the wave speed

√
q allows to prove a

well-posedness result for the initial boundary value problem (1)–
(3).

Assumption 3. The disturbance d(t) is of the general harmonic
form as

d(t) =

N∑
j=1

[āj cos(αjt) + b̄j sin(αjt)], (4)

where N is an arbitrary positive integer. The amplitudes āj, b̄j, and
frequencies αj are arbitrary and unknown constants.

Then the disturbance d(t) is bounded by constant lower and
upper bounds as |d(t)| ≤ D, where D is an arbitrary and unknown
constant.

Because the periodic disturbancemay cause resonance and thus
result to serious vibrations in the flexible/compliant structure, it
needs to be attenuated. The general harmonic form (4) covers
almost all periodic signals. Therefore, Assumption 3 is reasonable.

3. Disturbance estimator design

The disturbance estimation is a key step in active disturbance
rejection control. For the disturbed wave PDE (1)–(3) without
the second order term in (2), Wang, Tang, Pi, and Krstic (2017)
poses an estimator for the disturbance, based on which we build
a disturbance estimator in this section for (1)–(3) by using the
available measurements u̇(l(t), t) u(0, t) and utt (0, t).

Considering (2), the disturbance d(t) can be tracked by estimat-
ing the boundary state ux(0, t) due to utt (0, t) being measurable.
Thus we would like to build the disturbance estimator by copying
the form of the plant and achieving an error system, derivative
of which is still exponentially stable (because d(t) is connected
with ux(0, t)). We achieve the error system through building the
estimator including two subsystems ū(x, t) and d̄(x, t).

The ū-subsystem is built as

ūtt (x, t) = qūxx(x, t), (5)

ūx(0, t) = −
m
r
utt (0, t), (6)

ūx(l(t), t) = (1 − a1 l̇(t))U(t) + a1u̇(l(t), t) − a1ūt (l(t), t), (7)

where the constant a1 is to be determined later.
Note that substituting the relation u̇(l(t), t) = ut (l(t), t) +

l̇(t)ux(l(t), t) into (7) and recalling (3), (7) is equal to

ūx(l(t), t) = U(t) + a1(ut (l(t), t) − ūt (l(t), t)). (8)

The original plant (1)–(3) subtracts the ū-subsystem yielding the
following intermediate error system ú(x, t) = u(x, t) − ū(x, t)

útt (x, t) = qúxx(x, t), (9)

úx(0, t) = −
1
r
d(t), (10)
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Fig. 2. Block diagram of the disturbance estimator.

úx(l(t), t) = −a1út (l(t), t), (11)

where the disturbance d(t) shows up in (10) and the other bound-
ary is constructed as a damping type.

The following lemma shows the uniform boundedness of the
ú(x, t) system, which is crucial to ensure all internal subsystems
of the disturbance estimator are uniformly bounded. The proof is
shown in the Appendix.

Lemma1. For any initial values (ú(·, 0), út (·, 0))∈ H1(0, L)×L2(0, L),
defining the system norm

(∥út (·, t)∥2
+ ∥úx(·, t)∥2)1/2, (12)

where ∥ · ∥ denotes L2-norm, then the system (9)–(11) is uniformly
bounded in the sense of

sup
t≥0

(∥út (·, t)∥2
+ ∥úx(·, t)∥2) ≤

Vú(0)
θú1

,

where Vú(0) and θú1 are positive constants.

Considering (10), we build the other d̄-subsystem to exponen-
tially recover the intermediate error system ú and its derivative
út . The d̄-subsystem is designed based on a copy of the ú-system
(9)–(11) as:

d̄tt (x, t) = qd̄xx(x, t), (13)

d̄(0, t) = u(0, t) − ū(0, t), (14)

d̄x(l(t), t) = −a1d̄t (l(t), t), (15)

where (14) ensures d̄(0, t) = ú(0, t) which is an important condi-
tion to obtain that the final error system u(x, t) − ū(x, t) − d̄(x, t)
and its derivative are exponentially stable.

Based on the d̄-subsystem (13)–(15), we define the disturbance
estimation d̂(t) as

d̂(t) = −rd̄x(0, t). (16)

The process of estimating the disturbance is shown in Fig. 2.
Note that the cascaded PDE systems Eqs. (5)–(7) and (13)–(15)

are completely known, since it is determined by the input and
outputs of the original system (1)–(3), i.e., U(t), u̇(l(t), t), u(0, t)
and utt (0, t).

The following theorem tells us the disturbance estimation de-
fined in (16) can track the actual disturbance d(t) exponentially.

Theorem 1. The error d̃(t) between the disturbance estimation d̂(t)
(16) defined by (5)–(7), (13)–(15), and the actual disturbance d(t) is
exponentially convergent in the sense of the following equation:⏐⏐⏐d̃(t)⏐⏐⏐ =

⏐⏐⏐d(t) − d̂(t)
⏐⏐⏐ ≤ µd̃e

−σd̃t , ∀t ≥ 0,

where σd̃ > 0 depends on a1 and µd̃ is a positive constant which
depends on the initial values only.

Then we present two lemmas which are useful to complete
the proof of Theorem 1. The first lemma tells us that d̄(x, t) is
exponentially convergent to ú(x, t). The proof is shown in the
Appendix.

Lemma 2. For any initial values (ṽ(·, 0), ṽt (·, 0)) which belong to
H1(0, L) × L2(0, L), the error state ṽ(x, t) = ú(x, t) − d̄(x, t) is
exponentially stable in the sense of the norm(

∥ṽt (·, t)∥2
+ ∥ṽx(·, t)∥2

)1/2

, (17)

where the decay rate depends on a1.

Based on Lemma 2, the second lemma states that d̄t (x, t) is
exponentially convergent to út (x, t) = ut (x, t) − ūt (x, t), from
which d̄x(0, t) governed by (13)–(15) can be proved exponentially
convergent to úx(0, t) by using Cauchy–Schwarz inequality. The
proof is shown in the Appendix.

Lemma 3. If any initial values (e(·, 0), et (·, 0)) which belong to
H1(0, L) × L2(0, L), for some a1, the system e(x, t) = ṽt (x, t) is
exponentially stable in the sense of the norm

(
∥et (·, t)∥2

+ ∥ex(·, t)∥2
)1/2

. (18)

Then we obtain |ṽx(0, t)| ≤ µṽe−σd̃t , ∀t ≥ 0, where σd̃ > 0 and µṽ

is a positive constant which only depends on the initial values.

With Lemma 3, we can then prove Theorem 1.

Proof of Theorem 1. According to (16) and (10), the estimation
error of the proposed disturbance estimator can be obtained as

d̃(t) = d(t) − d̂(t) = −rúx(0, t) + rd̄x(0, t) = −r ṽx(0, t). (19)

According to Lemma 3,we can conclude Theorem1. Theorem1 can
be regarded as an independent contribution about exponentially
tracking disturbances in time-varying interval wave PDEs.

In addition to the exponential convergence result of d̃(t) proved
in Theorem 1, moreover, we obtain the exponential convergence
estimates of ḋ(t), d̈(t) in the following lemma by using the follow-
ing assumption. The proof is shown in the Appendix.

Assumption 4. The hoisting acceleration l̈(t) = 0.

Assumption 4 is reasonable because the hoisting trajectory l(t)
can be considered as the uniform motion.

Lemma 4. For any initial values (ṽt (·, 0), ṽxx(·, 0)) ∈ H3(0, L) ×

H2(0, L), the derivatives ˙̃d(t), ¨̃d(t) of the estimation error d̃(t) are
exponentially convergent to zero.

Furthermore, we can estimate each sinuous component in the
harmonic disturbance (4) by using the disturbance estimation (16)
in the following steps.

Define

Z(t)2N×1 =
[
ā1 cos(α1t), b̄1 sin(α1t), . . . ,

āN cos(αN t), b̄N sin(αN t)
]T , (20)

the disturbance (4) can be written as

Z̈(t) = −AzZ(t), d(t) = CzZ(t), (21)

where

Az = diag
[(

α2
1 0
0 α2

1

)
, . . . ,

(
α2
N 0
0 α2

N

)]
,

Cz = [1, . . . , 1]1×2N .
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According to the exponentially convergent disturbance estima-
tion d̂(t) = −rd̄x(0, t) in Theorem 1, the matrix Az consisting
of the disturbance frequency components αj is known, because
the frequency components of the disturbance estimation d̂(t) are
considered to be equal to those of the actual periodic disturbance
d(t) after eliminating the high-frequency noisewith an appropriate
cut-off frequency, which can be seen in Fig. 5. In practice, we
can use the real-time spectrum analyzer to obtain the frequency
components αj, j = 1, 2, . . . ,N by analyzing the signal −rd̄x(0, t).

Define Y (t) = [Ż(t)T , Z(t)T ]T , (21) can be written as

Ẏ (t) = ÂzY (t), d(t) = ĈzY (t), (22)

with

Âz =

(
0 −Az
I 0

)
4N×4N

, Ĉz = [0, Cz]1×4N , (23)

where I is an identity matrix with the appropriate dimension and
(Âz, Ĉz) is observable.

Using the disturbance estimation d̂(t) defined in (16), we can
design an observer to estimate the state Y (t) including sinuous
components of the harmonic disturbance. The observer is consid-
ered as
˙̂Y (t) = Âz Ŷ (t) + Lz(d̂(t) − ŷ(t)), ŷ(t) = Ĉz Ŷ (t), (24)

where Lz is designed to make Âz − Lz Ĉz Hurwitz.
Subtracting (24) from (22), we obtain the error system Ỹ (t) =

Y (t) − Ŷ (t):
˙̃Y (t) = (Âz − Lz Ĉz)Ỹ (t) + Lz d̃(t), (25)

ỹ(t) = Ĉz Ỹ (t). (26)

The following lemma holds.

Lemma 5. The error Ỹ (t)-system (25)–(26) is exponentially stable.

Proof. According to the exponential convergence of d̃(t) proved in
Theorem 1, recalling Âz − Lz Ĉz is Hurwitz, it is straightforward to
prove the exponential stability of the Ỹ (t)-system (25)–(26).

Remark 3. According to Lemma 5, defining

Ẑ(t) = Ĉ Ŷ (t), (27)

with Ĉ = [0, diag(Cz)]2N×4N , we can state that Z̃(t) = Z(t)− Ẑ(t) =

ĈY (t) − Ĉ Ŷ (t) = Ĉ Ỹ (t) is exponentially convergent to zero, which
yields,

d
⏐⏐⏐Z̃(t)⏐⏐⏐2
dt

= −σZ̃

⏐⏐⏐Z̃(t)⏐⏐⏐2, (28)

where σZ > 0 depends on the exponential decay rate of the system-Ỹ ,
and || denotes Euclidean norm.

4. State observer design

With the disturbance estimator in Section 3, we can then design
a state observer to reconstruct the distributed states. Recall that
the control objective in this paper is to ensure the exponential
convergence of u(0, t). In addition to the challenges from the anti-
collocated disturbance, the second order boundary condition (2)
which is also anti-collocated with the control input in the system
(1)–(3) poses difficulties to the control problem as well. A new
variable X(t) = [u(0, t), ut (0, t)]T is introduced to rewrite the
system (1)–(3) as a PDE–ODE coupled (Tang & Xie, 2011; Zhou &
Tang, 2012) system:

Ẋ(t) = AX(t) + Bux(0, t) +
1
r
Bd(t), (29)

Fig. 3. Block diagram of the state observer.

utt (x, t) = quxx(x, t), (30)
u(0, t) = CX(t), (31)

ux(l(t), t) = U(t), (32)

with

A =

[
0 1
0 0

]
, B =

r
m

[
0

−1

]
, C = [1, 0], (33)

where the boundary order is reduced and CB = 0. Note that the
pair (A, B) is stabilizable and the pair (A, C) is observable.

In order to facilitate the design of observer-based output feed-
back control which depends on the construction of the observer,
a copy of the plant (29)–(32) is used to build the observer by
using the available measurements u(0, t), u̇(l(t), t). Consider the
observer as:

˙̂X(t) = AX̂(t) + Bûx(0, t)

+ L̄(u(0, t) − CX̂(t)) − Bd̄x(0, t), (34)
ûtt (x, t) = qûxx(x, t), (35)
û(0, t) = u(0, t), (36)

ûx(l(t), t) = (1 − a2 l̇(t))U(t) + a2u̇(l(t), t) − a2ût (l(t), t), (37)

where d̄x(0, t) is governed by (13)–(15). a2 is a positive damping
gain and L̄ is chosen to make A − L̄C Hurwitz.

Note that substituting the relation u̇(l(t), t) = ut (l(t), t) +

l̇(t)ux(l(t), t) into (37) and recalling (3), (37) is equal to

ûx(l(t), t) = U(t) + a2(ut (l(t), t) − ût (l(t), t)). (38)

Block diagram of the state observer is shown in Fig. 3.
Define the observer errors as

ũ(x, t) = u(x, t) − û(x, t), X̃(t) = X(t) − X̂(t). (39)

Then the observer error system is

˙̃X(t) = (A − L̄C)X̃(t) + Bũx(0, t) +
1
r
Bd̃(t), (40)

ũtt (x, t) = qũxx(x, t), ũ(0, t) = 0, (41)
ũx(l(t), t) = −a2ũt (l(t), t). (42)

Define H = H2(0, L) × H1(0, L). The following lemma holds,
which tells the errors of the observer (34)–(37) are exponentially
converge to zero. The proof is shown in the Appendix.

Lemma 6. For any initial values (ũ(·, 0), ũt (·, 0)) ∈ H, the
(ũ(x, t), X̃(t))-system (40)–(42) is well-posed and exponentially sta-
ble in the sense of the norm(ũt (·, t)

2
+

ũx(·, t)
2

+

⏐⏐⏐X̃(t)⏐⏐⏐2 +

⏐⏐⏐d̃(t)⏐⏐⏐2) 1
2

, (43)

where |·| denotes the Euclidean norm.
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According to Lemma 6, we can state that the observer (34)–(37)
exponentially converges to the original system (1)–(3).

Theorem 2. For any initial values (û(·, 0), ût (·, 0)) ∈ H, (u(x, 0),
ut (x, 0)) ∈ H, the observer (34)–(37) exponentially converges to the
original system (1)–(3) in the sense of the norm(ut (·, t) − ût (·, t)

2
+

ux(·, t) − ûx(·, t)
2

+ |u(0, t) − x̂1(t)|
2
+ |ut (0, t) − x̂2(t)|

2
)

1
2 . (44)

where [x̂1(t), x̂2(t)]T = X̂(t).

Proof. Considering Lemma 6, we haveut (·, t) − ût (·, t)
2

+
ux(·, t) − ûx(·, t)

2

+ |u(0, t) − x̂1(t)|
2
+ |ut (0, t) − x̂2(t)|

2

≤
ũt (·, t)

2
+

ũx(·, t)
2

+

⏐⏐⏐X̃(t)⏐⏐⏐2 +

⏐⏐⏐d̃(t)⏐⏐⏐2 ≤ µ0e−σũt ,

where the decay rate σũ > 0 and the positive constant µ0 depends
on the initial values

ut (·, 0) − ût (·, 0)
2,

ux(·, 0) − ûx(·, 0)
2,

|u(0, 0) − x̂1(0)|
2, |ut (0, 0) − x̂2(0)|

2
, |d(0) − d̂(0)|

2
.

The proof is completed.

5. Output feedback control design

We have built the disturbance estimator in Section 3 and the
state observer in Section 4 with themeasurements u(0, t), utt (0, t)
and u̇(l(t), t). In this section, we would like to design an output
feedback control law U(t) by using the state and disturbance in-
formation recovered from the state observer and the disturbance
estimator. The objective is to attenuate the disturbance at the end
x = 0 and regulate exponentially u(0, t) by using the control input
U(t) at the other end x = l(t). Because of (36), the objective can be
achieved by guaranteeing the exponential convergence of û(0, t)
in the state observer via designing a control input at the other
boundary x = l(t).

In the process of the controller design, wewould like to convert
the system (34)–(37) to an exponentially stable target PDE–ODE
systemwithout the disturbance terms. This conversion is achieved
in two stages. In Section 5.1, the anti-collocated disturbance terms
are moved to the other boundary collocated with the controller
and û(0, t) = ẑ(0, t) is ensured via the first invertible transforma-
tion. In Section 5.2, the collocated disturbance terms are canceled
and the exponentially stable target PDE–ODE coupled system is
achieved via the second backstepping transformation.

5.1. Conversion from the system (34)–(37) to an intermediate system

We would like to transform the system (34)–(37) into the
following intermediate system:
˙̂X(t) = AX̂(t) + Bẑx(0, t) + L̄(u(0, t) − CX̂(t))

−
1
r
Bd̃(t) +

1
r
BCz Z̃(t), (45)

ẑtt (x, t) = qẑxx(x, t) + η(x, t), (46)
ẑ(0, t) = û(0, t), (47)

ẑx(l(t), t) = U(t) + a2ũt (l(t), t) + ϑ ′(l(t))Ẑ(t), (48)

where η(x, t) and ϑ(x) will be defined later.
Note that the control and the anti-collocated disturbance are

intentionally set to be collocated and ẑ(0, t) is set to be equal to
û(0, t) in the intermediate system (45)–(48). In the later derivation,

the collocated disturbance can be then easily canceled through
control input design. Moreover, we can get the exponential stabil-
ity of the intermediate system (45)–(48) via designing a control law
through the backstepping in the next stage, so that û(0, t) can be
exponentially convergent to zero considering (47).

The transformation is defined as:

ẑ(x, t) = û(x, t) + ϑ(x)Ẑ(t). (49)

(49) can be written as

ẑ(x, t) = û(x, t) + ϑ(x)Z(t) − ϑ(x)Z̃(t). (50)

Taking the second partial derivative of (50) with respect to x and t
respectively, we get

ẑtt (x, t) − qẑxx(x, t)

= −
(
ϑ(x)Az + qϑ ′′(x)

)
Z(t) + qϑ ′′(x)Z̃(t) − ϑ(x) ¨̃Z(t). (51)

Define η(x, t) in (46) as

η(x, t) = qϑ ′′(x)Z̃(t) − ϑ(x) ¨̃Z(t)

= [qϑ ′′(x)Ĉ − ϑ(x)Ĉ(Âz − Lz Ĉz)2]Ỹ (t)

− ϑ(x)Ĉ(Âz − Lz Ĉz)Lz d̃(t) − ϑ(x)ĈLz
˙̃d(t), (52)

where Z̃(t) = Ĉ Ỹ (t) and (25) are used.
Then we obtain that ϑ(x) satisfies the ODE:

qϑ ′′(x) + ϑ(x)Az = 0, (53)

ϑ ′(0) =
1
r
Cz, (54)

ϑ(0) = 0, (55)

where (53) is obtained by comparing (51) with (46), and (54) is
obtained via comparing (34) with the result from substituting (49)
into (45) with (16), (21). For the boundary condition (47) to hold,
the condition (55) is obtained.

Considering (53)–(55), the solution of ϑ(x) can be obtained as

ϑ(x) =
Cz

r

√
q
Az

sin
(√

Az

q
x
)

. (56)

5.2. Conversion from the intermediate system (45) –(48) to a target
system

In Section 5.1, we complete the conversion from the state ob-
server (34)–(37) to the intermediate system (45)–(48) where the
collocated disturbance can be easily canceled and ẑ(0, t) = û(0, t).
Next, we would like to convert the intermediate system (45)–(48)
to a target system via the PDE backstepping approach (Krstic,
2009).

The backstepping transformation is formulated as:

ŵ(x, t) = ẑ(x, t) +

∫ x

0
γ (x, y)ẑ(y, t)dy

+

∫ x

0
h(x, y)ẑt (y, t)dy + β(x)X̂(t), (57)

where the kernel functions γ (x, y), h(x, y) and β(x) in (57) are to
be determined.

The target system is

˙̂X(t) = (A + BK )X̂(t) + Bŵx(0, t) −
1
r
Bd̃(t)

+ (L̄C − Bγ (0, 0)C)X̃(t) +
1
r
BCz Z̃(t), (58)

ŵtt (x, t) = qŵxx(x, t) − f̄1(x)X̃(t) + η̄(x, t), (59)

ŵ(0, t) = CX̃(t), (60)
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ŵx(l(t), t) = −a3ŵt (l(t), t), (61)

where a3 in (61) is a positive damping gain and K in (58) is chosen
to make A + BK Hurwitz. f̄1(x) in (59) is defined as

f̄1(x) = β(x)L̄C(A − L̄C) + β(x)AL̄C + qγy(x, 0)C

+ qhy(x, 0)CL̄C + qhy(x, 0)CA.

η̄(x, t) in (59) is

η̄(x, t) = η(x, t) +

∫ x

0
γ (x, y)η(y, t)dy +

∫ x

0
h(x, y)ηt (y, t)dy.

(62)

Applying Cauchy–Schwarz inequality into (62), we have

|η̄(x, t)| ≤ max
0≤x≤L

{|C2(x)|, |C3(x)|, |C4(x)|, |C5(x)|}

×

(⏐⏐⏐Ỹ (t)⏐⏐⏐ +

⏐⏐⏐d̃(t)⏐⏐⏐ +

⏐⏐⏐ ˙̃d(t)⏐⏐⏐ +

⏐⏐⏐ ¨̃d(t)⏐⏐⏐)
= Cmaxη̄m(t), (63)

where (52) is used and C2(x), C3(x), C4(x), C5(x) are some bounded
gains. Cmax is a positive constant.

Recalling Theorem1, Lemma4 and Lemma5,we have the signal
η̄m(t) is exponentially convergent to zero, which yields

˙̄ηm(t)
2

= −ση̄η̄m(t)2, (64)

where ση̄ > 0. We thus get η̄(x, t) is exponentially convergent via
(63).

The following lemma tells us the target system (58)–(61) is
well-posed and exponentially stable. The proof is shown in the
Appendix.

Lemma 7. For any initial values (ŵ(·, 0), ŵt (·, 0)) ∈ H, the target
system (58)–(61) is well-posed and exponentially stable in the sense
of the norm(ŵt (·, t)

2
+

ŵx(·, t)
2

+

⏐⏐⏐X̂(t)⏐⏐⏐2
+

⏐⏐η̄m(t)
⏐⏐2 +

⏐⏐⏐d̃(t)⏐⏐⏐2 +

⏐⏐⏐Z̃(t)⏐⏐⏐2) 1
2 . (65)

By matching the system (45)–(48) with the system (58)–(61)
through (57), we obtain the conditions for the kernels to be deter-
mined in the transformation (57) as:

γxx(x, y) = γyy(x, y),
d
dx

γ (x, x) = 0, (66)

γ (x, 0) =
1
q
β(x)AB + hy(x, 0)CB, (67)

hxx(x, y) = hyy(x, y), (68)

h(x, 0) =
1
q
β(x)B,

d
dx

h(x, x) = 0, (69)

β ′′(x) =
1
q
β(x)A2

+ γy(x, 0)C + hy(x, 0)CA, (70)

β ′(0) = K − γ (0, 0)C − h(0, 0)CA, β(0) = −C, (71)

which is a coupled system of an ODE and two PDEs. According to
(66)–(71), the kernel functions γ (x, y), h(x, y) and β(x) in (57) can
be computed as

γ (x, y) =
1
q

[
−C Λ − K

]
eD(x−y)

[
I
0

]
AB, (72)

h(x, y) =
1
q

[
−C Λ − K

]
eD(x−y)

[
I
0

]
B, (73)

β(x) =
[
−C Λ − K

]
eDx

[
I
0

]
, (74)

where I denotes the identity matrix of the appropriate dimension
and D, Λ are defined as

D =

⎡⎢⎣0
1
q
A2

I −
1
q
(BCA + ABC)

⎤⎥⎦ , Λ =
1
q
CABC .

Similarly, the inverse transformation of (57) can be obtained.
For the boundary condition (61) to hold, the controller U(t) can

be obtained as

U(t) =
1
c1

(
c2ẑt (l(t), t) + f3(l(t))ẑ(l(t), t)

+ f4(l(t))ẑx(0, t) + f5(l(t))ẑ(0, t) + f6(l(t))X̂(t)

+

∫ l(t)

0
f7(l(t), x)ẑ(x, t)dx +

∫ l(t)

0
f8(l(t), x)ẑt (x, t)dx

)
− a2ũt (l(t), t) − ϑ ′(l(t))Ẑ(t), (75)

where

c1 = 1 − a3KB, c2 = −a3, (76)
f3(l(t)) = γ (l(t), l(t)) − qhxy(l(t), l(t)), (77)
f4(l(t)) = a3qhx(l(t), 0) − a3β(l(t))B, (78)
f5(l(t)) = qa3hxy(l(t), 0), (79)
f6(l(t)) = βx(l(t)) + a3β(l(t))A, (80)
f7(l(t), x) = γx(l(t), x) + qhxyy(l(t), x), (81)
f8(l(t), x) = hx(l(t), x) + a3γ (l(t), x). (82)

The following lemma tells us that the closed-loop system-(ẑ, X̂)
is exponentially stable, which will be used in the proof of the
exponential convergence of u(0, t) in the original system because
the (ẑ, X̂) system and the original system are connected at x = 0.

Lemma 8. For any initial values (ẑ(·, 0), ẑt (·, 0)) ∈ H, the system-
(ẑ, X̂) consisting of the plant (45)–(48) and the control law (75) is
exponentially stable in the sense of the norm(

∥ẑt (·, t)∥2
+ ∥ẑx(·, t)∥2

+

⏐⏐⏐X̂(t)⏐⏐⏐2)1/2

.

Proof. Based on Lemma 7 and the invertibility and continuity of
the transformation (57), the proof is straightforward.

5.3. Stability of closed-loop system

Controller (75) can be written by û and the available measure-
ments as

U(t) =
1

(1 + a2 |̇l(t)|)

[
1
c1

(
c2ût (l(t), t) + f3(l(t))û(l(t), t)

+ f4(l(t))ûx(0, t) + f5(l(t))û(0, t)

+ f6(l(t))X̂(t) +

∫ l(t)

0
f7(l(t), x)û(x, t)dx

+

∫ l(t)

0
f8(l(t), x)ût (x, t)dx

)
− a2u̇(l(t), t)

+ a2ût (l(t), t) + rL(l(t))ĈLz d̄x(0, t)

− [P(l(t)) + L(l(t))(Âz − Lz Ĉz)Ĉ]Ẑ(t)
]
, (83)

where

P(l(t)) =

[
f3(l(t))

c1
ϑ(l(t)) +

f4(l(t))
c1
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+

∫ l(t)

0

f7(l(t), x)
c1

ϑ(x)dx + ϑ ′(l(t))
]
, (84)

L(l(t)) =

[
c2
c1

ϑ(l(t)) +

∫ l(t)

0

f8(l(t), x)
c1

ϑ(x)dx
]
. (85)

All signals required in the control law (83) are obtained from the
measurable boundary quantities u̇(l(t), t), u(0, t) and utt (0, t). In
detail, u̇(l(t), t), u(0, t) are used to construct the observer (34)–(37)
to estimate the distributed states u(x, t) and X(t), i.e., to obtain
û(x, t), X̂(t). The measurements u̇(l(t), t), u(0, t) and utt (0, t) are
also used to build the disturbance estimator (5)–(7) and (13)–(15)
to obtain the disturbance estimation d̂(t) = −rd̄x(0, t) which is
used to get Ẑ(t) based on (24)–(27). In practice, the estimator and
the observer can be calculated by using the finite discretization
method,where different spatial steps are to be chosen by consider-
ing the tradeoff between the model accuracy and the computation
speed in different cases and the time step depends on the sample
period of the data acquisition.

Considering the controller (83), which uses the information
from the disturbance estimator in Section 3 and the state observer
in Section 4, the closed-loop system is built as

utt (x, t) = quxx(x, t), (86)

ux(0, t) = −
m
r
utt (0, t) −

1
r
d(t), (87)

ux(l(t), t) = U(t), (88)
˙̂X(t) = AX̂(t) + Bûx(0, t) + L̄(u(0, t) − CX̂(t)) − Bd̄x(0, t), (89)
ûtt (x, t) = qûxx(x, t), (90)
û(0, t) = u(0, t), (91)

ûx(l(t), t) = (1 − a2 l̇(t))U(t) + a2u̇(l(t), t) − a2ût (l(t), t), (92)

d̄tt (x, t) = qd̄xx(x, t), d̄(0, t) = u(0, t) − ū(0, t), (93)

d̄x(l(t), t) = −a1d̄t (l(t), t), (94)

ūtt (x, t) = qūxx(x, t), ūx(0, t) = −
m
r
utt (0, t), (95)

ūx(l(t), t) = (1 − a1 l̇(t))U(t) + a1u̇(l(t), t) − a1ūt (l(t), t), (96)
˙̂Y (t) = (Âz − Lz Ĉz)Ŷ (t) − Lzrd̄x(0, t), (97)

Ẑ(t) = Ĉ Ŷ (t), (98)

where U(t) is shown in (83)–(85). X̂(t), Ẑ(t) used in U(t) are esti-
mations of X(t) = [u(0, t), ut (0, t)]T and Z(t) (20) respectively.

We present next the main theorem of this paper.

Theorem 3. The closed-loop system including the plant (86)–(88)
with the unmatched disturbance d(t), the disturbance estimator (93)–
(96) and (97)–(98), the state observer (89)–(92) and the controller
(83), has the following properties:

(1) The closed-loop system is well-posed.
(2) There exist positive constants µ1 and σ such that the output

state u(0, t) of the closed-loop system is exponentially conver-
gent to zero in the sense of

|u(0, t)| ≤ µ1e−σ t , ∀t ≥ 0.

(3) All states in the closed-loop system are uniformly bounded in the
sense of

sup
t≥0

[ ∫ l(t)

0

(
u2
t (x, t) + u2

x (x, t) + û2
t (x, t)

+ û2
x (x, t) + d̄2t (x, t) + d̄2x (x, t) + ū2

t (x, t)

+ ū2
x (x, t)

)
dx +

⏐⏐⏐X̂(t)⏐⏐⏐2 +

⏐⏐⏐Ŷ (t)⏐⏐⏐2 +

⏐⏐⏐Ẑ(t)⏐⏐⏐2] < ∞.

(99)

(4) The controller U(t) (83) is bounded in the closed-loop system
in the sense of

sup
t≥0

|U(t)| < ∞.

Proof.
Proof of (1): It is the direct consequence of the equivalence be-
tween the target system and the closed-loop system by recalling
Lemmas 6 and 7.
Proof of (2): According to (47) and (91), we get the fact u(0, t) =

û(0, t) = ẑ(0, t). This together with Lemma 8 from which we can
state that ẑ(0, t) is exponentially convergentwith the decay rate σ ,
gives the property (2).
Proof of (3): According to Assumption 3 and Theorem 1, we have
d̂ = −rd̄x(0, t) is bounded. Then Ẑ(t) obtained from (98) is
bounded because Âz − Lz Ĉz is Hurwitz in (97) which shows
the boundedness of Ŷ (t) considering the boundedness of d̂ =

−rd̄x(0, t). Together with Lemma 8 and the invertible transforma-
tion (49), we obtain that (û(x, t), X̂(t)) is uniformly bounded in the
sense of (99). For the sake of brief, whenwemention boundedness,
it refers to the corresponding state norms in (99). Then from (39)
with Lemma 6, we can state that u(x, t) is uniformly bounded.
Based on Lemma 1 which proves the uniform boundedness of the
system ú(x, t) and Lemma 2whichmeans the exponential stability
of ṽ(x, t) system, we can get d̄(x, t) is uniformly bounded consider-
ing ṽ(x, t) = ú(x, t)− d̄(x, t). Then we can obtain that ū(x, t) is also
uniformly bounded considering ṽ(x, t) = u(x, t)− ū(x, t)− d̄(x, t).
Therefore, all subsystems in the closed-loop system (86)–(98) are
uniformly bounded as (99). Then we get the property (3).
Proof of (4): In the proof of the property (3), we have proved
the boundedness of all states in the closed-loop system in the
sense of (99). Now we prove the boundedness of the con-
troller U(t) (83). Considering (83) and the property (3) in
Theorem 3, we know the boundedness analysis of four signals
ût (l(t), t), ûx(0, t), ux(l(t), t), ut (l(t), t) in (83) need to be con-
ducted, which can be obtained by producing L2 estimates of
uxx(x, t), uxt (x, t), ûxx(x, t), ûxt (x, t), that is, ∥ũxx(·, t)∥, ∥ũxt (·, t)∥
and ∥ûxx(·, t)∥, ∥ûxt (·, t)∥.

Then we present two lemmas. The first one shows the bounded
estimates in terms of ∥ûxx(·, t)∥2

+ ∥ûxt (·, t)∥2. The proof is shown
in the Appendix. The second one gives the bounded estimates in
terms of ∥ũxx(·, t)∥2

+ ∥ũxt (·, t)∥2.

Lemma 9. If any initial values (û(·, 0), ût (·, 0)) ∈ H, the system
û(x, t) is bounded in the sense of

ûxx(·, t)
2

+
ûxt (·, t)

2.

Through the similar process in the proof of Lemma 9, it is
straightforward to prove Lemma 10.

Lemma 10. If any initial values (ũ(·, 0), ũt (·, 0)) ∈ H, the system
ũ(x, t) is bounded in the sense of

ũxx(·, t)
2

+
ũxt (·, t)

2.

Recalling the bounded estimate for the norm ∥ûxx(·, t)∥ +

∥ûxt (·, t)∥ proved in Lemma 9 and using Sobolev inequality, we
obtain that ûx(l(t), t), ûx(0, t) and ût (l(t), t) are bounded.

Similarly, using Lemma 10, we obtain the boundedness of
ũx(l(t), t), ũt (l(t), t).

According to the boundedness of ûx(0, t), ûx(l(t), t), ût (l(t), t),
ũx(l(t), t), ũt (l(t), t), we can obtain the boundedness of the four
signals ût (l(t), t), ûx(0, t), ux(l(t), t), ut (l(t), t) required for proving
that U(t) is bounded. Then we get the property (4).

Then we can conclude Theorem 3.
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Table 2
Simulation parameters of the mining elevator.

Parameters L r ρ q m

Values 2000 0.48 × 107 8.1 5.9 × 105 15000

Fig. 4. The target hoisting trajectory l(t).

6. Simulation

The system parameters of the mining cable elevator used in the
simulation are shown in Table 2. Consider the cage subject to an
airflow disturbance described as

d(t) =150 sin(0.3t) + 100 sin(0.4t)
+ 200 cos(0.2t) + 140 cos(0.25t). (100)

The simulation is performed based on a priori-known l(t) in Fig. 4,
which is considered as a monotonically decreasing curve from
2000 m to 200 m with the maximum velocity v̄ = 15 s during
the total hoisting time 150 s.

The control force is multiplying the constant r and (83),
with the gain functions (76)–(82) and (84)–(85) where kernels
γ (x, y), h(x, y), β(x), ϑ(x) are defined in (72)–(74) and (56) respec-
tively. In the controller, the states û(x, t), X̂(t) are defined by the
state observer (89)–(92). d̄x(0, t) is defined by the disturbance
estimator (93)–(96), Ẑ(t) is defined by (97)–(98). Constant control
parameters required in the controller are shown as following. K =

[k1, k2] are chosen as [0.0012, 0.011]. L̄ = [l1, l2] are chosen as
[1.5, 1] and Lz = [1, · · · , 1]1×16. Other control parameters are
a1 = 0.022, a2 = 0.07, a3 = 0.01. The PDE on the time-
varying domain [0, l(t)] is converted to the one on the fixed domain
[0, 1] with time-varying coefficients via introducing ξ̌ =

x
l(t) , and

then the simulation is conducted based on the finite difference
method with the time step and the space step as 0.001 and 0.05
respectively.

By using the available boundary measurements u(0, t), utt (0, t)
and u̇(l(t), t), the disturbance estimator (93)–(96) can be built with
the initial conditions d̄(x, 0) = 0 and ū(x, 0) = 0. Fig. 5 shows that
the estimation from the disturbance estimator (93)–(96) can track
the actual unknown disturbance (100) with fast tracking speed.
Note that in practice the high frequency noise at the beginning of
the estimation process can be eliminated with a low-pass filter by
setting an appropriate cut-off frequency. The error between the
estimated and actual values of the disturbance (100) is shown in
Fig. 6. The estimated variables of the distributed states are obtained
by the proposed observer (34)–(37) with available boundary mea-
surements u(0, t) and u̇(l(t), t). The initial errors of the observer
are defined as 0.005 m. Because the locations of the actuator and
the sensor are at the opposite boundaries, the estimation of the
state at the midpoint x = l(t)/2 is most challenging due to its
accessibility. Fig. 7 shows the observer error at the midpoint of the
cable converges to zero quickly, which implies that the estimation
from the state observer (34)–(37) can reconstruct their actual
distributed states.

Fig. 5. The disturbance estimation d̂(t) = −rd̄x(0, t) and the actual disturbance d(t)
(100) (red dashed).

Fig. 6. The estimation error d̃(t) = d(t) − d̂(t) between the actual disturbance d(t)
(100) and the disturbance estimation d̂(t) = −rd̄x(0, t).

Fig. 7. The observer error ũ(l(t)/2, t) at the midpoint of the cable.

The closed-loop responses under the proposed control law (83)
and the proportional–derivative (PD) control lawwhich is classical
in industries are examined, to compare their performance on sup-
pression of the axial vibrations at the cage. Consider the PD control
law:

Upd(t) = kpu(l(t), t) + kdu̇(l(t), t), (101)

where kp, kd are gain parameters. The values of kp, kd are tuned
to attain the efficient control performance. Here we choose kp =

700, kd = 14000. From Fig. 8, we can observe the oscillation
appearing at the cage is becoming larger and larger because of
the disturbance. Fig. 9 shows both the proposed output-feedback
control law and the PD control can suppress the enlargement of the
vibration displacement. Moreover, the proposed control law can
regulate the vibration displacement u(0, t) of the cage to zero with
faster convergence and less overshoot despite of the disturbance
at the cage. In addition, according to Fig. 10, we can see that the
proposed control law also has better control performance for the
interval state such as themidpoint u(l(t)/2, t) of the cable. Itmeans
states in the interval can be uniformly bounded. Fig. 11 shows
that the output feedback control input in the closed-loop system
is uniformly bounded. Note that the control input is not zero at the
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Fig. 8. The open loop response u(0, t) of the plant (1)–(3) under the disturbance
(100) at x = 0.

Fig. 9. The output responses u(0, t) of the closed-loop system (86)–(98) under the
disturbance (100) at x = 0 with the proposed output-feedback controller (83)
(black line) and PD controller (101) (red dashed).

Fig. 10. The responses u(l(t)/2, t) of the closed-loop system (86)–(98) under the
disturbance (100) at x = 0 with the proposed output-feedback controller (83)
(black line) and PD controller (101) (red dashed).

Fig. 11. The output feedback controller.

final moment t = 150 s because the disturbance in Fig. 5 is not
zero at that time, so the attenuation behavior of the controller is
continuing to ensure the convergence of the controlled states.

The model parameter error between the actual plant and the
nominal plant often appears in practice. In order to test the ro-
bustness of the proposed controller to the model parameter error,
we change some plant parameters with respect to their nominal

Fig. 12. The output responses u(0, t) of the closed-loop system (86)–(98) under
the disturbance (100) at x = 0 with the proposed output-feedback controller (83)
under the model error (black line) and without the model error (blue dashed), and
the PD controller (101) (red dashed).

Fig. 13. The output responses u(l(t)/2, t) of the closed-loop system (86)–(98) under
the disturbance (100) at x = 0 with the proposed output-feedback controller (83)
under the model error (black line) and without the model error (blue dashed), and
the PD controller (101) (red dashed).

values in Table 2, such as r = 0.56 × 107, ρ = 8.5, q = r/ρ =

6.6× 105 andM = 15 500. These plant parameters are considered
as actual plant parameters and those in Table 2 are nominal plant
parameters, and the difference between them thus is the model
error. For the actual plant, applying the proposed controller based
on the nominal plant parameters (under the model error), the
proposed controller based on the actual plant parameters (without
the model error), and the PD controller with new control gains
kp = 630, kd = 15 000 which are tuned to attain efficient con-
trol performance, the comparing results are presented in Figs. 12
and 13 which show the vibration responses of the cage and the
midpoint of the cable respectively. We can observe that although
the vibration amplitudes under the proposed controller with the
model error are slightly larger than the vibration amplitudes under
the proposed controller without the model error before 65 s, both
of them have the similar good results as time goes on and have the
better performance than the standard PD controller.

7. Conclusions and future work

In this paper, we propose an output feedback control law for a
wave PDE on a time-varying interval subject to a general harmonic
disturbance with unknown amplitudes and frequencies, which is
anti-collocated with the control input. The controller using the
information from the state observer and the disturbance estimator
actuates at one end x = l(t) to attenuate the disturbance at the
other end x = 0 and exponentially regulate the uncontrolled
boundary state u(0, t). Exponential convergence of u(0, t) and
uniform boundedness of all states in the closed-loop system are
proved by the Lyapunov analysis. Physically the control system can
be used in cable elevators to attenuate disturbances and suppress
vibrations of a cage lifted up by a time-varying length cable.
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In the future, the synchronism control of motion dynamics l(t)
and vibration dynamics u(x, t) will be studied, where the con-
straint on the control input will be considered in the controller
design (Isidori, Marconi, & Serrani, 2012). The distributed dis-
turbances on the cable will also be considered in the estimator
and controller design. Another interesting topic is how to obtain
the optimal convergence rate by setting the feedback gains in the
closed-loop system, which will also be studied.

Appendix

Proof of Lemma 1. Similar as in Krstic, Guo, Balogh, and
Smyshlyaev (2008), we employ a Lyapunov function

Vú(t) =
1
2

út (·, t)
2

+
q
2

úx(·, t)
2

+ δú

∫ l(t)

0
(1 + x)úx(x, t)út (x, t)dx, (102)

where the parameter δú is to be determined and needs to at least
satisfy 0 < δú < 1/(1 + L)min{1, q} to guarantee the positive
definiteness of Vú(t). DefiningΩú(t) as the square of the norm (12),
we can get the inequality

θú1Ωú(t) ≤ Vú(t) ≤ θú2Ωú(t), (103)

where

θú1 =
1
2
[min{1, q} − δú(1 + L)] > 0,

θú2 =
1
2
[max{1, q} + δú(1 + L)] > 0.

Taking the derivative of Vú(t) along the system (9)–(11), apply-
ing Young’s inequality and 0 < l(t) ≤ L, choosing

0 < δú <
1

1 + L
min

{
1, q,

2a1q
1 + qa12

,
1 + qa21
2a1

}
, (104)

we obtain

V̇ú ≤ −λúVú + M, (105)

where λú = δú/(2θú2) and M = 1/r2[1/(2r1) − δú/2]D
2
with

0 < r1 < δú/q2.
Multiplying both sides of (105) by eλút , we obtain

d(Vúeλút )
dt

≤ Meλút . (106)

Integration of (106) yields

Ωú(t) ≤
1

θú1
Vú(t) ≤

1
θú1

(Vú(0) −
M
λú

)e−λút +
M

θú1λú
,

which impliesΩú(t) is uniformly bounded by Vú(0)/θú1. Moreover,
it is uniformly ultimately boundedwith ultimate boundM/(θú1λú).
The proof is completed.

Proof of Lemma 2. According to (9)–(11) and (13)–(15), the
system ṽ is governed by

ṽtt (x, t) = qṽxx(x, t), (107)
ṽ(0, t) = 0, ṽx(l(t), t) = −a1ṽt (l(t), t). (108)

We employ a Lyapunov function

Vṽ(t) =
1
2

∥ṽt (·, t)∥2
+

q
2

∥ṽx(·, t)∥2

+ δṽ

∫ l(t)

0
(1 + x)ṽx(x, t)ṽt (x, t)dx, (109)

where the parameter δṽ is to be determined and needs to at least
satisfy 0 < δṽ < 1/(1 + L)min{1, q} to guarantee the positive

definiteness of Vṽ(t). DefiningΩṽ(t) as the square of the norm (17),
then we can get the inequality

θṽ1Ωṽ(t) ≤ Vṽ(t) ≤ θṽ2Ωṽ(t), (110)

where

θṽ1 =
1
2
[min{1, q} − δṽ(1 + L)] > 0,

θṽ2 =
1
2
[max{1, q} + δṽ(1 + L)] > 0.

Taking the derivative of Vṽ(t) along the trajectory of the system
(107)–(108), we obtain

V̇ṽ ≤ −
δṽ

2
∥ṽt∥

2
−

δṽ

2
q ∥ṽx∥

2
−

δṽ

2
ṽ2
x (0, t)

−

(
a1q −

δṽ(1 + L)
2

(1 + qa12)
)

ṽ2
t (l(t), t)

−
⏐⏐l̇(t)⏐⏐ (1

2
+

a12q
2

− a1δṽ(1 + L)
)

ṽ2
t (l(t), t), (111)

where 0 < l(t) ≤ L is used.
Choosing δṽ to satisfy

0 < δṽ <
1

1 + L
min

{
1, q,

2a1q
1 + qa21

,
1 + qa21
2a1

}
,

then we have

V̇ṽ ≤ −λṽVṽ,

where λṽ = δṽ/(2θṽ2) > 0. Considering (110), we have Ωṽ(t) ≤

Vṽ(0)/θṽ1e−λṽ t .
The proof is thus completed.

Proof of Lemma 3. According to the system (107)–(108), the e-
system can be written as

ett (x, t) = qexx(x, t), (112)
e(0, t) = 0, ex(l(t), t) = −b1et (l(t), t), (113)

where

b1 =
qa1 − |̇l(t)|
q − qa1 |̇l(t)|

. (114)

We can choose v̄/q < a1 < 1/v̄ to ensure b1 > 0, considering
v̄/q < 1/v̄ in Assumption 2.

Consider a Lyapunov function for the system (112)–(113),

Ve(t) =
1
2

∥et (·, t)∥2
+

q
2

∥ex(·, t)∥2

+ δe

∫ l(t)

0
(1 + x)ex(x, t)et (x, t)dx, (115)

where the parameter δe is to be determined and needs to at least
satisfy 0 < δe < 1/(1 + L)min{1, q} to guarantee the positive
definiteness of Ve(t). DefiningΩe(t) as the square of the norm (18),
we have the inequality

θe1Ωe(t) ≤ Ve(t) ≤ θe2Ωe(t), (116)

where

θe1 =
1
2
[min{1, q} − δe(1 + L)] > 0,

θe2 =
1
2
[max{1, q} + δe(1 + L)] > 0.

Taking the derivative of Ve(t) along the trajectory of the system
(112)–(113), through a similar computation as (111), using (116),
we get the exponential stability of the system e(x, t),

V̇e ≤ −σd̃Ve, (117)
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where σd̃ = δe/(2θe2), and δe satisfy:

0 < δe <
1

1 + L
min

{
1, q,

2b1q
1 + qb12

,
1 + qb12

2b1

}
. (118)

We can get

σd̃ =
δe

max{1, q} + δe(1 + L)
. (119)

From (118) and (119), it can be seen that the decay rate σd̃ is
decided by b1. Combining with (114), we observe that σd̃ depends
on a1.

From (116) and (117), we have

Ωe(t) ≤
Ve(0)
θe1

e−σd̃t . (120)

According to ṽ-system (107)–(108), using (120), from the Cauchy–
Schwarz inequality, we obtain

|ṽx(0, t)| ≤ |ṽx(l(t), t)| +

⏐⏐⏐⏐ ∫ l(t)

0
ṽxx(x, t)dx

⏐⏐⏐⏐
≤ |a1ṽt (l(t), t)| +

√
L

q

(∫ l(t)

0
|ṽtt (x, t)|2dx

) 1
2

= |a1e(l(t), t)| +

√
L

q
∥et (·, t)∥ ≤ µṽe−σd̃t , (121)

where the positive constant µṽ depends only on the initial data.
The proof is thus completed.

Proof of Lemma 4. Defining ȳ = et and taking the derivative of
(112)–(113), recalling Assumption 4, we have

ȳtt (x, t) = qȳxx(x, t), (122)
ȳ(0, t) = 0, ȳx(l(t), t) = −b2ȳt (l(t), t), (123)

where

b2 =
qb1 − |̇l(t)|
q − qb1 |̇l(t)|

. (124)

Substituting (114) into (124), we have

b2 =
q(q + |̇l(t)|)a1 − 2q|̇l(t)|

q2 + q|̇l(t)|
2
− 2q2a1 |̇l(t)|

.

Note that there exists a positive constant a1 to make b2 > 0.
Because there is a mapping relationship between the dependent
variable interval b1 ∈ (0, ∞) and the independent variable interval
a1 ∈ (v̄/q, 1/v̄) according to the function (114). Therefore, we can
choose some a1 in the range (v̄/q, 1/v̄) tomake b1 stay in the range
0 < v̄/q < b1 < 1/v̄ < ∞ which yields b2 > 0 according to (124).

A calculation similar to (115)–(121), leads to⏐⏐⏐ ˙̃d(t)⏐⏐⏐ = r|ṽxt (0, t)| ≤ µd̃t e
−σd̃t

t
,

for some positive constants σd̃t and µd̃t which depends on the
system initial values only.

Similarly, we can prove the exponential convergence to zero of⏐⏐⏐ ¨̃d(t)⏐⏐⏐ = r|ṽxtt (0, t)|.
The proof can then be completed.

Proof of Lemma 6. First, we illustrate well-posedness of the
observer error system (40)–(42).

Define an operator A: D(A) → H by

A(z, v)T = (v, qz ′′)T , ∀(z, v) ∈ D(A),
D(A) = {(z, v) ∈ H|z(0) = v(0) = 0,

z ′(l(t)) = −a2v(l(t))}.

The system (41)–(42) can be written as

d
dt

(
ũ(·, t)
ũt (·, t)

)
= A

(
ũ(·, t)
ũt (·, t)

)
.

Under the boundedness and regularity assumptions (Assump-
tions 1–2) on l(t), according to Krstic et al. (2008), we can have that
A generates an exponential stable C0-semigroup, which also can
be obtained through the following Lyapunov analysis. Then there
exist K, µ2 > 0 such that ∥eAt

∥ ≤ Ke−µ2t . By Weiss and Zhao
(2009), it concludes that for any initial values (ũ(x, 0), ũt (x, 0))T ∈

H, and there exists a unique solution (ũ, ũt )T ∈ (0, ∞;H) to the
system (41)–(42) as(

ũ(·, t)
ũt (·, t)

)
= eAt

(
ũ(·, 0)
ũt (·, 0)

)
.

Considering the ODE (40) which is cascaded with the well-posed
PDE-ũ proved above, it is straightforward to obtainwell-posedness
of ODE (40). Note that the signal d̃(t) = d(t) − d̂(t) = d(t) −

(−rd̄x(0, t)) in ODE (40) is well-posed, because d̄x(0, t) is defined
by threewell-posed systems,wherewell-posedness of the system-
d̄ (13)–(15) and the system-ū (5)–(7) are proved in Krstic et al.
(2008), that of the system-u (1)–(3) is proved in Section 5 of Weiss
and Zhao (2009). The well-posedness proof of (40)–(42) can then
be completed.

Next, we prove the exponential stability of the observer error
system (40)–(42) via Lyapunov analysis.

We employ a Lyapunov function

Vũ(t) = X̃T (t)P1X̃(t) + φũEũ(t) + η1d̃(t), (125)

where the positive parameters φũ and η1 are to be chosen later.
The matrix P1 = PT

1 > 0 is the unique solution to the Lyapunov
equation

P1(A − L̄C) + (A − L̄C)TP1 = −Q1

for some Q1 = Q1
T > 0, and Eũ(t) is defined as

Eũ(t) =
1
2

ũt (·, t)
2

+
q
2

ũx(·, t)
2

+ δũ

∫ l(t)

0
(1 + x)ũx(x, t)ũt (x, t)dx, (126)

where δũ should at least satisfy 0 < δũ < 1/(1 + L)min{1, q} to
guarantee the positive definiteness of Eũ(t). Defining Ξũ(t) as the
square of the system norm (43), similar as (110), we can obtain the
following inequality

θũ1Ξũ(t) ≤ Vũ(t) ≤ θũ2Ξũ(t), (127)

with positive constants θũ1 and θũ2.
According to Theorem 1, we obtain

˙̃d(t)2 = −σd̃d̃(t)
2, (128)

with the positive σd̃.
Taking the derivative of Vũ along (40)–(42), (128), applying

Young’s inequality and 0 < l(t) ≤ L, choosing the parameters δũ,
η1 and φũ to satisfy the following inequalities:

0 < δũ <
1

1 + L
min

{
1, q,

2a2q
1 + qa22

,
1 + qa22
2a2

}
,

η1 >
8
⏐⏐ 1
r P1B

⏐⏐2
σd̃λmin(Q1)

, φũ >
4|P1B|2

qδũλmin(Q1)
,

we arrive at

V̇ũ ≤ −σũVũ, (129)



134 J. Wang et al. / Automatica 95 (2018) 122–136

where

σũ =
1

θũ2
min

{
δũ

2
φũ,

δũ

2
qφũ,

1
2
λmin(Q1),

η1σd̃ −
4
⏐⏐ 1
r P1B

⏐⏐2
λmin(Q1)

}
> 0. (130)

The proof of Lemma 6 is completed.

Proof of Lemma7. First, we illustratewell-posedness of the target
system-(ŵ, X̂) (58)–(61).

Define an operator A1: D(A1) → H by

A1(z, v)T = (v, qz ′′)T , ∀(z, v) ∈ D(A1),
D(A1) = {(z, v) ∈ H|z(0) = v(0) = 0,

z ′(l(t)) = −a3v(l(t))}.

The system (59)–(61) can be written as

d
dt

(
ŵ(·, t)
ŵt (·, t)

)
= A1

(
ŵ(·, t)
ŵt (·, t)

)
+

(
0

f (·, t)

)
+ BCX̃(t),

where f (x, t) = −f̄1(x)X̃(t) + η̄(x, t) and B = (0, δ(x))T . Similar to
A in Lemma 6, A1 generates an exponential stable C0-semigroup,
which also can be obtained through the following Lyapunov anal-
ysis. Then there exist K1, µ3 > 0 such that ∥eA1t∥ ≤ K1e−µ3t .

It is a routine exercise that B is admissible forA1. By Weiss and
Zhao (2009), recalling Lemma 6 and (62), it concludes that for any
initial values (ŵ(x, 0), ŵt (x, 0))T ∈ H, and there exists a unique
solution (ŵ, ŵt )T ∈ C(0, ∞;H) to the system (59)–(61) as(

ŵ(·, t)
ŵt (·, t)

)
= eA1t

(
ŵ(·, 0)
ŵt (·, 0)

)
+

∫ t

0
eA1(t−s)

(
0

f (·, s)

)
ds

+

∫ t

0
eA1(t−s)BCX̃(s)ds.

Considering the ODE (58) which is cascaded with the well-
posed PDE-ŵ proved above. It is straightforward to obtain well-
posedness of the ODE (58). Note that the signal Z̃(t) in the ODE (58)
depends the ODE-Ŷ (24) which is an obviously well-posed system.
The well-posedness proof of (58)–(61) can then be completed.

Next, we prove the target system-(ŵ, X̂) (58)–(61) is exponen-
tially stable in the sense of (65) via Lyapunov analysis.

Let Vŵ(t) be a Lyapunov function as

Vŵ(t) = X̂T (t)P2X̂(t) + φŵEŵ(t) + ξ3η̄m(t)2 + ξ4d̃(t)2 + ξ5

⏐⏐⏐Z̃(t)⏐⏐⏐2
(131)

where the matrix P2 = PT
2 > 0 is the unique solution to the

following Lyapunov equation

P2(A + BK ) + (A + BK )TP2 = −Q2,

for some matrix Q2 = Q2
T > 0. Eŵ(t) in (131) is defined as

Eŵ(t) =
1
2

ŵt (·, t)
2

+
q
2

ŵx(·, t)
2

+ δŵ

∫ l(t)

0
(1 + x)ŵx(x, t)ŵt (x, t)dx, (132)

where the parameter δŵ is to be determined and needs to at least
satisfy 0 < δŵ < 1/(1 + L)min {1, q} to guarantee the positive
definiteness of Eŵ(t). The positive parameters φŵ and ξ3, ξ4, ξ5 are
to be chosen later.

Defining Ξŵ(t) as the square of the system norm (65), similar
as (110), there exist two positive constants θŵ1, θŵ2 to hold that

θŵ1Ξŵ(t) ≤ Vŵ(t) ≤ θŵ2Ξŵ(t). (133)

Taking the derivative of Vŵ along (58)–(61) and recalling (28),
(128) and (64), applying Young’s inequality, through the similar

computation of (125)–(130), with (65), (133), we arrive at

V̇ŵ ≤ −σŵVŵ + ξ2

⏐⏐⏐X̃(t)⏐⏐⏐2, (134)

where

σŵ =
1

θŵ2
min

{
1
4
φŵδŵ,

1
2
qφŵδŵ, ξ3ση̄ −

C2
maxL
4r0

,

1
2
λmin(Q2), ξ4σd̃ −

8|P2B|
r2λmin(Q2)

, ξ5σZ̃ −
8|P2BCz |

r2λmin(Q2)

}
> 0,

and

ξ2 =
1
4
φŵ

2
+

1
2
φŵ

2C2(A − L̄C)2 +
4
⏐⏐P2(L̄C + Bγ (0, 0)C)

⏐⏐2
λmin(Q2)

.

The parameters ξ3, ξ4, ξ5, δŵ, φŵ, r0 should satisfy:

ξ3 >
C2
maxL

4r0ση̄

, ξ4 >
8|P2B|

σd̃r2λmin(Q2)
, ξ5 >

8|P2BCz |

σZ̃ r2λmin(Q2)
,

0 < δŵ <
1

1 + L
min

{
1, q,

2a3q
1 + qa23

,
1 + qa23
2a3

}
,

φŵ >
2
δŵ

max
{
2C1L,

q
2

+
4|P2B|2

qλmin(Q2)

}
,

0 < r0 <
1
4
φŵδŵ − C1L,

where C1 = maxx∈[0,L]

{⏐⏐f̄1(x)⏐⏐2}.
Considering the observer error system (40)–(42), the Lyapunov

function V (t) of the overall (X̃, ũ, X̂, ŵ)-system is chosen as

V (t) = λVũ(t) + Vŵ(t), (135)

where a positive constant λ is to be determined. Taking the deriva-
tive of (135) and using (127), (129), (134), we get

V̇ ≤ −
λσũ

2
Vũ − σŵVŵ −

(
λσũθũ2

2
− ξ2

) ⏐⏐⏐X̃(t)⏐⏐⏐2. (136)

Choosing λ sufficiently large, we arrive at

V̇ ≤ −
λσũ

2
Vũ − σŵVŵ ≤ −σV , (137)

where

σ = min{
σũ

2
, σŵ} > 0. (138)

The proof of Lemma 7 is completed.

Proof of Lemma 9. Differentiating (59) with respect to x, differen-
tiating (60)–(61) with respect to t , we have

ŵttx(x, t) = qŵxxx(x, t) − f̄ ′

1(x)X̃(t) + η̄x(x, t), (139)

ŵt (0, t) = C(A − L̄C)X̃(t), (140)

ŵtt (l(t), t) = −b3ŵxt (l(t), t) −
f̄1(x)

a3q + l̇(t)
X̃(t) +

1
a3q + l̇(t)

η̄(x, t),

(141)

where b3 > 0 by choosing v̄/q < a3 < 1/v̄. We know η̄(x, t)
is exponentially convergent to zero. Similarly, we obtain η̄x(x, t)
is also exponentially convergent to zero by using (62), (63) and
Theorem 1, Lemma 4, Lemma 5. According to Lemma 6, we know
X̃(t) is exponentially convergent to zero. Through a similar calcu-
lation with the proof of Lemma 7, we can obtain the exponential
stability of the system (139)–(141) in the sense of ∥ŵxt (·, t)∥2

+

∥ŵxx(·, t)∥2. Due to the space limitations, we omit the lengthy
calculation process.

Through the invertible transformations (57), we could get
an exponential stability estimate for the norm (∥ẑxt (·, t)∥2
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+ ∥ẑxx(·, t)∥2)1/2. Recalling the transformation (49), we haveûxx(·, t)
2

≤ 2
ẑxx(·, t)2

+ 2L
⏐⏐⏐ϑ ′′

mẐ(t)
⏐⏐⏐ 2,ûxt (·, t)

2
≤ 2

ẑxt (·, t)2
+ 2L

⏐⏐⏐ϑ ′

m
˙̂Z(t)

⏐⏐⏐ 2,

where ϑ ′′
m = maxx∈[0,L]{|ϑ

′′(x)|}, ϑ ′
m = maxx∈[0,L]{|ϑ

′(x)|}.
|ϑ ′′

mẐ(t)| and |ϑ ′
m

˙̂Z(t)| = |ϑ ′
m||Ĉ[(Âz − Lz Ĉz)Ŷ (t) − Lzrd̄x(0, t)]|

are bounded. We thus obtain the bounded estimates for the norm
(∥ûxt (·, t)∥2

+ ∥ûxx(·, t)∥2)1/2.
The proof of Lemma 9 is completed.
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