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Adaptive Control of Hyperbolic PDEs Coupled
With a Disturbed and Highly Uncertain ODE

Ji Wang , Member, IEEE, Shu-Xia Tang , Senior Member, IEEE, and Miroslav Krstic , Fellow, IEEE

Abstract—In this article, we address adaptive output-
feedback boundary control of coupled hyperbolic partial
differential equations (PDEs) with spatially varying coeffi-
cients and on a time-varying domain, whose uncontrolled
boundary is coupled with a disturbed ordinary differential
equation (ODE), where multiple parameters in the state ma-
trix and the amplitudes of the harmonic disturbance are
unknown. The asymptotic convergence to zero of the ODE
state and the boundedness of the PDE states are ensured.
This article is motivated by lateral vibration suppression
of a mining cable elevator, where the interaction dynamics
between the cage and the flexible guide is approximated as
a viscoelastic system, including spring and damping, with
unknown stiffness and damping coefficients. The perfor-
mance of the proposed controller is tested in the applica-
tion of the mining cable elevator by numerical simulation.

Index Terms—Adaptive control, anticollocated distur-
bance, backstepping, cable elevators, coupled hyperbolic
partial differential equations (PDEs).

I. INTRODUCTION

A. Motivation

A mining cable elevator is used to transport a cage loaded
with the minerals and miners via cables for thousands of meters
between the underground and the surface. The undesirable me-
chanical vibrations are often caused in the high-speed operation,
because of the stretching and contracting abilities of cables.
It would not only increase the risk of cable fracture, but also
cause discomfort or injury to miners. Active vibration control
is one economic way to suppress vibrations because the main
structure of the mining elevator does not need to be changed.
Because the length of the cable is thousands of meters long and
time varying, the infinite dimension and time-varying properties
are dominant in the elevator, whose dynamics are described
by partial differential equations (PDEs) on the time-varying
domain, coupled with an ordinary differential equation (ODE)

Manuscript received 24 October 2020; revised 31 July 2021; accepted
30 November 2021. Date of publication 20 December 2021; date of
current version 28 December 2022. Recommended by Associate Editor
Martin Guay. (Corresponding author: Shu-Xia Tang.)

Ji Wang is with the Department of Automation, Xiamen University,
Xiamen 361005, China (e-mail: jiwang@xmu.edu.cn).

Shu-Xia Tang is with the Department of Mechanical Engineering,
Texas Tech University, Lubbock TX 79409 USA (e-mail: shuxia.tang@
ttu.edu).

Miroslav Krstic is with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, La Jolla, CA 92093
USA (e-mail: krstic@ucsd.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3136771.

Digital Object Identifier 10.1109/TAC.2021.3136771

Fig. 1. Block of the closed-loop system.

Fig. 2. Lateral vibration control of a mining cable elevator with vis-
coelastic guides.

describing cage dynamics at the uncontrolled boundary. Based
on such a distributed parameter system, some boundary control
strategies [25]–[29] were proposed to suppress the axial vibra-
tions of the elevator considering that the actuators and sensors
can only be installed at the boundaries of the cable. For the
lateral vibrations, an important influencing factor is interaction
between the cage and the flexible guides. The elastic support of
flexible guides was approximated as a spring–damping system,
i.e., a viscoelastic guide [23], [32], where the stiffness and
damping coefficients kc and cd are difficult to be known exactly
(see Fig. 2). It leads to unknown parameters in the state matrix
of the ODE describing the cage dynamics at the uncontrolled
boundary of the time-varying domain PDE. Moreover, the cage
is always subject to uncertain airflow disturbances [31], which
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increases the unmatched uncertainties and instabilities in the
PDE systems.

The objective is then to design a control law at the top of a
vibrational cable with a time-varying length to regulate the cage
at the bottom, where the information of interaction between the
cage and viscoelastic guides (parameters in the state matrix of the
ODE) are unknown, and the cage is subject to uncertain external
disturbances. The vibrational cable with material damping is
described as coupled transport PDEs converted from wave PDEs
with damping terms via Riemann transformations [29].

B. Boundary Control of Coupled Transport PDEs

Many authors have contributed to boundary control of coupled
transport PDEs for the past ten years. The basic boundary
stabilization problem of 2× 2 coupled linear transport PDEs
by backstepping was addressed in [8] and [24]. By applying the
sliding-mode approach and the proportional–integral controller
design, control of such a 2× 2 system was also considered
in [18] and [22], respectively. Boundary control of the 2× 2
transport PDE system was further extended to that of an n+ 1
system in [12]. For a more general coupled transport PDE
system, where the number of PDEs in either direction is ar-
bitrary [16], a boundary stabilization law was first designed
by backstepping, which was a systematic framework for the
backstepping-based control of this kind of system. Adaptive
control for unknown system parameters or disturbance rejection
for external periodic disturbances has been further developed
in [4]–[6] and [1], [2], [9], [10] respectively. Considering the
payload at the bottom of the cable, the plant becomes a coupled
transport PDE system coupled with an ODE at the uncontrolled
boundary. Boundary control of the type of this system was also
studied in [11], [13], and [29]. However, the control problem
in lateral vibration suppression of mining cable elevators with
viscoelastic guides mentioned in the first paragraph, i.e., bound-
ary control of 2× 2 transport PDEs coupled with an ODE at the
uncontrolled boundary, where multiple parameters in the state
matrix and the amplitudes of the external disturbances in the
ODE are unknown, is unsolved and challenging.

C. Contributions

1) Based on the boundary control method of coupled hy-
perbolic PDEs in [11], [13], [16], [28], and [29], we
further consider adaptive control of coupled hyperbolic
PDEs coupled with a disturbed and highly uncertain ODE
anticollocated with the PDE boundary control input, mo-
tivated by a practical control problem in the mining cable
elevator with a disturbed cage moving along a flexible
guide.

2) As compared to adaptive control of 2× 2 coupled hy-
perbolic PDEs in [4] and [5], our concern plant is
characterized by the time-varying PDE domain and an
additional disturbed unstable ODE anticollocated with the
control input.

3) Different from the disturbance attenuation results in hy-
perbolic PDEs [10], [31], the concern task in this article
requires us to solve the problems of not only the uncertain
external disturbances, but also unknown plant parameters.

4) Compared with the recent work [30] about adaptive
control of a wave PDE–ODE system with an unknown

damping coefficient and a disturbance in the ODE, in
addition to the fact that more parameters in the state
matrix of the ODE are unknown, this article considers
additional couplings and spatially varying coefficients in
the time-varying PDE domain, which make control design
more challenging because the control input needs to go
through the PDE domain to regulate the disturbed and
highly uncertain ODE.

This is the first result of boundary control of coupled hy-
perbolic PDEs, whose uncontrolled boundary is coupled with a
disturbed ODE with a state matrix, including multiple unknown
parameters. The comparisons with the related results are sum-
marized in Table I.

D. Organization

The rest of this article is organized as follows. The problem
formulation is shown in Section II, where the plant is a coupled
PDE–ODE system. Under the condition that the ODE state is
fully measured, an observer is designed to estimate the PDE
states in Section III. The design of the output-feedback con-
troller via the backstepping method is proposed in Section IV.
Adaptive update laws for the unknown parameters are given in
Section V. In Section VI, the adaptive output-feedback control
law is presented and the stability result of the closed-loop control
system is proved. Simulation test in a mining cable elevator is
provided in Section VII. Finally, Section VIII concludes this
article.

II. PROBLEM FORMULATION

The plant concerned in this article is

Ẋ(t) = AX(t) +Bw(0, t) +B1d(t) (1)

z(0, t) = CX(t)− p1w(0, t) (2)

zt(x, t) = −q1(x)zx(x, t) + c1(x)z(x, t) + c2(x)w(x, t)
(3)

wt(x, t) = q2(x)wx(x, t) + c3(x)z(x, t) + c4(x)w(x, t)
(4)

w(l(t), t) = U(t) + p2z(l(t), t) (5)

for x ∈ [0, l(t)], t ∈ [0,∞). The vector X(t) ∈ Rn is an ODE
state, whereas z(x, t) and w(x, t) are transport PDE states. The
control input U(t) is to be designed.

Remark 1: The plant (1)–(5) can be used to model the vi-
bration dynamics of the mining cable elevator. As mentioned in
Section I-A, the vibration dynamics of the mining cable elevator
is originally modeled by a wave PDE–ODE system, where
the wave PDE describes the lateral vibration of the cable and
the ODE describes that of the cage, and then, it is converted to
the coupled hyperbolic PDE–ODE plant (1)–(5) via the Riemann
transformation. More details of physical meanings of the plant
(1)–(5), the wave PDE-modeled lateral vibration dynamics of
the mining cable elevator, and the Riemann transformation are
given in Section VII.

In (3) and (4), the spatially varying transport speeds q1 and q2
are positive-valued C1([0, L]) functions, and c1, c2, c3, and c4
are C0([0, L]) functions, where the positive constant L is the
upper bound of l(t), as will be seen in Assumption 3. The
constantp1 is nonzero and the constantp2 is arbitrary. The matrix
C ∈ R1×n is arbitrary. The matrix A ∈ Rn×n is the system
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TABLE I
COMPARISONS WITH RECENT AND RELATED RESULTS

√
means that the content is included in the study and × denotes “not included.”

matrix, andB ∈ Rn×1 is the input matrix andB1 = Bbd, where
bd is an arbitrary constant. The matricesA and B and the signal
d(t) are expected to satisfy the following assumptions.

Assumption 1: The matrixA and the vectorB are in the form
of

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0

...
0 0 0 0 · · · 1
g1 g2 g3 · · · gn−1 gn

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

0
0
0
0
hn

⎞
⎟⎟⎟⎠ (6)

where the constants g1, g2, g3, . . ., gn−1, gn are unknown and
arbitrary, and their lower and upper bounds are known and
arbitrary. The constant hn is nonzero and known.

Assumption 1 indicates that the ODE is in the controllable
form, which covers many practical models, including the cage
dynamics considered in this article.

Choosing a target Hurwitz matrix

Am =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0

...
0 0 0 0 · · · 1
ḡ1 ḡ2 ḡ3 · · · ḡn−1 ḡn

⎞
⎟⎟⎟⎟⎠ (7)

where the constants ḡ1, ḡ2, ḡ3, . . ., ḡn−1, ḡn are determined by
the users according to the desired performance for the specific
application, such as the required stiffness coefficient and damp-
ing coefficient in the cage guide dynamics in Fig. 2. According
to Assumption 1 and the choice such that the matrixAm in (7) is
Hurwitz, we know that there exists a unique, though unknown,
row vector

K1×n = [k1, . . . , kn] (8)

such that

Am = A+BK. (9)

As a result

ki =
1

hn
(ḡi − gi), i = 1, 2, . . . , n. (10)

By virtue of (10), and given that the lower and upper bounds
of the gi’s are known in Assumption 1, and the ḡi’s are chosen
by the users, while the ki’s are unknown, the lower and upper
bounds on the ki’s, i.e., [ki, k̄i], i = 1, 2, . . . , n, are known.

Assumption 2: The disturbance d(t) is of the general har-
monic form as d(t) =

∑N
j=1[aj cos(θjt) + bj sin(θjt)], where

the integerN is arbitrary. The frequencies θj , j ∈ {1, 2, . . . , N},
are known and arbitrary constants. The amplitudes aj and bj are
unknown constants bounded by the known and arbitrary positive
constants āj and b̄j in the sense of |aj | ∈ [0, āj ], |bj | ∈ [0, b̄j ].

Assumption 2 can model all periodic disturbance signals to an
arbitrarily high degree of accuracy by choosing N sufficiently
large.

The time-varying domain [0, l(t)] associated with the moving
boundary l(t), which is a known time-varying function, is under
the following two assumptions.

Assumption 3: The function l(t) is bounded, i.e., 0 < l(t) ≤
L ∀t ≥ 0, where L is a positive constant.

The constant L is the maximal length of the cable in the
application of vibration suppression of mining cable elevators.

Assumption 4: The function l̇(t) is bounded as∣∣∣l̇(t)∣∣∣ < min
0≤x≤L

{q1(x), q2(x)} ∀t ≥ 0. (11)

As will be seen in Section VII-A, the coupled transport PDEs
with the moving boundary can be converted from a wave PDE
with the moving boundary via the Riemann transformation.
According to the results in [14] and [15], the fact that the
speed of the moving boundary is smaller than the wave speed
(i.e., the transport speed in the coupled transport PDEs) ensures
well-posedness of the initial boundary value problem of the
wave PDE with the moving boundary. Therefore, together with
invertibility of the Riemann transformation, the limit of the
speed of the moving boundary in Assumption 4 ensures the
well-posedness of the plant (1)–(5). This assumption holds in
the application of the mining cable elevator, as we shall see in
Section VII-A.

III. OBSERVER DESIGN

A. Observer Structure and Observer Error System

To estimate the PDE states (z(x, t), w(x, t))T , i.e., the vibra-
tion state in the cable, which usually cannot be fully measured
in practice but are required in the controller, an observer for the
PDE states is designed in this section. The observer states are
denoted as ẑ(x, t) and ŵ(x, t) and define the observer error state
as

(z̃(x, t), w̃(x, t)) = (z(x, t), w(x, t))− (ẑ(x, t), ŵ(x, t)).
(12)

Remark 2: In the mining cable elevator, the ODE state X(t)
physically means the vibration displacement and velocity of the
cage, which can be obtained by the acceleration sensor placed at
the cage plus integral algorithm [25]. Therefore, only estimation
of the PDE states is pursued here.

Rewriting w(0, t) in the ODE (1) as the sum of the observer
state ŵ(0, t) and the observer error w̃(0, t), i.e., w(0, t) =
ŵ(0, t) + w̃(0, t), yields

Ẋ(t) = AX(t) +Bŵ(0, t) +Bw̃(0, t) +B1d(t). (13)
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Using the measurementsX(t), z(l(t), t), the observer for the
PDE states is built as

ẑ(0, t) = CX(t)− p1ŵ(0, t) (14)

ẑt(x, t) = − q1(x)ẑx(x, t) + c1(x)ẑ(x, t) + c2(x)ŵ(x, t)

+ Φ2(x, t)(z(l(t), t)− ẑ(l(t), t)) (15)

ŵt(x, t) = q2(x)ŵx(x, t) + c3(x)ẑ(x, t) + c4(x)ŵ(x, t)

+ Φ3(x, t)(z(l(t), t)− ẑ(l(t), t)) (16)

ŵ(l(t), t) = U(t) + p2z(l(t), t) (17)

where the functions Φ2(x, t) and Φ3(x, t) are observer gains
to be determined. According to (2)–(5) and (14)–(17), recalling
(12), the observer error system is obtained as

z̃(0, t) = −p1w̃(0, t) (18)

z̃t(x, t) = −q1(x)z̃x(x, t) + c1(x)z̃(x, t) + c2(x)w̃(x, t)

− Φ2(x, t)z̃(l(t), t) (19)

w̃t(x, t) = q2(x)w̃x(x, t) + c3(x)z̃(x, t) + c4(x)w̃(x, t)

− Φ3(x, t)z̃(l(t), t) (20)

w̃(l(t), t) = 0. (21)

Observer gains Φ2(x, t) and Φ3(x, t) are to be designed to
ensure convergence to zero of the observer errors.

B. Determining Observer Gains via Backstepping

Postulate the invertible backstepping transformation

z̃(x, t) = α̃(x, t)−
∫ l(t)

x

φ̄(x, y)α̃(y, t)dy

−
∫ l(t)

x

φ̌(x, y)β̃(y, t)dy (22)

w̃(x, t) = β̃(x, t)−
∫ l(t)

x

ψ̄(x, y)α̃(y, t)dy

−
∫ l(t)

x

ψ̌(x, y)β̃(y, t)dy (23)

to convert the original observer error system (18)–(21) to the
following target observer error systems:

α̃(0, t) = − p1β̃(0, t) (24)

α̃t(x, t) = − q1(x)α̃x(x, t) + c1(x)α̃(x, t) (25)

β̃t(x, t) = q2(x)β̃x(x, t) + c4(x)β̃(x, t) (26)

β̃(l(t), t) = 0. (27)

The form of the backstepping transformation (22), (23) for
coupled hyperbolic PDEs is taken from [16], which also proves
the invertibility of the backstepping transformation. The integra-
tion interval chosen in the transformation (22), (23) is [x, l(t)]
because the PDE boundary measurement used in the observer is
at the boundary x = l(t). Even though the integration interval
is time varying, the kernels in (22) and (23) need not include
the time argument because the extra terms introduced by the
time-varying integration interval during the calculation of the
kernel conditions will be “absorbed” by the time-dependent
observer gains Φ2(x, t) and Φ3(x, t), which will be seen clearly
later.

By matching (18)–(21) and (24)–(27) using (22) and (23) (the
details are shown in Appendix A), the conditions on the kernels
φ̄(x, y), ψ̄(x, y), φ̌(x, y), ψ̌(x, y) in (22) and (23) are obtained
as the following two well-posed hyperbolic systems:

q2(x)ψ̄x(x, y)− q1(y)ψ̄y(x, y)

= − (c4(x)− c1(y)− q1
′(y))ψ̄(x, y)− c3(x)φ̄(x, y)

(28)

−q1(x)φ̄x(x, y)− q1(y)φ̄y(x, y)

= − (c1(x)− c1(y)− q1
′(y))φ̄(x, y)− c2(x)ψ̄(x, y)

(29)

ψ̄(x, x) =
−c3(x)

q1(x) + q2(x)
(30)

φ̄(0, y) = − p1ψ̄(0, y) (31)

and

q2(x)ψ̌x(x, y) + q2(y)ψ̌y(x, y)

= − (c4(x)− c4(y) + q2
′(y))ψ̌(x, y)− c3(x)φ̌(x, y)

(32)

−q1(x)φ̌x(x, y) + q2(y)φ̌y(x, y)

= − (c1(x)− c4(y) + q2
′(y))φ̌(x, y)− c2(x)ψ̌(x, y)

(33)

φ̌(x, x) =
c2(x)

q1(x) + q2(x)
(34)

ψ̌(0, y) = − 1

p1
φ̌(0, y) (35)

on D(t) = {0 ≤ x ≤ y ≤ l(t)}. The observer gains are, thus,
determined as

Φ2(x, t) = l̇(t)φ̄(x, l(t))− q1(l(t))φ̄(x, l(t)) (36)

Φ3(x, t) = l̇(t)ψ̄(x, l(t))− q1(l(t))ψ̄(x, l(t)). (37)

Remark 3: Equations (28)–(31) and (32)–(35), are in the same
form with the kernel equations (24)– (31) in [24], if we extend
the time-varying triangular domain D(t) to a fixed triangular
domainD1 = {0 ≤ x ≤ y ≤ L} (L is defined in Assumption 3).
Because the boundary conditions in (28)–(31) and (32)–(35) on
the triangular domain D(t) are given along the lines y = x and
x = 0 rather than on y = l(t), it is feasible to extend the domain
D(t) to the fixed triangular domain D1 when solving (28)–(31)
and (32)–(35). That is, the solutions of (28)–(31) and (32)–(35)
on D(t) can be obtained by solving (28)–(31) and (32)–(35) on
D1 whose well-posedness is proved in [24]. This ensures the
existence of the observer gains Φ2(x, t) and Φ3(x, t) in (36)
and (37), consisting of φ̄(x, l(t)) and ψ̄(x, l(t)) obtained by
extracting the results along y = l(t) in the solution of (28)–(31)
on D1, and the bounded l̇(t) in Assumption 4.

C. Stability of the Observer Error System

Lemma 1: For all initial data (z̃(·, 0), w̃(·, 0)) ∈ H1(0, L),
the states z̃(·, t) and w̃(·, t) of the observer error system (18)–
(21) with the observer gains (36), (37) become and remain zero
no later than the time t = ta, where ta = L

min0≤x≤L{q1(x)} +
L

min0≤x≤L{q2(x)} .
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Proof: According to the target observer error system (24)–
(27) and the result in [16], we know that α̃(x, t) and β̃(x, t) reach
zero by the time ta, at the latest. Applying the Cauchy–Schwarz
inequality into (22) and (23), the proof of this lemma is complete.

Remark 4: For the application of the mining cable elevators,
Lemma 1 physically means that the designed observer (14)–(17),
which uses only boundary measurements, can effectively re-
cover the actual distributed states of the vibrating string.

IV. ADAPTIVE DISTURBANCE CANCELLATION AND

STABILIZATION

In this section, we design an observer-based output-feedback
controller. We conduct the state-feedback control design based
on the observer using the backstepping method, which makes
the resulting control law employ only the observer states. Three
transformations are used to convert the observer (13)–(17) to
a target system, with the intention of adaptively canceling the
unmatched disturbance (the disturbance at the cage), removing
the coupling in the PDE domain, and making the system matrix
of the ODE Hurwitz (stabilizing the vibrating cable and cage in
the application of the mining cable elevators).

The output injection signals z̃(l(t), t) and w̃(0, t) in the ob-
server are regarded as zero in the control design, following
which the separation principle, which is verified by the fact that
the observer errors z̃(x, t), w̃(x, t) vanish in finite time only
depending on the plant parameters according to Lemma 1, is
applied in the stability analysis of the resulting output-feedback
closed-loop system.

A. First Transformation for Adaptively Canceling the
Unmatched Disturbance

Defining

Z(t) = [cos(θ1t), sin(θ1t), . . . , cos(θN t), sin(θN t)]
T (38)

where the superscript T means transposition, we then have

Ż(t) = AzZ(t) (39)

where

Az = diag

[(
0 −θ1
θ1 0

)
, . . . ,

(
0 −θN
θN 0

)]
. (40)

According to Assumption 2, the disturbance can be written
as d(t) = [a1, b1, . . . , aN , bN ]Z(t). Define the disturbance es-
timate d̂(t) as

d̂(t) = [â1(t), b̂1(t), . . . , âN (t), b̂N (t)]Z(t) (41)

where â1(t), b̂1(t), . . . , âN (t), b̂N (t) are estimates of
a1, b1, . . . , aN , bN , which will be shown in Section V.

We then introduce the transformation (ŵ, ẑ) → (v̂, ŝ)

v̂(x, t) = ŵ(x, t) + Γ(x, t)Z(t) (42)

ŝ(x, t) = ẑ(x, t) + Γ1(x, t)Z(t) (43)

whereΓ(x, t) and Γ1(x, t) are to be determined, to convert (13)–
(17) into the following system:

Ẋ(t) = AX(t) +Bv̂(0, t) +B1d̃(t) (44)

ŝ(0, t) + p1v̂(0, t) = CX(t) (45)

ŝt(x, t) = −q1(x)ŝx(x, t) + c1(x)ŝ(x, t) + c2(x)v̂(x, t)

+ Γ1t(x, t)Z(t) (46)

v̂t(x, t) = q2(x)v̂x(x, t) + c3(x)ŝ(x, t) + c4(x)v̂(x, t)

+ Γt(x, t)Z(t) (47)

v̂(l(t), t) = U(t) + p2ŝ(l(t), t)

+ (Γ(l(t), t)− p2Γ1(l(t), t))Z(t) (48)

where d̃(t) is given as

d̃(t) = d(t)− d̂(t)

=

N∑
j=1

[(aj − âj(t)) cos(θjt) + (bj − b̂j(t)) sin(θjt)]

=

N∑
j=1

[ãj(t) cos(θjt) + b̃j(t) sin(θjt)]. (49)

The functions Γ(x, t) and Γ1(x, t) in (42) and (43) are deter-
mined as follows. Taking the time and spatial derivatives of (42)
and (43) and substituting the result into (46) and (47), recalling
(15), (16), and (39), we get

ŝt(x, t) + q1(x)ŝx(x, t)− c1(x)ŝ(x, t)

− c2(x)v̂(x, t)− Γ1t(x, t)Z(t)

= ẑt(x, t) + q1(x)ẑx(x, t) + Γ1t(x, t)Z(t) + Γ1(x, t)AzZ(t)

− c2(x)ŵ(x, t)− c1(x)ẑ(x, t) + q1(x)Γ1x(x, t)Z(t)

− c2(x)Γ(x, t)Z(t)− c1(x)Γ1(x, t)Z(t)− Γ1t(x, t)Z(t)

= (Γ1(x, t)Az + q1(x)Γ1x(x, t)

− c2(x)Γ(x, t)− c1(x)Γ1(x, t))Z(t) = 0 (50)

v̂t(x, t)− q2(x)v̂x(x, t)− c3(x)ŝ(x, t)

− c4(x)v̂(x, t)− Γt(x, t)Z(t)

= ŵt(x, t)− q2(x)ŵx(x, t) + Γt(x, t)Z(t) + Γ(x, t)AzZ(t)

− c4(x)ŵ(x, t)− c3(x)ẑ(x, t)− q2(x)Γx(x, t)Z(t)

− c4(x)Γ(x, t)Z(t)− c3(x)Γ1(x, t)Z(t)− Γt(x, t)Z(t)

= (Γ(x, t)Az − q2(x)Γx(x, t)

− c4(x)Γ(x, t)− c3(x)Γ1(x, t))Z(t) = 0. (51)

For (50) and (51) to hold, we obtain the conditions

− q2(x)Γx(x, t) + Γ(x, t)(Az − c4(x)I2N )

− c3(x)Γ1(x, t) = 0 (52)

q1(x)Γ1x(x, t) + Γ1(x, t)(Az − c1(x)I2N )

− c2(x)Γ(x, t) = 0 (53)

where I2N is an identity matrix with dimension 2N .
Defining ζ(x, t) = [Γ(x, t),Γ1(x, t)], then (52) and (53) are

rewritten as

ζx(x, t) = −ζ(x, t)Ā(x) (54)

where

Ā(x) =

(
Az − c4(x)I2N −c2(x)I2N
−c3(x)I2N Az − c1(x)I2N

)

×
(−q2(x)I2N 02N

02N q1(x)I2N

)−1

.

By mapping (13), (14) and (44), (45) through the transfor-
mation (42), (43), recalling (41) and B1 = Bbd, we obtain the
condition
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ζ(0, t) = [Γ(0, t),Γ1(0, t)]

= bd[â1(t), b̂1(t), . . . , âN (t), b̂N (t),

− p1â1(t),−p1b̂1(t), . . . ,−p1âN (t),−p1b̂N (t)].
(55)

The solution to (54) and (55) is
ζ(x, t) = ζ(0, t)H̄(x) (56)

where H̄(x) is the unique solution of the following initial value
problem:

H̄x(x) = −H̄(x)Ā(x), H̄(0) = I4N (57)
for x ∈ [0, L].

B. Second Transformation for Decoupling PDEs

We postulate the backstepping transformation

β̂(x, t) = v̂(x, t)−
∫ x

0

ϑ̄(x, y)ŝ(y, t)dy

−
∫ x

0

ϑ̌(x, y)v̂(y, t)dy (58)

α̂(x, t) = ŝ(x, t)−
∫ x

0

λ̄(x, y)ŝ(y, t)dy

−
∫ x

0

λ̌(x, y)v̂(y, t)dy (59)

to convert (44)–(48) into the following system:

Ẋ(t) = AX(t) +Bβ̂(0, t) +B1d̃(t) (60)

α̂(0, t) = CX(t)− p1β̂(0, t) (61)

α̂t(x, t) = − q1(x)α̂x(x, t) + c1(x)α̂(x, t)

− λ̄(x, 0)q1(0)CX(t)

+

(
Γ1t(x, t)−

∫ x

0

λ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

λ̌(x, y)Γt(y, t)dy

)
Z(t) (62)

β̂t(x, t) = q2(x)β̂x(x, t) + c4(x)β̂(x, t)

− ϑ̄(x, 0)q1(0)CX(t)

−
(∫ x

0

ϑ̌(x, y)Γt(y, t)dy

+

∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy − Γt(x, t)

)
Z(t) (63)

β̂(l(t), t) = U(t) + p2ŝ(l(t), t)

+ (Γ(l(t), t)− p2Γ1(l(t), t))Z(t)

−
∫ l(t)

0

ϑ̄(l(t), y)ŝ(y, t)dy

−
∫ l(t)

0

ϑ̌(l(t), y)v̂(y, t)dy. (64)

By matching (60)–(64) and (44)–(48) via (58) and (59) (the
details are shown in Appendix B), the conditions of kernels
λ̄(x, y), λ̌(x, y), ϑ̄(x, y), ϑ̌(x, y) are obtained as the following
two well-posed hyperbolic systems:

− q1(x)λ̌x(x, y) + q2(y)λ̌y(x, y)

= −(q2
′(y) + c1(x)− c4(y))λ̌(x, y) + c2(y)λ̄(x, y) (65)

q1(x)λ̄x(x, y) + q1(y)λ̄y(x, y)

= −(q1
′(y) + c1(y)− c1(x))λ̄(x, y)− c3(y)λ̌(x, y) (66)

λ̌(x, x) =
c2(x)

q1(x) + q2(x)
(67)

λ̄(x, 0) = − q2(0)

q1(0)p1
λ̌(x, 0) (68)

and

q2(x)ϑ̌x(x, y) + q2(y)ϑ̌y(x, y)

= − (q2
′(y) + c4(x)− c4(y))ϑ̌(x, y)

+ c2(y)ϑ̄(x, y) (69)

−q2(x)ϑ̄x(x, y) + q1(y)ϑ̄y(x, y)

= − (q1
′(y) + c1(y)− c4(x))ϑ̄(x, y)

− c3(y)ϑ̌(x, y) (70)

ϑ̄(x, x) = − c3(x)

q1(x) + q2(x)
(71)

ϑ̌(x, 0) = − q1(0)p1
q2(0)

ϑ̄(x, 0) (72)

on {0 ≤ y ≤ x ≤ l(t)}. The equation sets (65)–(68) and (69)–
(72) are in the same form as (28)–(31) and (32)–(35). One can
refer to Remark 3 and [24] for the well-posedness of (65)–(68)
and (69)–(72).

C. Third Transformation for a Stable ODE

We postulate the backstepping transformation

η̂(x, t) = β̂(x, t)−
∫ x

0

N̂(x, y; K̂(t))β̂(y, t)dy

−D(x; K̂(t))X(t) (73)

where the update law for K̂(t) ∈ R1×n is developed
in the next section. The conditions for the kernels
N̂(x, y; K̂(t)) and D(x; K̂(t)) are to be determined later. The
inverse transformation is defined as

β̂(x, t) = η̂(x, t)−
∫ x

0

N̂ I(x, y; K̂(t))η̂(y, t)dy

−DI(x; K̂(t))X(t) (74)

where N̂ I and DI are the kernels whose existence and continu-
ity will be shown later.

Through the transformation (73), we convert (60)–(64) into
the following target system:

Ẋ(t) = AmX(t) +Bη̂(0, t) +B1d̃(t)−BK̃(t)X(t) (75)

α̂(0, t) = (C − p1D(0; K̂(t)))X(t)− p1η̂(0, t) (76)

α̂t(x, t) = −q1(x)α̂x(x, t) + c1(x)α̂(x, t)

− λ̄(x, 0)q1(0)CX(t)

+

(
Γ1t(x, t)−

∫ x

0

λ̄(x, y)Γ1t(y, t)dy

Authorized licensed use limited to: Texas Tech University. Downloaded on March 19,2024 at 14:51:22 UTC from IEEE Xplore.  Restrictions apply. 



114 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 1, JANUARY 2023

−
∫ x

0

λ̌(x, y)Γt(y, t)dy

)
Z(t) (77)

η̂t(x, t) = q2(x)η̂x(x, t) + c4(x)η̂(x, t)

+

[
Γt(x, t)−

∫ x

0

ϑ̌(x, y)Γt(y, t)dy

−
∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

N̂(x, y; K̂(t))

(
−
∫ y

0

ϑ̌(y, z)Γt(z, t)dz

−
∫ y

0

ϑ̄(y, z)Γ1t(z, t)dz + Γt(y, t)

)
dy

]
Z(t)

+
(
D(x; K̂(t))BK̃(t)− ˙̂

K(t)DK̂(t)(x; K̂(t))
)

×X(t)− ˙̂
K(t)R(x, t)−D(x; K̂(t))B1d̃(t)

(78)

η̂(l(t), t) = 0 (79)

where

K̃(t) = K − K̂(t) (80)

and where

R(x, t) =

∫ x

0

N̂K̂(t)(x, y; K̂(t))β̂(y, t)dy

=

∫ x

0

N̂K̂(t)(x, y; K̂(t))

[
η̂(y, t)

−
∫ y

0

N̂ I(y, σ; K̂(t))η̂(σ, t)dσ

−DI(y; K̂(t))X(t)

]
dy (81)

with defining DK̂(t)(x; K̂(t)) = ∂D(x;K̂(t))

∂K̂(t)
and N̂K̂(t)(x, y;

K̂(t)) = ∂N̂(x,y;K̂(t))

∂K̂(t)
.

By matching (60)–(64) and (75)–(79) with the aid of (73)
(the details are shown in Appendix C), the conditions on the
kernels N(x, y; K̂(t)) and D(x; K̂(t)) in (73) are determined
as follows:

D(0; K̂(t)) = K̂(t) (82)

− q2(x)D
′(x; K̂(t)) +D(x; K̂(t))(Am − c4(x)−BK̂(t))

+ ϑ̄(x, 0)q1(0)C −
∫ x

0

N̂(x, y; K̂(t))ϑ̄(y, 0)q1(0)Cdy = 0

(83)

q2(y)N̂y(x, y; K̂(t)) + q2(x)N̂x(x, y; K̂(t))

+ q2
′(y)N̂(x, y; K̂(t)) = 0 (84)

q2(0)N̂(x, 0; K̂(t))−D(x; K̂(t))B = 0. (85)

The equation set (82)–(85) is a transport PDE–ODE coupled
system consisting of the transport PDE (84) with the boundary
condition (85) on {(x, y)|0 ≤ y ≤ x ≤ l(t)} and the ODE (83)
with the initial value (82) on {0 ≤ x ≤ l(t)}. It should be noted
that K̂(t) is a parameter rather than a variable in the transport

PDE (84), (85) with respect to the independent variables x and y
and in the ODE (82), (83) with respect to the independent
variable x when solving (82)–(85).

To establish well-posedness of (82)–(85), the transport PDE
state N̂(x, y; K̂(t)) can be written as a function of its boundary
value D(x; K̂(t))B. Substituting the result into ODE (83) to
replace N̂(x, y; K̂(t)), the solution of the ODE D̂(x; K̂(t))
can be obtained. The well-posedness of the transport PDE
N̂(x, y; K̂(t)) (84), (85) is, thus, obtained because of the well-
defined boundary condition (85).

The existence and continuity of the kernels N̂ I and DI in the
inverse transformation (74) are shown as follows. Rewrite (73)
as

η̂(x, t) +D(x; K̂(t))X(t) = β̂(x, t)

−
∫ x

0

N̂(x, y; K̂(t))β̂(y, t)dy. (86)

Because N̂(x, y; K̂(t)) is continuous, according to [21], there
exists a unique continuous �(x, y; K̂(t)) on {(x, y)|0 ≤ x ≤
y ≤ l(t)} such that

β̂(x, t) = η̂(x, t) +D(x; K̂(t))X(t)

+

∫ x

0

�(x, y; K̂(t))(η̂(y, t) +D(y; K̂(t))X(t))dy

= η̂(x, t) +

∫ x

0

�(x, y; K̂(t))η̂(y, t)dy

+

(∫ x

0

�(x, y; K̂(t))D(y; K̂(t))dy

+D(x; K̂(t))

)
X(t). (87)

Comparing (87) and the inverse transformation (74), we ob-
tain the existence and continuity of the kernels N̂ I(x, y; K̂(t)),
DI(x; K̂(t)).

Finally, for (79) to hold, recalling (73) and (64), we derive the
boundary control input U(t), for which the expression is shown
in Section VI.

V. ADAPTIVE UPDATE LAWS

Using normalization and projection operators to guarantee
boundedness, as is typical in adaptive control designs, the adap-
tive update laws for self-tuned control gains

K̂(t) = [k̂1(t), . . . , k̂n(t)] (88)

and for the unknown parameters âj(t), b̂j(t), j ∈ {1, . . . , N},
are built as

˙̂
ki(t) = Proj[ki,k̄i]

(
τi(t), k̂i(t)

)
(89)

˙̂aj(t) = Proj[−āj ,āj ]
(τ1j(t), âj(t)) (90)

˙̂
bj(t) = Proj[−b̄j ,b̄j ]

(
τ2j(t), b̂j(t)

)
(91)
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for i ∈ {1, . . . , n}, j ∈ {1, . . . , N}. For any constants m,M
satisfying m ≤M and any r, p, Proj[m,M ] is the standard pro-
jection operator given by

Proj[m,M ](r, p) =

{
0, if p = m and r < 0
0, if p =M and r > 0
r, else.

The role of the projection operator is to keep the parameter
estimates bounded. The bounds ki, k̄i and āj , b̄j are defined in
Section II. The functions τi, τ1j , and τ2j in (89)–(91) are defined
as

[τ1(t), . . . , τn(t)]
T

=
−γc

(
2XBTPX−ra

∫ l(t)
0 eδxη̂(x,t)XBTD(x;K̂(t))T dx

)

1+Ω(t) (92)

τ1j(t)

=
γaj

(
2XTPB1−ra

∫ l(t)
0 eδxη̂(x,t)D(x;K̂(t))B1dx

)
cos(θjt)

1+Ω(t) (93)

τ2j(t)

=
γbj

(
2XTPB1−ra

∫ l(t)
0 eδxη̂(x,t)D(x;K̂(t))B1dx

)
sin(θjt)

1+Ω(t) (94)

where Γc = diag{γc1, . . . , γcn}. The positive update gains
γci, γaj , and γbj are to be chosen by the users, and

δ > max

{
2c4 + q′2
q2

,
2c1 + 1 + q′1

q1

}
(95)

with q1 = min0≤x≤L{q1(x)}, q′1 = max0≤x≤L{|q′1(x)|}, q2
= min0≤x≤L{q2(x)}, q′2 = max0≤x≤L{|q′2(x)|}, c1 =
max0≤x≤L{|c1(x)|}, and c4 = max0≤x≤L{|c4(x)|}.

The scalar functional Ω(t) is defined as

Ω(t) = X(t)TPX(t) +
1

2
ra

∫ l(t)

0

eδxη̂(x, t)2dx

+
1

2
rb

∫ l(t)

0

e−δxα̂(x, t)2dx. (96)

The determination of positive constants ra and rb will be
shown in the next section. The matrixP = PT > 0 is the unique
solution to the following Lyapunov equation PAm +AT

mP =
−Q for someQ = QT > 0. BecauseAm in (7) is known (chosen
by the users, in spite of A and K being unknown), the matrix P
is known.

The normalization 1 + Ω(t) is introduced in the denominator
in (92)–(94) to limit the rates of change of the parameter esti-

mates, i.e., ˙̂ki(t) and ˙̂aj(t),
˙̂
bj(t). The functions η̂(·, t) and α̂(·, t)

in (92)–(94) and (96) can be represented by the observer states
through (42), (43), (58), (59), and (73). The idea of construct-
ing the adaptive update laws k̂i(t), âj(t), b̂j(t) i ∈ {1, . . . , n},
j ∈ {1, . . . , N} in (89)–(94) will be clear from the Lyapunov
analysis in Section VI.

VI. CONTROL LAW AND STABILITY ANALYSIS

A. Control Law

According to (64), (73), and (79), U(t) is obtained as

U(t) = −p2ŝ(l(t), t)− (Γ(l(t), t)− p2Γ1(l(t), t))Z(t)

+

∫ l(t)

0

ϑ̄(l(t), y)ŝ(y, t)dy +

∫ l(t)

0

ϑ̌(l(t), y)v̂(y, t)dy

+

∫ l(t)

0

N̂(l(t), y; K̂(t))β̂(y, t)dy

+D(l(t); K̂(t))X(t). (97)

Recalling (17), (42), (43), (58), and (73), the control law (97)
is rewritten as

U(t) = − p2z(l(t), t)− Γ(l(t), t)Z(t)

+

∫ l(t)

0

ϑ̄(l(t), y)(ẑ(y, t) + Γ1(y, t)Z(t))dy

+

∫ l(t)

0

ϑ̌(l(t), y)(ŵ(y, t) + Γ(y, t)Z(t))dy

+

∫ l(t)

0

N̂(l(t), y; K̂(t))

[
ŵ(y, t) + Γ(y, t)Z(t)

−
∫ y

0

ϑ̄(y, σ)(ẑ(σ, t) + Γ1(σ, t)Z(t))dσ

−
∫ y

0

ϑ̌(y, σ)(ŵ(σ, t) + Γ(σ, t)Z(t))dσ

]
dy

+D(l(t); K̂(t))X(t) (98)

which is the output-feedback adaptive controller sought in this
article. The signals z(l(t), t) and X(t) are measurements and
Z(t) is defined in (38). The states ẑ(x, t) and ŵ(x, t) are obtained
from the observer (14)–(17). The functions Γ1(y, t) and Γ(y, t)
are solutions of (56) and (57), where the adaptive estimates
âj(t) and b̂j(t) are defined in (90), (91), (93), and (94). The
functions ϑ̄(y, σ) and ϑ̌(y, σ) are solutions of (69)–(72). The
functions Γ(l(t), t), ϑ̄(l(t), y), ϑ̌(l(t), y), N̂(l(t), y; K̂(t)), and
D(l(t); K̂(t)) are the solutions of (56), (57), (69)–(72), and
(82)–(85) on x = l(t), respectively. The adaptive estimate K̂(t)
is defined in (89) and (92).

The block diagram of the closed-loop system is shown in
Fig. 1, whose stability result is given in the next subsection.

B. Stability Analysis

The stability analysis of the state-feedback loop is given in
the following lemma.

Lemma 2: For all initial data (α̂(·, 0), η̂(·, 0)) ∈ H1

(0, L), X(0) ∈ Rn, K̂(0) ∈ R1×n, âj(0) ∈ R, b̂j(0) ∈ R, j =
1, . . . , N , the target system (75)–(79) is asymptotically regu-
lated in the sense of limt→∞(‖α̂(·, t)‖+ ‖η̂(·, t)‖+ |X(t)|) =
0, where ‖ · ‖ denotes theL2 norm and | · | denotes the Euclidean
norm.

Proof: Define

Θ(t) = ‖η̂(·, t)‖2 + ‖α̂(·, t)‖2 + |X(t)|2. (99)

Recalling (96), we get μ1Θ(t) ≤ Ω(t) ≤ μ2Θ(t),
where μ1 = 1

2 min{ra, rbe−δL, λmin(P )} > 0, μ2 = 1
2 min

{raeδL, rb, λmax(P )} > 0, and λmin and λmax denote the
minimum and maximum eigenvalues of the corresponding
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matrix. Let us choose a Lyapunov functional as

V (t) = ln (1 + Ω(t)) +

N∑
j=1

1

2γaj
ãj(t)

2 +

N∑
j=1

1

2γbj
b̃j(t)

2

+
1

2
K̃(t)Γc

−1K̃(t)T (100)

where ãj , b̃j , and K̃ are given in (49) and (80).
Recalling (96), we rewrite the Lyapunov functional as

V (t) = ln

(
XTPX(t) +

1

2
ra

∫ l(t)

0

eδxη̂(x, t)2dx

+
1

2
rb

∫ l(t)

0

e−δxα̂(x, t)2dx+ 1

)
+

N∑
j=1

1

2γaj
ãj(t)

2

+
N∑
j=1

1

2γbj
b̃j(t)

2 +
1

2
K̃(t)Γc

−1K̃(t)T . (101)

Taking the derivative of V (t), through a lengthy calculation
in Appendix D, we obtain

V̇ (t) ≤ 1

1 + Ω(t)

[
−
(
3

4
λmin(Q)− q1(0)rbd̄

2

− q1(0)
2

2
Lrbf̄

2 |C|2
)
|X(t)|2

−
(
1

2
q2(0)ra − q1(0)rbp

2
1 −

8

λmin(Q)
|PB|2

)
η̂(0, t)2

−
(
1

2
δq2ra − rac4 − 1

2
raq′2

)∫ l(t)

0

eδxη̂(x, t)2dx

− 1

2

(
q1(l(t))− l̇(t)

)
rbe

−δLα̂(l(t), t)2

−
(
1

2
q1δrb − rbc1 − 1

2
rb − 1

2
rbq′1

)∫ l(t)

0

e−δxα̂(x, t)2dx

]

− K̃(t)

[
Γc

−1 ˙̂
K(t)T

+
(2XBTPX − ra

∫ l(t)

0 eδxη̂(x, t)XBTD(x; K̂(t))T dx)

1 + Ω(t)

]

−
N∑
j=1

ãj(t)

[
1

γaj
˙̂aj(t)

− (2XTPB1−ra
∫ l(t)
0 eδxη̂(x,t)D(x;K̂(t))B1dx) cos(θjt)

1+Ω(t)

]

−
N∑
j=1

b̃j(t)

[
1

γbj

˙̂
bj(t)

− (2XTPB1−ra
∫ l(t)
0 eδxη̂(x,t)D(x;K̂(t))B1dx) sin(θjt)

1+Ω(t)

]

+

[
ra

∫ l(t)

0

eδxη̂(x, t)(HbZ(t)− ˙̂
K(DK̂X(t) +R(x, t)))dx

+ rb

∫ l(t)

0

e−δxα̂(x, t)HaZ(t)dx

]
1

1 + Ω(t)
. (102)

Regarding (89)–(91), we know that there exist positive con-
stants m2 and m3 such that

max
j∈{1,...,N}

{∣∣∣ ˙̂aj(t)∣∣∣2 , ∣∣∣ ˙̂bj(t)∣∣∣2
}

≤ m2 max
j∈{1,...,N}

{γ2aj , γ2bj}
(|X(t)|2 + ‖η̂‖2) (103)

∣∣∣ ˙̂K(t)
∣∣∣2 ≤ m3 max

i∈{1,...,n}
{γ2ci} (104)

where m2 and m3 only depend on parameters of the plant and
coefficients introduced in the Lyapunov functional.

With (56), we obtain
max

(x,t)∈[0,L]×[0,∞)

{|Γt(x, t)|2, |Γ1t(x, t)|2
}

≤ 2N max
j∈{1,...,N}

{∣∣∣ ˙̂aj(t)∣∣∣2 , ∣∣∣ ˙̂bj(t)∣∣∣2
}
h̄2m

≤ 2Nm2 max
j∈{1,...,N}

{γ2aj , γ2bj}
(|X(t)|2 + ‖η̂‖2) h̄2m (105)

where h̄m is defined as h̄m = max0≤x≤L{σ̄(H̄(x))}, and H̄(x)
is the solution of (57) and σ̄ stands for the largest singular value
at x.

According to the definitions of Ha and Hb in (D1) and (D2),
recalling (104) and (105), there exist positive constants ξ1 and ξ2
such that for any t > 0,

max{|HaZ(t)|2, |HbZ(t)|2}
≤ ξ1 max

j∈{1,...,N}
{γ2aj , γ2bj}(|X(t)|2 + ‖η̂‖2) (106)

∣∣∣ ˙̂KDK̂(t)X(t)
∣∣∣2 ≤ ξ2 max

i∈{1,...,n}
{γ2ci}|X(t)|2 (107)

with ξ1 and ξ2 only depending on the kernels, the parameters of
the plant, and the coefficients used in the Lyapunov analysis, but
not on γci, γaj , and γbj .

Applying the Young and Cauchy–Schwarz inequalities, we
obtain the inequality

ra

∫ l(t)

0

eδxη̂(x, t)HbZ(t)dx ≤ 1

2
ra

∫ l(t)

0

eδxη̂(x, t)2dx

+
1

2
rae

δLLξ1 max
j∈{1,...,N}

{γ2aj , γ2bj}
(|X(t)|2 + ‖η̂‖2) (108)

where we have used (106), the inequality

− ra

∫ l(t)

0

eδxη̂(x, t)
˙̂
KDK̂(t)X(t)dx

≤ ra
2

∫ l(t)

0

eδxη̂(x, t)2dx+
ra
2
eδLL max

i∈{1,...,n}
{γ2ci}ξ2|X(t)|2

(109)
where we have used (107), and the inequality

− ra

∫ l(t)

0

eδxη̂(x, t)
˙̂
KR(x, t)dx ≤ 1

2
ra

∫ l(t)

0

eδxη̂(x, t)2dx

+
1

2
rae

δLm3 max
i∈{1,...,n}

{γ2ci}ξ3
(|X(t)|2 + ‖η̂‖2) (110)

for which we have employed (81) and (104). The positive
constant ξ3 in (110) only depends on kernels N̂ I , DI , N̂K̂(t).
Finally, we also obtain the inequality

rb

∫ l(t)

0

e−δxα̂(x, t)HaZ(t)dx ≤ rb
2

∫ l(t)

0

e−δxα̂(x, t)2dx
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+
1

2
rbLξ1 max

j∈{1,...,N}
{γ2aj , γ2bj}

(|X(t)|2 + ‖η̂‖2) (111)

by applying (106). Applying (108)–(111), we obtain

ra

∫ l(t)

0

eδxη̂(x, t)
(
HbZ(t)− ˙̂

KDK̂(t)X(t)− ˙̂
KR(x, t)

)
dx

+ rb

∫ l(t)

0

e−δxα̂(x, t)HaZ(t)dx

≤
[
ra
2
eδLL max

i∈{1,...,n}
{γ2ci}ξ2 +

ra
2
eδLLξ1 max

j∈{1,...,N}
{γ2aj , γ2bj}

+
1

2
rae

δLm3 max
i∈{1,...,n}

{γ2ci}ξ3L

+
1

2
rbLξ1 max

j∈{1,...,N}
{γ2aj , γ2bj}

]
|X(t)|2

+

[
3

2
rae

δL +
1

2
rae

δLLξ1 max
j∈{1,...,N}

{γ2aj , γ2bj}

+
1

2
rae

δLm3 max
i∈{1,...,n}

{γ2ci}ξ3L

+
1

2
rbLξ1 max

j∈{1,...,N}
{γ2aj , γ2bj}

]
‖η̂‖2 + rb

2
‖α̂‖2

≤ max
i∈{1,...,n},j∈{1,...,N}

{γ2ci, γ2aj , γ2bj}λb

×
(
|X(t)|2 + ‖η̂‖2 + ‖α̂‖2

)
(112)

where λb > 0 only depends on the kernels, the parameters of the
plant, and the coefficients used in the Lyapunov analysis.

Choosing

rb <
3
4λmin(Q)

q1(0)
∣∣d̄∣∣2 + q1(0)2

2 Lf̄2 |C|2
(113)

ra >
2

q2(0)

(
q1(0)rbp

2
1 −

8

λmin(Q)
|PB|2

)
(114)

inserting (112), recalling (95), and applying the adaptive laws
(89)–(94), inequality (102) becomes

V̇ (t) ≤ 1

1 + Ω

[
− λa

(
|X(t)|2 + η̂(0, t)2 + ‖η̂(·, t)‖2

+ α̂(l(t), t)2 + ‖α̂(·, t)‖2
)

+ max
i∈{1,...,n},j∈{1,...,N}

{γ2ci, γ2aj , γ2bj}λb

(
|X(t)|2

+ ‖η̂(·, t)‖2 + ‖α̂(·, t)‖2
)]
.

The coefficients γaj , γbj , and γci in the adaptive law are
independent of λa and λb, which only depend on the kernels,
the plant parameters, and the coefficients used in the Lyapunov
analysis. Choosing γaj , γbj , and γci to satisfy

max
i∈{1,...,n},j∈{1,...,N}

{γ2ci, γ2aj , γ2bj} := γ20 <
λa

λb
(115)

we arrive at

V̇ (t) ≤ −λ̄a

1 + Ω

(
|X(t)|2 + η̂(0, t)2 + ‖η̂(·, t)‖2

+ α̂(l(t), t)2 + ‖α̂(·, t)‖2
)

≤ 0 (116)

where λ̄a = λa − γ20λb > 0. Hence, we obtain V (t) ≤
V (0)∀t ≥ 0. One easily get that |K̃(t)|, d̃(t), and Ω(t) are uni-
formly bounded. Therefore, we obtain that ‖η̂(·, t)‖, ‖α̂(·, t)‖,
and |X(t)| are uniformly bounded. Taking the time derivative of
|X(t)|2, ‖α̂(·, t)‖2, and ‖η̂(·, t)‖2 along (75)–(79), we obtain

d

dt
|X(t)|2 = 2XT (t)(AmX(t) +Bη̂(0, t)

+B1d̃(t)−BK̃(t)X(t)) (117)

d

dt
‖η̂(·, t)‖2 = (q2(l(t)) + l̇(t))η̂(l(t), t)2 − q2(0)η̂(0, t)

2

−
∫ l(t)

0

(q′2(x)− 2c4(x))η̂(x, t)
2dx+2

∫ l(t)

0

η̂(·, t)
[(

Γt(x, t)

−
∫ x

0

ϑ̌(x, y)Γt(y, t)dy −
∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

N̂(x, y; K̂(t))

(
−
∫ y

0

ϑ̌(y, z)Γt(z, t)dz

−
∫ y

0

ϑ̄(y, z)Γ1t(z, t)dz + Γt(y, t)

)
dy

)
Z(t)

+
(
D(0; K̂(t))BK̃(t)− ˙̂

K(t)DK̂(t)(x; K̂(t))
)
X(t)

− ˙̂
K(t)R(x, t)−D(0; K̂(t))B1d̃(t)

]
dx (118)

d

dt
‖α̂(·, t)‖2 = −(q1(l(t))− l̇(t))α̂(l(t), t)2

+ q1(0)α̂(0, t)
2 +

∫ l(t)

0

(q′1(x) + 2c1(x))α̂(x, t)
2dx

+ 2

∫ l(t)

0

α̂(x, t)

[
− λ̄(x, 0)q1(0)CX(t) +

(
Γ1t(x, t)

−
∫ x

0

λ̄(x, y)Γ1t(y, t)dy−
∫ x

0

λ̌(x, y)Γt(y, t)dy

)
Z(t)

]
dx.

(119)

Recalling the boundedness results of ˙̂
K,Γt, and Γ1t in (104)

and (105) and boundedness of l̇(t) in Assumption 4, according
to (78) and (79), we have that η̂(0, t) is bounded. The signal
α̂(0, t) is also bounded via (76), and then α̂(l(t), t) is bounded
through transport PDE (78). Therefore we have that d

dt |X(t)|2,
d
dt‖η̂(·, t)‖2, and d

dt‖α̂(·, t)‖2 are uniformly bounded according
to (117)–(119).

Finally, integrating (116) from 0 to ∞, it follows that |X(t)|,
‖α̂(·, t)‖, and ‖η̂(·, t)‖ are square integrable. By Barbalat’s
lemma, |X(t)|, ‖α̂(·, t)‖, and ‖η̂(·, t)‖ tend to zero as t→ ∞.

The achievement of the control objective of adaptively can-
celing the unmatched disturbance and stabilizing the vibrating
string in the output-feedback loop is shown as the following
theorem.

Theorem 1: For all initial data (z(·, 0), w(·, 0)) ∈ H1(0, L),
X(0) ∈ Rn, K̂(0) ∈ R1×n, âj(0) ∈ R, and b̂j(0) ∈ R, j =
1, . . . , N , the output-feedback closed-loop system, including the
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plant (1)–(5), the observer (14)–(17), the adaptive update laws
(89)–(94), and the control law (98), has the following properties.

1) The ODE stateX(t) is asymptotically convergent to zero
in the sense of limt→∞ |X(t)| = 0.

2) The PDE states are uniformly ultimately bounded in the
sense of the norm ‖z(·, t)‖+ ‖w(·, t)‖.

Proof: Rewriting the observer states in the output-feedback
control input (98) as a sum of the plant states and the observer
errors according to (12), inserting the result into the plant (1)–(5),
through the same steps as in the above state-feedback control
designs in Section IV [removing “∧” for the PDE states in the
transformations (42), (43), (58), (59), (73), and (74)], it follows
that the target system is a cascade of the observer error dynamics
z̃, w̃ feeding into (α, η,X) dynamics, which are in the form
of (75)–(79) (removing “∧” for the PDE states). For the target
system, define a Lyapunov function V̄ (t) in the form of (100)
with removing “∧” for the PDE states, through the Lyapunov
analysis similar to the process in the proof of Lemma 2, where
the states with “∧” in adaptive laws (89)–(94) are written as a
sum of the states without “∧” and the observer errors by applying
the backstepping transformations (42), (43), (58), (59), and (73),
recalling the fact that the observer errors z̃ and w̃ vanish in
finite time only depending on the plant parameters according
to Lemma 1; the separation principle is verified.

Recalling Lemma 2, property 1) is immediate.
Due to the invertibility and continuity of the backstepping

transformations (58), (59), and (73), recalling Lemma 2 and
applying the separation principle, we obtain the asymptotic
convergence to zero of ‖v̂(·, t)‖+ ‖ŝ(·, t)‖. According to (42)
and (43), we obtain

‖ŵ(·, t)‖2 + ‖ẑ(·, t)‖2

= 2‖v̂(·, t)‖2 + 2N‖Γ(·, t)‖2 + 2‖ŝ(·, t)‖2 + 2N‖Γ1(·, t)‖2

≤ 2‖v̂(·, t)‖2 + 2‖ŝ(·, t)‖2

+ γ̄1 max
j∈{1,...,N}

{ā2j , b̄2j}+ γ̄2 max
j∈{1,...,N}

{ā2j , b̄2j} (120)

with the positive constants γ̄1 = 4N2b2dh̄
2
mL and γ̄2 = 4

N2b2dp
2
1h̄

2
mL. Recalling the asymptotic convergence

to zero of ‖v̂(·, t)‖+‖ŝ(·, t)‖ and γ̄1 maxj∈{1,...,N}
{ā2j , b̄2j}, γ̄2 maxj∈{1,...,N}{ā2j , b̄2j} being positive constants,
we obtain the uniform ultimate boundedness of ‖ŵ(·, t)‖+
‖ẑ(·, t)‖. Recalling Lemma 1, property 2) is obtained.

The proof is complete.

VII. SIMULATION FOR FLEXIBLE-GUIDE ELEVATOR

A. Model of the Mining Cable Elevator With Flexible
Guides

1) Model and Parameters: For lateral vibrations, an important
factor of influence is the interaction between the cage and
the flexible guides. The elastic support of flexible guides is
approximated as a spring–damper system, i.e., as a viscoelastic
guide [23], [32], where the stiffness and damping coefficients
kc and cd are not known exactly (see Fig. 2). The wave PDE-
modeled lateral vibration dynamics of the mining cable elevator
are given by

ρutt = T (x)uxx(x, t) + T ′(x)ux(x, t)− c̄ut(x, t) (121)

TABLE II
PHYSICAL PARAMETERS OF THE MINING CABLE ELEVATOR

Mcutt(0, t) = −kcu(0, t)− cdut(0, t) + T (0)ux(0, t) + d(t)
(122)

T (l(t))ux(l(t), t) = −U(t) (123)

where u(x, t) denotes the lateral vibration displacements along
the cable shown in Fig. 2, and x ∈ [0, l(t)] are the positions
along the cable in a moving coordinate system associated with
the motion l(t), with the origin located at the cage. The function
T (x) =Mcg + xρg is the static tension along the cable and ρ is
the linear density of the cable. The coefficient c̄ is the material
damping of the cable. The signal d(t) is the uncertain airflow
disturbance [31] acting at the cage. The constants kc and cd
are the unknown equivalent stiffness and damping coefficients
of the viscoelastic guide. The modeling process of the lateral
vibration dynamics of the mining cable elevator (121)–(123) is
based on [7]. The values of the physical parameters of the mining
cable elevator tested in the simulation are shown in Table II.

By applying the Riemann transformations z(x, t) = ut

(x, t)−
√

T (x)
ρ ux(x, t), w(x, t) = ut(x, t) +

√
T (x)
ρ ux(x, t)

and defining X(t) = [x1(t), x2(t)]
T = [u(0, t), ut(0, t)]

T ,
which physically means the lateral displacement and velocity
of the cage, (121)–(123) is converted into the 2× 2 coupled
transported PDE–ODE model given by (1)–(5) with the
coefficients defined as

q1(x) = q2(x) =

√
T (x)

ρ
, c1(x) = c3(x) =

−c̄
2ρ

− T ′(x)
4
√
ρT (x)

(124)

c2(x) = c4(x) =
−c̄
2ρ

+
T ′(x)

4
√
ρT (x)

, p1 = p2 = 1 (125)

A =

[
0 1

− kc

Mc

−cd−
√
Mcρg

Mc

]
, B =

[
0√
ρg
Mc

]
(126)

B1 =

[
0
1

Mc

]
, C = [0, 2]. (127)

The matricesA and B in (126) satisfy Assumption 1. It should
be noted that the control input designed based on (1)–(5) with

the above coefficients should be multiplied by −
√

ρT (l(t))

2 in
order to convert the input U(t) in (5) into a control force in the
practical mining cable elevator, i.e., into the control input U(t)
in the boundary condition (123) in the wave PDE model (121)–
(123). In the practical mining cable elevator, l(t) is obtained by
the product of the radius and the angular displacement of the
rotating drum driving the cable, where the angular displacement
is measured by the angular displacement sensor at the drum.

2) Uncertainties: The unknown damping coefficient and stiff-
ness coefficient (with known bounds) shown in Fig. 2 of the flex-
ible guide are cd = 0.4 and kc = 1000 in (126). The unknown
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disturbance d(t) in (1) is modeled as d(t) = a1 cos(
π
8 t) +

b1 sin(
π
8 t), which is a specific case in Assumption 2, where

a1 = 5 and b1 = 2 are unknown amplitudes. We assume that
we only know their bounds ā1 and b̄1 of 10 and 5 in Assumption
2, respectively.

The target system matrix of the ODE is set as

Am =

(
0 1

−0.73 −2.25

)
(128)

whose eigenvalues are −1.8 and − 0.4. According to the un-
known system matrix A in (126), the target system matrix
Am in (128), and (10), we know that the (unknown) ideal
control parameters k1 and k2 are −9 and −30, respectively. The
known bounds of unknown control parameters k1 and k2 are
set as [−10, 0] and [−40, 0], respectively, considering that the
bounds of cd and kc in A are known. The parameters γc1, γc2,
γa1, and γb1 in the adaptive law are chosen as 2, 6.8, 1.2, and
0.6, respectively.

3) Initial Conditions and Moving Boundary: The ini-
tial conditions are given as w(x, 0) = 0.2 sin(2πx/L),
z(x, 0) = 0.3 sin(3πx/L), x2(0) = 0.5w(0, 0) + 0.5z(0, 0) =
0, and x1(0) = 0, which satisfies the initial conditions in The-
orem 1. The time-varying cable length l(t) is bounded as
0 ≤ l(t) ≤ L, where L = 2000 m is the maximum length, i.e.,
Assumption 3 is satisfied. The hoisting velocity curve is shown
in [25, Fig. 2]. The maximum velocity of the moving boundary,
i.e., maximum hoisting velocity v̄max given in Table II, satisfies
Assumption 4 by recalling q1(x) and q2(x) in (124).

B. Numerical Methods

The simulation is conducted based on (1)–(5) with the coeffi-
cients (124)–(126). In the simulation program, the closed-loop
system on the time-varying domain [0, l(t)] is converted to the
one on the fixed domain [0,1] with time-varying coefficients
via introducing a new variable �1 = x/l(t), where the hoisting
trajectory l(t) is a predetermined time-varying function, and
then, the computation for the plant and observer is conducted
using the finite-difference method. The obtained responses are
then represented back in the domain [0, l(t)], as shown in this
section. The performance of the closed-loop system depends on
the step lengths chosen in the finite-difference method. Here, we
choose the step sizes of t and �1 as 0.001 and 0.05, respectively.
The approximate solutions of the kernel PDEs (65)–(72) are
also solved by the finite-difference method, where, in addition
to �1 = x/l(t) mentioned above, another variable �2 = y/l(t) is
introduced, and the lower triangular domain 0 ≤ �2 ≤ �1 ≤ 1 is
discretized as a grid with the uniformed interval of 0.05. Notice
that the derivatives on the left-hand side of (66) and (69) onx = y
are represented by a finite-difference scheme in the direction of
the information flow, i.e., along the line x = y, for the sake of
avoiding using the points outside the domain when performing
the finite-difference method [3]. The approximate solutions of
the kernel PDEs (82)–(85) are obtained with a similar process.
For the approximate solutions of the kernel PDEs (28)–(35),
the similar process is conducted on the upper triangular domain
0 ≤ �1 ≤ �2 ≤ 1.

C. Simulation Results

We compare the performance of the proposed controller with a
traditional proportional–derivative (PD) controller [19], which
is defined as Upd(t) = −800x1(t)− 3400x2(t)− p2z(l(t), t),

Fig. 3. Responses of x1(t).

Fig. 4. Responses of x2(t).

Fig. 5. Responses of PDE states w(l(t)/2, t) and z(l(t)/2, t) under
the proposed control.

Fig. 6. Self-adjustment of the control parameter k̂1 to approach the
ideal value k1 = −9.

where the design parameters are chosen by trial and error, and the
term−p2z(l(t), t) is to compensate the proximal reflection term
in (5) for a fair comparison with the proposed controller. It can
be seen in Figs. 3 and 4 that the proposed control guarantees fast
reduction of the lateral vibration amplitude and velocity of the
cage. Moreover, the proposed controller suppresses the lateral
vibration amplitude and velocity of the cage faster than the PD
controller. Similar results are observed in the PDE domain, i.e.,
the closed-loop responses at the midpoint of the spatial domain,
shown in Fig. 5.

Figs. 6–9 show that our adaptive laws (89)–(94) can adjust
online the control parameters k̂1(t) and k̂2(t) to approach the
ideal values k1 and k2 and estimate the unknown disturbance
amplitudes a1 and b1. It is shown that the observer errors of the
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Fig. 7. Self-adjustment of the control parameter k̂2 to approach the
ideal value k2 = −30.

Fig. 8. Estimation â1 of the disturbance amplitude a1 = 5.

Fig. 9. Estimation b̂1 of the disturbance amplitude b1 = 2.

Fig. 10. Responses of observer errors.

Fig. 11. Control input.

PDE state at the midpoint of the time-varying spatial domain
are convergent to zero in Fig. 10. The PD and proposed control
inputs applied in (5) are given in Fig. 11. The proposed control
input is not completely convergent to zero because the estimates
for the harmonic disturbance are not zero in the control law.

VIII. CONCLUSION

In this article, we proposed an adaptive output-feedback
boundary control of coupled hyperbolic PDEs with spatially
varying coefficients and on a time-varying domain, whose un-
controlled boundary is coupled by a disturbed ODE, where
multiple parameters in the state matrix are unknown, and the
amplitudes of the harmonic disturbance are unknown as well.
The asymptotic convergence to zero of the ODE state and
the boundedness of the PDE states were proved via Lyapunov
analysis. In numerical simulation, the proposed controller was
applied in a mining cable elevator to suppress lateral vibrations
during hoisting a disturbed cage moving along a flexible guide.

The proposed design can also be applied in the torsional
vibration control of off-shore oil drilling [30] with an uncertain
stick-slip instability and disturbances at the bit, anticollocated
with the control input at the rotary table on the floating vessel,
where active heave compensation [17] is used to isolate the
rotary table from the wave-introduced heave motion of the
floating vessel.

In future work, the hydraulic actuator dynamics and com-
pensation of signal delay [26] will be incorporated into the
control design. The input-to-state stability [20] with respect to
the bounds of the disturbances and the situation that unknown
parameters also exist in the input matrixB of the ODE will also
be considered.

APPENDIX A
CALCULATING CONDITIONS OF KERNELS φ̄(x, y), φ̌(x, y),

ψ̄(x, y), AND ψ̌(x, y)

Substituting (22) and (23) into (19) along (24)–(27), we get

z̃t(x, t) + q1(x)z̃x(x, t)− c1(x)z̃(x, t)

− c2(x)w̃(x, t) + Φ2(x, t)z̃(l(t), t)

=

∫ l(t)

x

[−q1(x)φ̄x(x, y)− c1(y)φ̄(x, y) + c1(x)φ̄(x, y)

+ c2(x)ψ̄(x, y)− q1(y)φ̄y(x, y)− q1
′(y)φ̄(x, y)]α̃(y, t)dy

+

∫ l(t)

x

[φ̌y(x, y)q2(y) + φ̌(x, y)q2
′(y)− q1(x)φ̌x(x, y)

+ (c1(x)− c4(y))φ̌(x, y) + c2(x)ψ̌(x, y)]β̃(y, t)dy

− [l̇(t)φ̄(x, l(t))− Φ2(x, t)− q1(l(t))φ̄(x, l(t))]α̃(l(t), t)

+ [φ̌(x, x)(q2(x) + q1(x))− c2(x)]β̃(x, t) = 0. (A1)

Substituting (22) and (23) into (20) along (24)–(27), we obtain

w̃t(x, t)− q2(x)w̃x(x, t)− c3(x)z̃(x, t)

− c4(x)w̃(x, t) + Φ3(x, t)z̃(l(t), t)

= [−c3(x)− (q1(x) + q2(x))ψ̄(x, x)]α̃(x, t)

+

∫ l(t)

x

(
q2(x)ψ̌x(x, y) + ψ̌y(x, y)q2(y) + c3(x)φ̌(x, y)

+ (c4(x)− c4(y))ψ̌(x, y) + ψ̌(x, y)q2
′(y)

)
β̃(y, t)dy

+

∫ l(t)

x

(
−q1(y)ψ̄y(x, y) + q2(x)ψ̄x(x, y)− q1

′(y)ψ̄(x, y)
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+ c3(x)φ̄(x, y) + (c4(x)− c1(y))ψ̄(x, y)

)
α̃(y, t)dy

+

(
Φ3(x, t)− l̇(t)ψ̄(x, l(t))+q1(l(t))ψ̄(x, l(t))

)
α̃(l(t), t)

= 0. (A2)

Inserting (22) and (23) into (18) and recalling (24), we obtain

z̃(0, t) + p1w̃(0, t) = −
∫ l(t)

0

(p1ψ̄(0, y) + φ̄(0, y))α̃(y, t)dy

−
∫ l(t)

0

(p1ψ̌(0, y) + φ̌(0, y))β̃(y, t)dy = 0. (A3)

For (A1)–(A3) to hold, the conditions of kernels are obtained
as (28)–(35).

APPENDIX B
CALCULATING THE CONDITIONS OF KERNELS λ̄(x, y),

λ̌(x, y), ϑ̄(x, y), AND ϑ̌(x, y)

Substituting (58) and (59) into (62) along (44)–(48), we obtain

α̂t(x, t) + q1(x)α̂x(x, t)− c1(x)α̂(x, t)

+λ̄(x, 0)q1(0)CX(t)−
(
Γ1t(x, t)−

∫ x

0

λ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

λ̌(x, y)Γt(y, t)dy

)
Z(t)

=
(
λ̌(x, 0)q2(0) + λ̄(x, 0)q1(0)p1

)
v̂(0, t)

+
(
c2(x)− (q1(x) + q2(x))λ̌(x, x)

)
v̂(x, t)

+

∫ x

0

(
λ̌y(x, y)q2(y) + λ̌(x, y)q2

′(y)− λ̄(x, y)c2(y)

+ (c1(x)− c4(y))λ̌(x, y)− q1(x)λ̌x(x, y)

)
v̂(y, t)dy

−
∫ x

0

(
λ̌(x, y)c3(y) + λ̄y(x, y)q1(y) + λ̄(x, y)q1

′(y)

+ λ̄(x, y)(c1(y)− c1(x)) + q1(x)λ̄x(x, y)

)
ŝ(y, t)dy = 0.

(B1)

Substituting (58) and (59) into (63) along (44)–(48), we obtain

β̂t(x, t)− q2(x)β̂x(x, t)− c4(x)β̂(x, t)

+ ϑ̄(x, 0)q1(0)CX(t) +

(∫ x

0

ϑ̌(x, y)Γt(y, t)dy

+

∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy − Γt(x, t)

)
Z(t)

=
(
c3(x) + (q1(x) + q2(x))ϑ̄(x, x)

)
ŝ(x, t)

+
(
ϑ̌(x, 0)q2(0) + ϑ̄(x, 0)q1(0)p1

)
v̂(0, t)

+

∫ x

0

(
ϑ̌y(x, y)q2(y) + ϑ̌(x, y)q2

′(y)− ϑ̄(x, y)c2(y)

+ q2(x)ϑ̌x(x, y) + (c4(x)− c4(y))ϑ̌(x, y)

)
v̂(y, t)dy

−
∫ x

0

(
ϑ̌(x, y)c3(y) + ϑ̄y(x, y)q1(y) + ϑ̄(x, y)q1

′(y)

− q2(x)ϑ̄x(x, y) + ϑ̄(x, y)(c1(y)− c4(x))

)
ŝ(y, t)dy = 0.

(B2)
Equations (60) and (61) hold straightforward because of

α̂(0, t) = ŝ(0, t) and β̂(0, t) = v̂(0, t) derived from (58) and
(59). Equation (64) is obtained by using (48) and (58). According
to (B1) and (B2), the kernels λ̄(x, y), λ̌(x, y), ϑ̄(x, y), and
ϑ̌(x, y) should satisfy (65)–(72).

APPENDIX C
CALCULATING CONDITIONS OF KERNELS N̂(x, y; K̂(t)) AND

D(x; K̂(t))

Inserting (73) at x = 0 into (60) and matching with (75)

Ẋ(t) = AmX(t)−B(K −D(0; K̂(t)))X(t)

+Bη̂(0, t) +B1d̃(t)

= AmX(t) +Bη̂(0, t)−BK̃(t)X(t) +B1d̃(t) (C1)

we obtain the condition for D(0; K̂(t)). Equation (76) holds
directly by inserting (73) at x = 0 into (61).

Inserting (73) into (78), recalling (75) and (63), we get

η̂t(x, t)− q2(x)η̂x(x, t)− c4(x)η̂(x, t)

−
[
Γt(x, t)−

∫ x

0

ϑ̌(x, y)Γt(y, t)dy−
∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

N̂(x, y; K̂(t))

(
−
∫ y

0

ϑ̌(y, z)Γt(z, t)dz

−
∫ y

0

ϑ̄(y, z)Γ1t(z, t)dz + Γt(y, t)

)
dy

]
Z(t)

−
(
D(x; K̂(t))BK̃(t)− ˙̂

K(t)DK̂(t)(x; K̂(t))
)
X(t)

+
˙̂
K(t)R(x, t) +D(x; K̂(t))B1d̃(t)

= β̂t(x, t)−
∫ x

0

N̂(x, y; K̂(t))β̂t(y, t)dy − ˙̂
K(t)R(x, t)

−D(x; K̂(t))Ẋ(t)− ˙̂
K(t)DK̂(t)(x; K̂(t))X(t)

− q2(x)β̂x(x, t) + q2(x)

∫ x

0

N̂x(x, y; K̂(t))β̂(y, t)dy

+ q2(x)N̂(x, x, K̂(t))β̂(x, t) + q2(x)D
′(x; K̂(t))X(t)

− c4(x)β̂(x, t) + c4(x)

∫ x

0

N̂(x, y; K̂(t))β̂(y, t)dy

+ c4(x)D(x; K̂(t))X(t)

−
[
Γt(x, t)−

∫ x

0

ϑ̌(x, y)Γt(y, t)dy−
∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

N̂(x, y; K̂(t))

(
−
∫ y

0

ϑ̌(y, z)Γt(z, t)dz

−
∫ y

0

ϑ̄(y, z)Γ1t(z, t)dz + Γt(y, t)

)
dy

]
Z(t)

−
(
D(x; K̂(t))BK̃(t)− ˙̂

K(t)DK̂(t)(x; K̂(t))
)
X(t)

+
˙̂
K(t)R(x, t) +D(x; K̂(t))B1d̃(t)

=
(
q2(0)N̂(x, 0, K̂(t))−D(x; K̂(t))B

)
η̂(0, t)
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−
(
− q2(x)D

′(x; K̂(t)) +D(x; K̂(t))(Am − c4(x))

+ ϑ̄(x, 0)q1(0)C −
∫ x

0

N̂(x, y; K̂(t))ϑ̄(y, 0)q1(0)Cdy

− q2(0)N̂(x, 0, K̂(t))D(0; K̂(t))

)
X(t)

+

∫ x

0

(
q2(y)N̂y(x, y; K̂(t)) + q2

′(y)N̂(x, y; K̂(t))

+ q2(x)N̂x(x, y; K̂(t))

)
β̂(y, t)dy = 0. (C2)

For (C2) to hold and recalling the condition derived from (C1),
conditions of kernels N̂ and D are obtained as (82)–(85).

APPENDIX D
CALCULATING V̇ (t) (102)

Taking the derivative of (101) along (75)–(79), we obtain

V̇ (t) ≤ 1

1 + Ω(t)

[
− λmin(Q)|X(t)|2 + 2XTPBη̂(0, t)

+ 2XTPB1d̃(t)− 2K̃(t)X(t)BTPX(t)

+ ra

∫ l(t)

0

eδxη̂(x, t) (q2(x)η̂x(x, t) + c4(x)η̂(x, t)) dx

+ rb

∫ l(t)

0

e−δxα̂(x, t) (−q1(x)α̂x(x, t) + c1(x)α̂(x, t)) dx

+
l̇(t)

2
rbe

−δl(t)α̂(l(t), t)2 − ra

∫ l(t)

0

eδxη̂(x, t)

×
(
D(x; K̂(t))B1d̃(t)−D(x; K̂(t))BK̃(t)X(t)

)
dx

+ra

∫ l(t)

0

eδxη̂(x, t)
(
HbZ(t)− ˙̂

K
(
DK̂X(t) +R(x, t)

))
dx

+ rb

∫ l(t)

0

e−δxα̂(x, t) (HaZ(t)− λ̄(x, 0)q1(0)CX(t)) dx

]

+ K̃(t)Γ−1
c

˙̃K(t)T +

N∑
j=1

1

γaj
˙̃aj(t)ãj(t) +

N∑
j=1

1

γbj

˙̃
bj(t)b̃j(t)

where

Ha = Γ1t(x, t)−
∫ x

0

λ̄(x, y)Γ1t(y, t)dy

−
∫ x

0

λ̌(x, y)Γt(y, t)dy (D1)

Hb = −
∫ x

0

ϑ̌(x, y)Γt(y, t)dy −
∫ x

0

ϑ̄(x, y)Γ1t(y, t)dy

+ Γt(x, t)−
∫ x

0

N̂(x, y; K̂(t))

[
−
∫ y

0

ϑ̌(y, z)Γt(z, t)dz

−
∫ y

0

ϑ̄(y, z)Γ1t(z, t)dz + Γt(y, t)

]
dy. (D2)

Using integration by parts and ˙̃K(t) = − ˙̂
K(t), ˙̃aj(t) =

− ˙̂aj(t), and ˙̃
bj(t) = − ˙̂

bj(t), recalling (76), applying the Young
and Cauchy–Schwarz inequalities, one obtains

V̇ (t) ≤ 1

1 + Ω(t)

[
−
(
3

4
λmin(Q)− q1(0)rbd̄

2

− q1(0)
2

2
Lrbf̄

2 |C|2
)
|X(t)|2 + 8

λmin(Q)
|PB|2η̂(0, t)2

+ 2XTPB1d̃(t)− 2K̃(t)X(t)BTPX(t)

−
(
1

2
q2(0)ra − q1(0)rbp

2
1

)
η̂(0, t)2

−
(
1

2
δq2ra − rac4 − 1

2
raq′2

)∫ l(t)

0

eδxη̂(x, t)2dx

− 1

2
(q1 − l̇(t))rbe

−δLα̂(l(t), t)2

−
(
1

2
q1δrb − rbc1 − 1

2
rb − 1

2
rbq′1

)∫ l(t)

0

e−δxα̂(x, t)2dx

+ ra

∫ l(t)

0

eδxη̂(x, t)
(
HbZ(t)− ˙̂

K
(
DK̂X(t) +R(x, t)

))
dx

+ rb

∫ l(t)

0

e−δxα̂(x, t)HaZ(t)dx

− ra

∫ l(t)

0

eδxη̂(x, t)
(
D(x; K̂(t))B1d̃(t)

−K̃(t)X(t)BTD(x; K̂(t))T
)
dx

]
− K̃(t)Γ−1

c
˙̂
K(t)T

−
N∑
j=1

1

γaj
˙̂aj(t)ãj(t)−

N∑
j=1

1

γbj

˙̂
bj(t)b̃j(t) (D3)

where f̄ = max
0≤x≤L

{|̄λ(x, 0)|} and d̄ = max
(x,k̂i(t))∈[0,L]×[ki,k̄i]

{|C − p1D(x; K̂(t))|}.
From (D3), we arrive at (102).
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