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Abstract— This paper develops an exponentially convergent
observer for a reaction-advection-diffusion integro-partial dif-
ferential equation (IPDE) with time-dependent coefficients, via
the PDE backstepping method. For the (I)PDEs with time-
dependent coefficients, the backstepping transform gain kernel
system is an (integral) evolution equation, and its coefficients
also depend on time, which makes the derivation of the well-
posedness of its solution to this (I)PDE nontrivial. The majorant
argument is powerful in dealing with this difficulty, which is
utilized in some existing literatures and is also employed in
this study. To the best of the authors’ knowledge, there are
no existing results of observer design for the class of IPDEs
with time-dependent, possibly unbounded, coefficients (which
have possibly unbounded derivatives) on infinite time interval.
Indeed, all the previous references for stabilization or observer
design problem of an PDE with time-dependent coefficients
consider a finite time interval, or the coefficients (and their
derivatives) are required to be bounded with respect to the
time variable. This paper could thus serve as a starting point
for the study of these IPDEs.

I. INTRODUCTION

Inspired by a state-of-charge (SoC) estimation problem
for lithium-ion batteries, in which the PDE coefficients of
the models are time-dependent [1], we consider a reaction-
advection-diffuison IPDE with space-dependent and time-
dependent coefficients. The problem is to design an observer
for this system, and we employ the method of PDE back-
stepping.

PDE backstepping method is a systematic approach for
stabilizing unstable (I)PDEs and designing observers for
(I)PDEs, see [2], in which backstepping boundary controllers
and observers are designed for some unstable parabolic,
hyperbolic PDEs, etc.. Using the backstepping design, ex-
ponential stabilization of the resulting controlled system
and exponential convergence of the resulting observer to
the original system can be achieved. When applying this
approach, the backstepping transformation kernel is required
to satisfy another (I)PDE. For the (I)PDE system with time-
dependent coefficients, this kernel (I)PDE is an (integral)
evolution equation. Since its coefficients also depend on time,
this introduces much difficulties into the discussion about the
well-posedness of its solution.

There are a few existing literatures devoted to solving
the stabilization or observer design problem of an PDE
with time-dependent coefficients, and most of them deal
with this difficulty by means of a majorant argument. The
majorant technique is also utilized in this study, and the main
difference and improvement from the previous results lies
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in the following two aspects. 1). Many previous references
are considering a finite time interval. For example, [3], [4]
and [5, Section 4] consider the problems related to reaction-
(advection)-diffusion PDEs with a time-dependent reaction
coefficient. But in this paper, we consider an infinite time
interval, which is more general. In particular, the result can
also be applied for the cases of finite time intervals. 2). More
importantly, most of the previous results are based on some
assumptions, such as the coefficients are inside some Gevrey
class of functions, which are smooth but not necessarily
analytic [6], [7]. In these cases, the coefficients (and their
derivatives) are required to be bounded with respect to
the time variable. For example, when the function f (·, t)
is defined on an interval (0,T ), then for a fixed α , they
require the existence of constants Q,R> 0 such that for every
positive integer k,

sup
t∈(0,T )

∥∥∥∥dk f
dtk

∥∥∥∥≤ Q
(k!)α

Rk .

This limitation is unlocked in this study, more precisely, we
only require the above system coefficients to satisfy some
majorant inequalities, for which the coefficients and their
derivatives do not necessarily need to be bounded.

The outline of this paper is as follows. In Section II, the
system under consideration is presented. In Section III, a
backstepping state observer is designed and the observer
error system is proved to be exponentially stable with an
arbitrarily designated decay rate. It is worth noting that,
because the kernel function system of the backstepping trans-
form also has time-dependent coefficients, deriving existence
and regularity of its solution is not trivial. Indeed, this is
the main difficulty of solving our problem. Under some
regularity assumptions and majorant arguments (dominant)
of the system coefficients, existence and regularity of the
solution to the system is proved in this section. Finally, some
conclusion and possible future work are given in Section IV .

II. PROBLEM FORMULATION

We would like to consider a general one-dimensional
linear reaction-advection-diffusion IPDE. Since the advection
term can be transformed into zero [2, Section 4.8], we focus
on considering the following equation with zero advection:

ut(x, t) = uxx(x, t)+ c(x, t)u(x, t)

+
∫ x

0
f (x,y, t)u(y, t)dy+g(x, t)u(0, t), x ∈ (0,1), t > 0 (1)

ux(0, t) = j(t)u(0, t), t > 0 (2)
ux (1, t)− e(t)u(1, t) = h(t)U(t), t > 0 (3)
u(x,0) = u0(x), x ∈ [0,1], (4)
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where u(x, t), x ∈ [0,1], t ∈ [0,∞) is the state variable; U(t)
is a (known) control input; u(0, t) is the measured output.
Our objective is to design an anti-collocated observer to
reconstruct and online monitor the full state from the limited
available information u(0, t).

Remark 1: For the case when the system diffusivity is
also dependent on both time and space evolution, we could
employ a one-to-one analytic transformation to map the
system into a system with a uniform coefficient 1, see, [3].

Assumption 1: All the system coefficient functions
c(x, t), f (x,y, t), g(x, t), j(t), e(t), h(t) with
x ∈ [0,1],y ∈ [0,x], t ∈ [0,∞) are known.

Assumption 2: The functions c(x, t), f (x,y, t),e(t) in (1)-
(4) are smooth and satisfy the following dominating inequal-
ities:

|c(x, t)|Î Cc1eCc2t (5)

| f (x,y, t)|Î C f 1eC f 2t (6)

|e(t)|Î Ce1eCe2t (7)

with respect to t, uniformly for x and y, in their respective
sub-domains of the domain {(x,y, t) | 0≤ y≤ x≤ 1, t ≥ 0},
where Cc1,Cc2,C f 1,C f 2,Ce1,Ce2 are positive constants.

Remark 2: For two functions f1(t), f2(t) of t, the symbol
f1 Î f2 denotes the following relation between f1 and f2:

| f1(t)| ≤ f2(t);
∣∣∣∣dn f1(t)

dtn

∣∣∣∣≤ dn f2(t)
dtn , n = 1,2, · · · . (8)

Moreover, we call f2 a dominant for f1 (cf. [8]).

III. OBSERVER DESIGN

A. Backstepping boundary observer design for the u-system

1) The û-observer system and its convergence: Consider
an anti-collocated Luenberger-type observer for the IPDE
system (1)− (4) with boundary state error injection:

ût(x, t) = ûxx(x, t)+ c(x, t)û(x, t)

+
∫ x

0
f (x,y, t)û(y, t)dy+g(x, t)u(0, t)

+ p1(x, t)(u(0, t)− û(0, t)), x ∈ (0,1), t > 0 (9)
ûx(0, t) = j(t)u(0, t)+ p10(t)(u(0, t)− û(0, t)), t > 0 (10)
ûx (1, t)− e(t)û(1, t) = h(t)U(t), t > 0 (11)
û(x,0) = û0(x), x ∈ [0,1], (12)

where the output injection functions p1(x, t) and p10(t) are
to be determined. Then, the observer error

ũ(x, t) = u(x, t)− û(x, t) (13)

satisfies the following IPDE:

ũt(x, t) = ũxx(x, t)+ c(x, t)ũ(x, t)+
∫ x

0
f (x,y, t)ũ(y, t)dy

− p1(x, t)ũ(0, t), x ∈ (0,1), t > 0 (14)
ũx(0, t) =−p10(t)ũ(0, t), t > 0 (15)
ũx (1, t)− e(t)ũ(1, t) = 0, t > 0 (16)
ũ0(x) = u0(x)− û0(x),x ∈ [0,1]. (17)

In order to find the suitable output injection gains, the
PDE backstepping method [2] is employed. We would like
to find an invertible continuous transformation

w̃(x, t) = ũ(x, t)−
∫ x

0
p̃(x,y, t)ũ(y, t)dy (18)

so that the new variable w̃ satisfies the following exponen-
tially stable system

w̃t(x, t) = w̃xx(x, t)+λ w̃(x, t), x ∈ (0,1), t > 0 (19)
w̃x(0, t) = 0, t > 0 (20)

w̃x(1, t)+
1
2

w̃(1, t) = 0, t > 0, (21)

where λ < 1
4 is a free parameter which could be chosen to

determine the observer’s convergence rate.
Theorem 1: If choosing λ < 1/4, then for any initial

value w̃(·,0) ∈ L2(0,1), the w̃-system (19)− (21) has an
exponential stable (mild) solution w̃(·, t) ∈ L2(0,1). If the
boundary compatibility condition is also satisfied, then the
w̃-system (19)− (21) admits a classical solution.

Proof: Consider the Lyapunov function

E(t) =
1
2
‖w̃(·, t)‖2

L2(0,1), (22)

then we could get

Ė(t)≤−2ρ̃E(t), ρ̃ =
1
4
−λ , (23)

where the Poincaré inequality is employed. Thus, exponential
stability of the w̃-system (19)−(21) is proved with λ < 1/4.

By calculation and analysis, we get that the kernel function
p̃(x,y, t) in the transformation (18) needs to satisfy the
following IPDE system:

p̃t(x,y, t) = p̃xx(x,y, t)− p̃yy(x,y, t)+(λ − c(y, t)) p̃(x,y, t)

−
∫ x

y
p̃(x,δ , t) f (δ ,y, t)dδ + f (x,y, t) (24)

p̃(x,x, t) =
λ

2
(x−1)+

1
2

∫ 1

x
c(y, t)dy+ e(t)+

1
2

(25)

p̃x(1,y, t) =−
1
2

p̃(1,y, t), (26)

for which the domain is T = {(x,y, t) | 0≤ y≤ x≤ 1, t ≥ 0},
and the output injection gains are chosen to satisfy

p1(x, t)−
∫ x

0
p̃(x,y, t)p1(y, t)dy =−p̃y(x,0, t)

− p̃(x,0, t)
(

λ

2
− 1

2

∫ 1

0
c(y, t)dy− e(t)− 1

2

)
(27)

p10(t) =−p̃(0,0, t)

=
λ

2
− 1

2

∫ 1

0
c(y, t)dy− e(t)− 1

2
. (28)

2) Existence and regularity of the backstepping transfor-
mation and the observer output injection gains:

First, we prove the existence and regularity of the solution
to the system (24)-(26), which gives the existence and
regularity of the kernel function p̃(x,y, t), and thus, also the
existence and regularity of the transformation (18).
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(Step One.) To derive the existence and regularity of the
kernel function p̃(x,y, t), we first transform the system (24)−
(26) into an equivalent integro-differential equation (IDE).

Let ξ = x+y, η = x−y and q̃(ξ ,η , t) = p̃(x,y, t), then we
have from (24)− (26) that

q̃t(ξ ,η , t) = 4q̃ξ η(ξ ,η , t)+
(

λ − c
(

ξ −η

2
, t
))

q̃(ξ ,η , t)

−
∫ (ξ+η)/2

(ξ−η)/2
q̃
(

ξ +η

2
+δ ,

ξ +η

2
−δ , t

)
f
(

δ ,
ξ −η

2
, t
)

dδ

+ f
(

ξ +η

2
,

ξ −η

2
, t
)

(29)

q̃(ξ ,0, t) =
λ

2

(
ξ

2
−1
)
+

1
2

∫ 1

ξ/2
c(y, t)dy+ e(t)+

1
2

(30)

q̃ξ (ξ ,2−ξ , t)+ q̃η(ξ ,2−ξ , t) =−1
2

q̃(ξ ,2−ξ , t), (31)

that is,

q̃t(σ ,τ, t) = 4q̃στ(σ ,τ, t)+
(

λ − c
(

σ − τ

2
, t
))

q̃(σ ,τ, t)

−
∫ (σ+τ)/2

(σ−τ)/2
q̃
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)
f
(

δ ,
σ − τ

2
, t
)

dδ

+ f
(

σ + τ

2
,

σ − τ

2
, t
)

(32)

q̃(σ ,0, t) =
λ

2

(
σ

2
−1
)
+

1
2

∫ 1

σ/2
c(y, t)dy+ e(t)+

1
2

(33)

q̃σ (σ ,2−σ , t)+ q̃τ(σ ,2−σ , t) =−1
2

q̃(σ ,2−σ , t). (34)

From (32), we have

q̃στ(σ ,τ, t) =
1
4

[
q̃t(σ ,τ, t)−

(
λ − c

(
σ − τ

2
, t
))

q̃(σ ,τ, t)

+
∫ (σ+τ)/2

(σ−τ)/2
q̃
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)
f
(

δ ,
σ − τ

2
, t
)

dδ

− f
(

σ + τ

2
,

σ − τ

2
, t
)]

. (35)

Integrate (35) with respect to τ from 0 to η and use the
boundary condition (33), then

q̃σ (σ ,η , t) =
1
4

(
λ − c

(
σ

2
, t
))

+
1
4

∫
η

0

[
q̃t(σ ,τ, t)−

(
λ − c

(
σ − τ

2
, t
))

q̃(σ ,τ, t)

+
∫ (σ+τ)/2

(σ−τ)/2
q̃
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)
f
(

δ ,
σ − τ

2
, t
)

dδ

− f
(

σ + τ

2
,

σ − τ

2
, t
)]

dτ. (36)

Integrate (36) with respect to σ from ξ to 2−η , then we

get

q̃(ξ ,η , t) = q̃(2−η ,η , t)− 1
4

λ (2−ξ −η)

+
1
4

∫ 2−η

ξ

c
(

σ

2
, t
)

dσ − 1
4

∫ 2−η

ξ

∫
η

0

[
q̃t(σ ,τ, t)

−
(

λ − c
(

σ − τ

2
, t
))

q̃(σ ,τ, t)

+
∫ (σ+τ)/2

(σ−τ)/2
q̃
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)
f
(

δ ,
σ − τ

2
, t
)

dδ

− f
(

σ + τ

2
,

σ − τ

2
, t
)]

dτdσ . (37)

To find q̃(2−η ,η , t), from (31), we can derive

∂

∂ξ
q̃(ξ ,2−ξ , t) = 2q̃ξ (ξ ,2−ξ , t)+

1
2

q̃(ξ ,2−ξ , t). (38)

Let σ = ξ ,η = 2−ξ in (36), then (38) can be written in the
form of an integro-differential equation for ξ as follows:

∂

∂ξ
q̃(ξ ,2−ξ , t)

=
1
2

q̃(ξ ,2−ξ , t)+
1
2

(
λ − c

(
ξ

2
, t
))

+
1
2

∫ 2−ξ

0

[
q̃t(ξ ,τ, t)−

(
λ − c

(
ξ − τ

2
, t
))

q̃(ξ ,τ, t)

+
∫ (ξ+τ)/2

(ξ−τ)/2
q̃
(

ξ + τ

2
+δ ,

ξ + τ

2
−δ , t

)
f
(

δ ,
ξ − τ

2
, t
)

dδ

− f
(

ξ + τ

2
,

ξ − τ

2
, t
)]

dτ. (39)

Let ξ = 2 in (30), then

q̃(2,0, t) = e(t)+
1
2
, (40)

and thus, from (39), we have

q̃(ξ ,2−ξ , t) =
(

e(t)+
1
2

)
e

1
2 (ξ−2)

−
∫ 2

ξ

e
1
2 (ξ−s)

{
1
2

(
λ − c

( s
2
, t
))

+
1
2

∫ 2−s

0

[
q̃t(s,τ, t)−

(
λ − c

(
s− τ

2
, t
))

q̃(s,τ, t)

+
∫ (s+τ)/2

(s−τ)/2
q̃
(

s+ τ

2
+δ ,

s+ τ

2
−δ , t

)
f
(

δ ,
s− τ

2
, t
)

dδ

− f
(

s+ τ

2
,

s− τ

2
, t
)]

dτ

}
ds, (41)
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and

q̃(2−η ,η , t) =
(

e(t)+
1
2

)
e−

1
2 η

−
∫ 2

2−η

e
1
2 (2−η−s)

{
1
2

(
λ − c

( s
2
, t
))

+
1
2

∫ 2−s

0

[
q̃t(s,τ, t)−

(
λ − c

(
s− τ

2
, t
))

q̃(s,τ, t)

+
∫ (s+τ)/2

(s−τ)/2
q̃
(

s+ τ

2
+δ ,

s+ τ

2
−δ , t

)
f
(

δ ,
s− τ

2
, t
)

dδ

− f
(

s+ τ

2
,

s− τ

2
, t
)]

dτ

}
ds. (42)

From (37) and (42), an IDE for q̃(ξ ,η , t) is obtained:

q̃(ξ ,η , t) = q̃0(ξ ,η , t)+F [q̃](ξ ,η , t), (43)

where q̃0 and F [q̃] are defined by

q̃0(ξ ,η , t) =
(

e(t)+
1
2

)
e−

1
2 η

− 1
2

∫ 2

2−η

e
1
2 (2−η−s)

[
λ − c

( s
2
, t
)

−
∫ 2−s

0
f
(

s+ τ

2
,

s− τ

2
, t
)

dτ

]
ds

− 1
4

λ (2−ξ −η)+
1
4

∫ 2−η

ξ

[
c
(

σ

2
, t
)

+
∫

η

0
f
(

σ + τ

2
,

σ − τ

2
, t
)

dτ

]
dσ (44)

and

F [q̃](ξ ,η , t) =−
∫ 2

2−η

e
1
2 (2−η−s)

× 1
2

∫ 2−s

0

[
q̃t(s,τ, t)−

(
λ − c

(
s− τ

2
, t
))

q̃(s,τ, t)

+
∫ (s+τ)/2

(s−τ)/2
q̃
(

s+ τ

2
+δ ,

s+ τ

2
−δ , t

)
× f

(
δ ,

s− τ

2
, t
)

dδ

]
dτds

− 1
4

∫ 2−η

ξ

∫
η

0

[
q̃t(σ ,τ, t)−

(
λ − c

(
σ − τ

2
, t
))

q̃(σ ,τ, t)

+
∫ (σ+τ)/2

(σ−τ)/2
q̃
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)
× f

(
δ ,

σ − τ

2
, t
)

dδ

]
dτdσ .

(45)

This IDE (43)-(45) is equivalent to the system (29)-(31).

(Step Two.) Next, we investigate the existence and regularity
of the solution to (43)-(45). To begin with, set

q̃n+1(ξ ,η , t) = F [q̃n](ξ ,η , t),n = 0,1,2, · · · , (46)

then the series

q̃(ξ ,η , t) =
∞

∑
n=0

q̃n(ξ ,η , t) (47)

is a solution to the IDE (43)-(45). Thus, a proof of this series’
convergence could show the existence of a solution q̃(ξ ,η , t).

Note that because of the partial derivative terms q̃t in the
IDE (43)-(45), the properties of the series (47) could be quite
complicated in general, and convergence may not hold in
many cases. However, under the Assumption 2, the series
could convergent to a continuous function in the domain,
which is to be proved.

From Assumpiton 2, it can be proved that there exists a
constant C such that∣∣q0(ξ ,η , t)

∣∣Î CeCt (48)

with respect to t, uniformly for (ξ ,η). In fact, we have∣∣q̃0(ξ ,η , t)
∣∣

≤
(

Ce1eCe2t +
1
2

)
e−

1
2 η

+
1
2

[(
|λ |+Cc1eCc2t)

η +C f 1eC f 2t η2

2

]
+

1
4

[(
|λ |+Cc1eCc2t)(2−ξ −η)+C f 1eC f 2t

η(2−ξ −η)

]
≤Ce1eCe2t +

1
2
+ |λ |+Cc1eCc2t +

3
4

C f 1eC f 2t

≤CeCt , (49)

where

C = max
{

1
2
+ |λ |+Cc1 +Ce1 +C f 1,1+Cc2 +Ce2 +C f 2

}
.

For any integer m≥ 1, we can also prove that∣∣∂ m
t q̃0(ξ ,η , t)

∣∣
≤Ce1Cm

e2eCe2te−
1
2 η

+
1
2

[
Cc1Cm

c2eCc2t
η +C f 1Cm

f 2eC f 2t η2

2

]
+

1
4

[
Cc1Cm

c2eCc2t(2−ξ −η)+C f 1Cm
f 2eC f 2t

η(2−ξ −η)

]
≤Ce1Cm

e2eCe2t +Cc1Cm
c2eCc2t +

3
4

C f 1Cm
f 2eC f 2t

≤Cm+1eCt = ∂
m
t
(
CeCt) . (50)

Assume that for any integer n≥ 0,

|q̃n(ξ ,η , t)|Î Cn+1e(n+1)Ct
(

3
2

)n (2−ξ )nηn

n!
, (51)

that is, for any integer m≥ 0,

|∂ m
t q̃n(ξ ,η , t)| ≤ (n+1)mCn+m+1e(n+1)Ct

(
3
2

)n (2−ξ )nηn

n!
,

(52)
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then, for any integer m≥ 0, from (46), we derive∣∣∂ m
t q̃n+1(ξ ,η , t)

∣∣
≤ 1

2

∫ 2

2−η

e
1
2 (2−η−s)

∫ 2−s

0

∣∣∂ m+1
t q̃n(s,τ, t)

∣∣dτds

+
1
2

∫ 2

2−η

e
1
2 (2−η−s)

∫ 2−s

0

[
|λ | |∂ m

t q̃n(s,τ, t)|

+

∣∣∣∣∂ m
t

(
c
(

s− τ

2
, t
)

q̃n(s,τ, t)
)∣∣∣∣]dτds

+
1
2

∫ 2

2−η

e
1
2 (2−η−s)

∫ 2−s

0

∫ (s+τ)/2

(s−τ)/2∣∣∣∣∣∂ m
t

[
q̃n
(

s+ τ

2
+δ ,

s+ τ

2
−δ , t

)
f
(

δ ,
s− τ

2
, t
)]∣∣∣∣∣dδdτds

+
1
4

∫ 2−η

ξ

∫
η

0

∣∣∂ m+1
t q̃n(σ ,τ, t)

∣∣dτdσ

+
1
4

∫ 2−η

ξ

∫
η

0

[
|λ | |∂ m

t q̃n(σ ,τ, t)|

+

∣∣∣∣∂ m
t

(
c
(

σ − τ

2
, t
)

q̃n(σ ,τ, t)
)∣∣∣∣]dτdσ

+
1
4

∫ 2−η

ξ

∫
η

0

∫ (σ+τ)/2

(σ−τ)/2

∣∣∣∣∣∂ m
t

[
q̃n
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)

× f
(

δ ,
σ − τ

2
, t
)]∣∣∣∣∣dδdτdσ

=
1
2

D1 +
1
4

D2, (53)

where

D1 ,
∫ 2

2−η

e
1
2 (2−η−s)

∫ 2−s

0

∣∣∂ m+1
t q̃n(s,τ, t)

∣∣dτds

+
∫ 2

2−η

e
1
2 (2−η−s)

∫ 2−s

0

[
|λ | |∂ m

t q̃n(s,τ, t)|

+

∣∣∣∣∂ m
t

(
c
(

s− τ

2
, t
)

q̃n(s,τ, t)
)∣∣∣∣]dτds

+
∫ 2

2−η

e
1
2 (2−η−s)

∫ 2−s

0

∫ (s+τ)/2

(s−τ)/2∣∣∣∣∣∂ m
t

[
q̃n
(

s+ τ

2
+δ ,

s+ τ

2
−δ , t

)
f
(

δ ,
s− τ

2
, t
)]∣∣∣∣∣dδdτds,

and

D2 ,
∫ 2−η

ξ

∫
η

0

∣∣∂ m+1
t q̃n(σ ,τ, t)

∣∣dτdσ

+
∫ 2−η

ξ

∫
η

0

[
|λ | |∂ m

t q̃n(σ ,τ, t)|

+

∣∣∣∣∂ m
t

(
c
(

σ − τ

2
, t
)

q̃n(σ ,τ, t)
)∣∣∣∣]dτdσ

+
∫ 2−η

ξ

∫
η

0

∫ (σ+τ)/2

(σ−τ)/2

∣∣∣∣∣∂ m
t

[
q̃n
(

σ + τ

2
+δ ,

σ + τ

2
−δ , t

)

× f
(

δ ,
σ − τ

2
, t
)]∣∣∣∣∣dδdτdσ .

From (52), we can derive the following bound:

D1 ≤ (n+2)mCn+m+2e(n+2)Ct
(

3
2

)n+1 (2−ξ )n+1ηn+1

(n+1)!

× 2
3CeCt

1
n+1

(
n+1
n+2

)m
[
(n+1)C+ |λ |+

m

∑
i=0

(
m
i

)

×

(
Cc1eCc2t

(
Cc2

(n+1)C

)i

+C f 1eC f 2t
(

C f 2

(n+1)C

)i
η

n+2

)]
.

(54)

Since it can be proved that

(n+1)C+ |λ |+
m

∑
i=0

(
m
i

)
×

(
Cc1eCc2t

(
Cc2

(n+1)C

)i

+C f 1eC f 2t
(

C f 2

(n+1)C

)i
η

n+2

)

≤ 2CeCt(n+1)
(

n+2
n+1

)m

, (55)

we get

D1 ≤
4
3
(n+2)mCn+m+2e(n+2)Ct

(
3
2

)n+1 (2−ξ )n+1ηn+1

(n+1)!
.

(56)

The following estimate can be obtained similarly:

D2 ≤
4
3
(n+2)mCn+m+2e(n+2)Ct

(
3
2

)n+1 (2−ξ )n+1ηn+1

(n+1)!
.

(57)

Therefore, from (53), (56) and (57), we have∣∣∂ m
t q̃n+1(ξ ,η , t)

∣∣
≤ 1

2
D1 +

1
4

D2

= (n+2)mCn+m+2e(n+2)Ct
(

3
2

)n+1 (2−ξ )n+1ηn+1

(n+1)!

= ∂
m
t

(
Cn+2e(n+2)Ct

(
3
2

)n+1 (2−ξ )n+1ηn+1

n+1!

)
, (58)

which is equivalent to∣∣q̃n+1(ξ ,η , t)
∣∣Î Cn+2e(n+2)Ct

(
3
2

)n+1 (2−ξ )n+1ηn+1

n+1!
,

(59)

and thus, (51) is proved by induction.
From (51), we have that for an integer n≥ 0,

|q̃n(ξ ,η , t)| ≤Cn+1e(n+1)Ct
(

3
2

)n (2−ξ )nηn

n!
, (60)

and thus the series (47) is bounded by

q̃(ξ ,η , t)≤CeCte
3
2CeCt (2−ξ )η . (61)

From the theorem of the comparison test, the series
∞

∑
n=0

q̃n(ξ ,η , t) is absolutely and uniformly convergent with
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respect to (ξ ,η). Hence, existence of q̃(ξ ,η , t) and also
p̃(x,y, t) is established. Moreover, p̃(x,y, t) is C∞(T ) and

|p̃(x,y, t)| ≤CeCte
3
2CeCt (2−ξ )η .

Then, the existence and regularity of the solution p1(x, t)
to (27) can be obtained. Let us first write (27) into the
following equivalent form:

p1(x, t) = p0
1(x, t)+G[p1](x, t), (62)

where

p0
1(x, t) =− p̃y(x,0, t)

− p̃(x,0, t)
(

λ

2
− 1

2

∫ 1

0
c(y, t)dy− e(t)− 1

2

)
,

(63)

and

G[p1](x, t) =
∫ x

0
p̃(x,y, t)p1(y, t)dy. (64)

Next, we could discuss about the solution to (62)-(64) in a
similar way as the one for (43)-(45), which is omitted due
to the space limitation.

3) Invertibility of the backstepping transformation: The
transformation (18) could be proved to be invertible. Exis-
tence and regularity of its inverse could also be obtained.
The proofs are omitted here.

4) Convergence of the designed observer: With the exis-
tence and regularity of kernel function for the transformation
(18) and also from the invertibility of the transformation, the
following main theorem of this paper could be proved.

Theorem 2: Under the Assumptions 1 and 2, if choosing
λ < 1/4, then for any initial value ũ0(·) ∈ L2(0,1), the
observer error ũ-system (14) − (17), with the functions
p1(x, t), p10(t) determined by (24)-(28), is exponentially
stable. Therefore, for any initial value u0(·), û0(·)∈ L2(0,1),
the designed observer (9)− (12), with the gain functions
p1(x, t), p10(t) determined by (24)-(28), is exponentially
convergent to the u-system (1)− (4).

IV. CONCLUSION AND FUTURE WORK

This paper discusses the problem of backstepping observer
design for a reaction-advection-diffusion IPDE, and the de-
signed observer is proved to be exponentially convergent.

The system coefficients are dependent on both spatial and
time variables. We impose a more general assumption on the
coefficients’ regularity than the assumptions in the previous
references. This regularity requirement unlocks the limitation
on the boundedness of coefficients and their derivatives in
the previous literatures, and thereby is more reasonable.
To the best knowledge of the authors, this is the first
systematic effort to deal with observer design for the class
of IPDE systems with time-dependent, possibly unbounded,
coefficients (which have possibly unbounded derivatives) on
infinite time interval.

The PDE spatial domain in the consideration of this study
is a fixed interval. Since the PDEs with time-dependent
domain and PDEs with time-dependent coefficients are inter-
changeable [9], it is then also worth noting that this problem
could be cast as a problem with time-dependent domain, i.e.,
moving boundary.

Our first next step is to consider the backstepping control
design problem for this class of IPDEs. Moreover, we would
like to emphasize that this work was inspired by a state-of-
charge (SoC) estimation problem for lithium-ion batteries,
which can be modeled to be a coupled PDE-ODE system
with time-dependent coefficients [1]. Since the diffusitivity
in this model is also dependent on time and space, (I)PDEs
with their coefficient of the highest spatial derivate [10] are
our ongoing research subject as well. Another work direction
orienting from this SoC estimation problem is to consider the
observer design for some cascaded and coupled (I)PDE-ODE
systems [11], [12], [13].
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