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STABILIZATION OF A HEAT-ODE SYSTEM CASCADED AT A
BOUNDARY POINT AND AN INTERMEDIATE POINT

Zhiyuan Zhen, Shu-Xia Tang, and Zhongcheng Zhou

ABSTRACT

This paper considers the stabilization of a heat-ODE system cascaded at a boundary point and an intermediate
point. The stabilizing feedback control law is designed by the backstepping method. Based on a novel transformation,
we prove that all the kernel functions in the forward and inverse transformations are of the class C2. Moreover, the
effectiveness of controller design is shown with a numerical simulation. Finally, we show the coherence between the
controllability assumption of the main theorem in this paper and the known one for a special case with 𝜆 = 0.
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I. INTRODUCTION

This paper considers the exponential stabilization
problem of a cascaded system with a heat partial differen-
tial equation (PDE) and an ordinary differential equation
(ODE):

⎧⎪⎪⎨⎪⎪⎩

Ẋ (t) = AX (t) + B0u(0, t) + Bu(x0, t),
ut(x, t) = uxx(x, t) + 𝜆u(x, t),
ux(0, t) = 0, u(1, t) = U(t),
u(x, 0) = u0(x),
X (0) = X0,

(1)

where X (t) = (X1(t),X2(t), · · · ,Xn(t))T ∈ R
n×1, A ∈ R

n×n,
B0 ∈ R

n×1, B ∈ R
n×1, 𝜆 ∈ R, x0 ∈ (0, 1), (X (t), u(x, t)) is

the state and U(t) is the boundary control.
Stabilization of PDEs is a fundamental problem in

control theory, and there are many approaches to han-
dle it, for example, control Lyapunov function, return
method [1], the linear quadratic method [2] and backstep-
ping method [3]. In this paper, we employ the backstep-
ping method. In fact, the backstepping method, because
of its simplicity and efficiency for feedback controller
design, has become more and more popular in engineer-
ing applications. Many references can be found regarding
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the utilization of the backstepping method for stabilizing
controller designs. For example, researchers have consid-
ered the stabilizing feedback controller designs of heat
equations in [3–6], the cascaded PDE-ODE systems in
[7–10] and the coupled PDE-ODE systems in [11–13].

In the system (1), a state boundary point value
u(0, t) and a state intermediate point value u(x0, t) of the
heat equation enter the ODE system simultaneously. This
system can be considered as the combined system of the
models in [9] and [10]. If X (t) = (X1(t),X2(t)), this model
can be considered as the output of heat equation at x = 0
and x0 transferred into force entering the ODE system.
At the same time, from the viewpoint of computation,
the computation of Ẋ (t) = AX (t)+∫ 1

0 B(y)u(y, t)dy in [7]
needs to be approximated by Ẋ (t) = AX (t) +B1u(x1, t) +
B2u(x2, t)+⋅⋅⋅+Bnu(xn, t) cascading with multiple points.
The system (1) cascading with two points is exactly a spe-
cial case. For the system (1), the special case of B = 0
has been considered in [9]. If B0 = 0, 𝜆 = 0 and a spe-
cial A, the problem has been considered in [10]. However,
when B ≠ 0 and B0 ≠ 0, the controller design proce-
dure in [9,10] does not work any more and this will lead
to some difficulties in designing the stabilizing feedback
controller because u(0, t) and u(x0, t) will impose on X (t)
equation simultaneously.

Note that if we set B1(x) = B𝛿(x − x0) + B0𝛿(x),
𝛿(x) is the Dirac function, then the nonlocal source
∫ 1

0 B1(x)u(x, t)dx = B0u(0, t) + Bu(x0, t) and then the
system (1) become a system similar to the one in [7]
with counter-convection term −bux(x, t) replaced by
reaction term 𝜆u(x, t). The first novelty of this paper lies
in the general reaction term 𝜆u(x, t). It is well-known
that the counter-convection term −bux(x, t) in [7] does
not introduce instability into the PDE system; and it
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can be easily deleted through a function transformation
v(x) = e−bxu(x), which does not change the stability of
original system. However, more effort is always needed to
deal with the instability caused by the reaction terms. The
second novelty lies in the transformation proposed in this
paper. We add one more integral term in the backstep-
ping transformation with undetermined kernels function
instead of the partially pre-determined backstepping
transformation, which can simplify the computation.
Indeed, it is needed in [7] to solve a nonhomogeneous
equation g(x) with weak regularity term. However, in
this paper, thanks to the modified transformation, we
only need to solve two homogeneous equations for this
part, and we are able to obtain C2 kernel functions in
both the direct transformation and its inverse instead of
the continuous kernels function in [7], the C2− smooth
kernel function can be used to simplify the computation
of controllability assumption. Meanwhile, for the system
(1) with 𝜆 = 0, we obtain the controllability assumption
in this paper and [7] is the same via different stabiliza-
tion control design procedure. Moreover, for general 𝜆 in
(1), we also obtain the stabilization feedback controller
with C2− smooth kernel function. This paper is orga-
nized as follows. In Section II, we discuss the stabilizing
controller design. In Section III, we prove existence of
smooth kernel functions in forward transformation (2),
and the feedback boundary controller is obtained to
stabilize the original system. In Section IV, we prove the
existence of inverse transformation. Then, according to
stability of the target system and the regularity of both
the direct transformation and its inverse transformation,
exponential stability of the closed-loop system is proved
in Section V. In Section VI, we give the simulation of
the closed-loop system. In Section VII, we give the con-
clusion and further works. Finally, in the appendix, we
compare the controllability assumptions in this paper
and in [7], and derive the coherence between the two.

II. CONTROL DESIGN

For obtaining a feedback stabilizing control law of
the system (1), we adopt the following novel transforma-
tion (u,X ) → (w,Z) as

w(x, t) = u(x, t) − ∫
x

0
k(x, y)udy − 𝛾(x)Z(t), (2)

Z(t) = X (t) + ∫
1

0
G(y)udy + ∫

x0

0
F(x)udx (3)

with undetermined kernels k(x, y) ∈ R, 𝛾(x) ∈ R
1×n,

G(y) ∈ R
n×1 and F(x) ∈ R

n×1, to convert (1) into an

exponentially stable target system

⎧⎪⎪⎨⎪⎪⎩

Ż(t) = A1Z(t),
wt(x, t) = wxx(x, t),
wx(0, t) = 0,w(1, t) = 0,
w(x, 0) = w0(x),
Z(0) = Z0,

(4)

where A1 = A − G′(1)K satisfies assumption (H).
(H). Assume the system (A,G′(1)) is controllable, then
there exists a K such that the matrix A1 = A − G′(1)K is
Hurwitz.

From the transformation (2) and the boundary con-
ditions in (1) and (4), we can obtain the stabilizing
feedback control law

U(t) = 𝛾(1)Z(t) + ∫
1

0
k(1, y)u(y, t)dy

= KZ(t) + ∫
1

0
k(1, y)u(y, t)dy,

(5)

where we have set 𝛾(1) = K. To prove the stability of
the closed-loop system (1) and (5), we need to obtain
the inverse transformation of (2), which is discussed in
Section IV. Finally, we obtain the stability of closed-loop
system (1) and (5).

III. SOLUTIONS TO THE KERNELS IN
FORWARD TRANSFORMATION

Taking the derivative of (3) with respect to t, we
obtain

Ż(t)

= Ẋ (t) + ∫
1

0
G(y)ut( y, t)dy + ∫

x0

0
F(x)ut(x, t)dx

= AX (t) + B0u(0, t) + Bu(x0, t) + ∫
1

0
G(y)uyydy

+ ∫
x0

0
F(x)uxxdx + ∫

1

0
𝜆G(y)udy +∫

x0

0
𝜆F(x)udx

= (A − G′(1)K)Z(t) +
(
B0 + G′(0) + F ′(0)

)
u(0, t)

− ∫
1

0

(
(A − 𝜆In)G(y) + G′(1)k(1, y) − G′′(y)

)
udy

− ∫
x0

0
((A−𝜆In)F(x) −F ′′(x))udx + F(x0)ux(x0, t)

− (F ′(x0) − B)u(x0, t) + G(1)ux(1, t)
= (A − G′(1)K)Z(t),
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by (1), (4), (5) choosing the kernel functions G(⋅), F(⋅) to
satisfy

⎧⎪⎨⎪⎩
G′′(y) − (A − 𝜆In)G(y) − G′(1)k(1, y) = 0,
G(1) = 0, G′(0) = −F ′(0) − B0,

F ′′(x) − (A − 𝜆In)F(x) = 0,
F(x0) = 0,F ′(x0) = B.

(6)

Then, taking the derivative of (2) with respect to x twice
and t once, we obtain

wxx(x, t) = uxx(x, t) − k(x, x)ux(x, t)

−
(

d
dx

k(x, x) + kx(x, x)
)

u(x, t)

− ∫
x

0
kxx(x, y)udy − 𝛾 ′′(x)Z(t)

(7)

and

wt(x, t)

=ut(x, t) − ∫
x

0
k(x, y)ut(y, t)dy − 𝛾(x)Ż(t)

=uxx(x, t)+𝜆u(x, t)−k(x, x)ux(x, t)+k(x, 0)ux(0, t)

+ ky(x, x)u(x, t)−ky(x, 0)u(0, t)−∫
x

0
kyy(x, y)udy

− ∫
x

0
𝜆k(x, y)udy − 𝛾(x)A1Z(t),

(8)

where the notations

kx(x, x) =
𝜕k(x, y)

𝜕x
|||y=x

, ky(x, x) =
𝜕k(x, y)

𝜕x
|||y=x

and

d
dx

k(x, x) = kx(x, x) + ky(x, x)

are applied. Combining (7) with (8), we have

wt(x, t) − wxx(x, t)
= (2k′(x, x) + 𝜆)u(x, t) +

(
𝛾 ′′(x) − 𝛾(x)A1

)
Z(t)

+∫
x

0

(
kxx(x, y) − kyy(x, y) − 𝜆k(x, y)

)
u(y, t)dy

− ky(x, 0)u(0, t),

According to wt(x, t) − wxx(x, t) = 0, we choose k(x, y)
and 𝛾(x) to satisfy

⎧⎪⎨⎪⎩
kxx(x, y) − kyy(x, y) = 𝜆k(x, y),
k′(x, x) = − 𝜆

2
, ky(x, 0) = 0,

𝛾 ′′(x) − 𝛾(x)A1 = 0.

From wx(0, t) = 0, we have

wx(0, t) = ux(0, t) − k(0, 0)u(0, t) − 𝛾 ′(0)Z(t) = 0.

Hence, we choose 𝛾 ′(0) = 0 and k(0, 0) = 0. Therefore,
G( y), F(x), k(x, y) and 𝛾(x) satisfy the following coupled
equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G′′(y) − (A − 𝜆In)G(y) − G′(1)k(1, y) = 0,
G(1) = 0, G′(0) = −F ′(0) − B0,

F ′′(x) − (A − 𝜆In)F(x) = 0,
F(x0) = 0, F ′(x0) = B,
kxx(x, y) − kyy(x, y) = 𝜆k(x, y),
k(x, x) = − 𝜆

2
x, ky(x, 0) = 0,

𝛾 ′′(x) − 𝛾(x)A1 = 0,
𝛾 ′(0) = 0, 𝛾(1) = K .

(9)

We first separate (9) into four subsystems of equations{
kxx(x, y) − kyy(x, y) = 𝜆k(x, y),
k(x, x) = − 𝜆

2
x, ky(x, 0) = 0,

(10)

{
G′′(y) − (A − 𝜆In)G(y) − G′(1)k(1, y) = 0,
G(1) = 0, G′(0) = −F ′(0) − B0,

(11){
F ′′(x) − (A − 𝜆In)F(x) = 0,
F(x0) = 0, F ′(x0) = B

(12)

and {
𝛾 ′′(x) − 𝛾(x)A1 = 0,
𝛾 ′(0) = 0, 𝛾(1) = K .

(13)

then, we will solve k(x, y), G(y), F(x) and 𝛾(x) separately.
The equation (10) has a solution

k(x, y) = −𝜆x
I1(

√
𝜆(x2 − y2))√
𝜆(x2 − y2)

, (14)

where I1 is the first-order modified Bessel function of the
first kind. Let

F(x) =
(

F(x)
F ′(x)

)
, D =

(
0 In

A − 𝜆In 0

)
,

where In is the identity matrix, then (12) can be written as

F
′(x) = DF(x), F(x0) =

(
0
B

)
, (15)

and thus

F(x) = eD(x−x0)F(x0). (16)

Therefore,

F(x) =
(

In 0
)

eD(x−x0)
(

0
B

)
. (17)
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To solve (11), similarly, we obtain

G(x) =
(

In 0
)

eD(x−1)
(

0
G′(1)

)
+
(

In 0
)
∫

x

1
eD(x−s)

(
0

k(1, s)G′(1)

)
ds,

(18)

where

M =
(

k(1, 0)In (1 − ∫ 1
0 k(1, s)ds)In

)
e−D

(
0
In

)
G′(1) = −M−1(F ′(0) + B0),

(19)

and

F ′(0) =
(

0 In

)
e−Dx0

(
0
B

)
. (20)

The solution of (13) can also be solved as

𝛾(x) = KΛ−1 ( In 0
)

e

⎛⎜⎜⎝
0 A1
In 0

⎞⎟⎟⎠ x (
In
0

)
, (21)

where

Λ =
(

In 0
)

e

⎛⎜⎜⎝
0 A1
In 0

⎞⎟⎟⎠ ( In
0

)
. (22)

Based on the above calculation and analysis, setting T ∶=
{(x, y) ∈ R

2|0 ≤ x ≤ 1, 0 ≤ y ≤ x}, we obtain the
existence of the solutions to (9) as stated in following
theorem.

Theorem 1. Assume the matrices M in (19) and Λ in (22)
are invertible respectively, there exist classical solutions
k(⋅, ⋅) ∈ C2(T), G(⋅) ∈ C2([0, 1]), 𝛾(⋅) ∈ C2([0, 1]) and
F(⋅) ∈ C2([0, x0]) to (9).

Remark 1. The invertibility of Λ is equivalent to an
assumption that there are no eigenvalues of matrix A1

located at the positions −(2k+1)2𝜋2

4
(k ∈ Z

+). The invert-
ibility of M is dependent on A and 𝜆 in (1), but not
dependent on the feedback matrix K. In fact, there are
some A and 𝜆 that satisfy the assumption of Theorem 1.
For example, for n = 1, we can check that M in (19) and
Λ in (22) are invertible for some given value. In (4), if we
choose A1 < 0 and A1 ≠ −(2k+1)2𝜋2

4
(k ∈ Z

+), then

Λ =
(

1 0
)

e

⎛⎜⎜⎝
0 A1
1 0

⎞⎟⎟⎠ ( 1
0

)
= cos(

√
−A1) ≠ 0,

which is invertible. Similarly, in (1), if A > 0, then

M =
(

0 1
)

e
−
⎛⎜⎜⎝

0 1
A 0

⎞⎟⎟⎠ ( 0
1

)
= 1

2
(e

√
A + e−

√
A),

which is also invertible.

IV. INVERSE TRANSFORMATION

In this section, we will show that the transforma-
tions (2) and (3) are invertible. First, we consider the
invertibility of (2), which can be written as:

u(x, t) = w(x, t) + ∫
x

0
l(x, y)wdy + 𝜑(x)Z(t), (23)

where the functions l(x, y) and 𝜑(x) are to be deter-
mined later. We will show the inverse transformation is
well-defined after determining the kernel functions.
Taking the derivative of u in (23) with respect to x and t,
we have

ut(x, t) − uxx(x, t) − 𝜆u(x, t)
= − (2l′(x, x) + 𝜆)w(x, t) −

(
𝜑′′(x) − 𝜑(x)A1

)
Z(t)

− ∫
x

0

(
lxx(x, y) − lyy(x, y) + 𝜆l(x, y)

)
w(y, t)dy

+ ly(x, 0)w(0, t).
(24)

According to ux(0, t) = 0, it holds that

wx(0, t) + l(0, 0)w(0, t) + 𝜑′(0)Z(t) = 0.

Hence, we get

l(0, 0) = 0, 𝜑′(0) = 0. (25)

Therefore, combining (1) and (24), we choose l and 𝜑

satisfy

{
lxx(x, y) − lyy(x, y) = −𝜆l(x, y),
l(x, x) = − 𝜆

2
x, ly(x, 0) = 0

(26)
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and{
𝜑′′(x) − 𝜑(x)A1 = 0,
𝜑′(0) = 0.

(27)

According to (10) and (26), we obtain that l and k satisfy

l(x, y) = k(x, y) + ∫
x

y
l(x, z)k(z, y)dz. (28)

In terms of (23), we obtain

u(1, t)

= w(1, t) + ∫
1

0
l(1, y)wdy + 𝜑(1)Z(t)

=
(
𝜑(1) − ∫

1

0
l(1, y)𝛾(y)dy

)
Z(t) + ∫

1

0
l(1, y)udy

− ∫
1

0 ∫
y

0
l(1, y)k(y, z)u(z, t)dzdy

=
(
𝜑(1) − ∫

1

0
l(1, y)𝛾(y)dy

)
Z(t)

+ ∫
1

0

(
l(1, z) − ∫

1

z
l(1, y)k(y, z)dy

)
u(z, t)dz

= KZ(t) + ∫
1

0
k(1, y)u(y, t)dy

(29)

after taking

𝜑(1) = K + ∫
1

0
l(1, y)𝛾(y)dy. (30)

Therefore, we obtain

{
𝜑′′(x) − 𝜑(x)A1 = 0,
𝜑′(0) = 0, 𝜑(1) = K + ∫ 1

0 l(1, y)𝛾(y)dy,
(31)

which can be solved explicitly if Λ is invertible. The
explicit solution of (31) is

𝜑(x) =
(

K + ∫
1

0
l(1, y)𝛾(y)dy

)
Λ−1

×
(

In 0
)

e

⎛⎜⎜⎝
0 A1
In 0

⎞⎟⎟⎠x (
In
0

)
.

(32)

Meanwhile, in terms of (2), we obtain

X (t) =
(

1 −∫
1

0
G(x)𝜑(x)dx −∫

x0

0
F(x)𝜑(x)dx

)
Z(t)

− ∫
1

0
G(x)w(x, t)dx − ∫

x0

0
F(x)w(x, t)dx

− ∫
1

0 ∫
x

0
G(x)l(x, 𝜉)w(𝜉, t)d𝜉dx

− ∫
x0

0 ∫
x

0
F(x)l(x, 𝜉)w(𝜉, t)d𝜉dx.

(33)

Therefore, we have shown that the inverse transformation
is well established.

V. STABILITY OF THE CLOSED-LOOP
SYSTEM

To prove stability of the closed-loop system (1) with
the control law (5), the stability of the target system (4)
still needs ot be shown and that the inverse transforma-
tion is a bounded linear operatorneeds to be proven. We
state it as the following theorem.

Theorem 2. Assume (H) holds, and consider the con-
trol system (1) and (5) with k(x, y), F(x), G(y) and 𝛾(x)
defined in (14), (17), (18) and (32) respectively. Then, for
any initial condition u(⋅, 0) ∈ L2(0, 1), the closed loop
system (1) and (5) has a unique solution (X (t), u(⋅, t)) ∈
C([0,∞),Rn×L2(0, 1)), and there exist positive constants
C and b such that

‖X (t)‖2 + ‖u(t)‖2
2 ≤ C

(‖X (0)‖2 + ‖u(0)‖2
2

)
e−bt,

that is, the closed loop system (1) and (5) is exponentially
stable in the sense of (‖X (t)‖2 + ‖u(t)‖2

2)
1
2 . Here

‖u(t)‖2 ∶=
(
∫

1

0
u2(x, t)dx

) 1
2

is the L2 norm for space variable x, and ‖ ⋅ ‖ denotes the
Euclidian norm of a vector.

Proof. Firstly, we show the target system (4) is exponen-
tially stable via the Lyapunov function method. Accord-
ing to (2), we know w(⋅, 0) ∈ L2(0, 1). Then, by operator
semigroup theory, (4) has a unique solution w(⋅, t) ∈
C([0,+∞),L2(0, 1)). We define the following Lyapunov
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function for (4):

V (t) = Z(t)T PZ(t) + a
2
‖w(t)‖2

2, (34)

where the matrices P = PT > 0 and Q = QT > 0 are the
solution to the Lyapunov equation

P(A − G′(1)K) + (A − G′(1)K)T P = −Q (35)

and the parameter a > 0 chosen later.
Taking the derivative of the Lyapunov function V

with respect to t, then using (4) and (35), we obtain

V̇ (t) =Ż(t)T PZ(t) + Z(t)T PŻ(t) + a∫
1

0
wt(x, t)wdx

=Z(t)T (P(A − G′(1)K)

+ (A − G′(1)K)T P)Z(t) + a∫
1

0
wxx(x, t)wdx

= − Z(t)T QZ(t) − a‖wx(t)‖2
2.

By the Poincaré’s Inequality and w(1, t) = 0, we have

‖w(t)‖2 =
(
∫

1

0
w2(x, t)dx

) 1
2

≤
(

2w2(1, t) + 4∫
1

0
w2

x(x, t)dx
) 1

2

= 2‖wx(t)‖2.

(36)

Therefore, from (36), we have

V̇ (t) ≤ −b
(‖Z(t)‖2 + ‖w(t)‖2

2

)
= −bV (t),

where

b ∶= min
{

𝜆min(Q)
𝜆max(P)

,
a
4

}
,

and thus

V (t) ≤ V (0)e−bt.

Secondly, we establish the relation between the norm
(‖X (t)‖2 + ‖u(t)‖2

2)
1
2 and V (t). From the transformations

(2) and (3), it holds that‖w(t)‖2 ≤ ‖u(t)‖2 + ‖𝛾(x)Z(t)‖2

+
‖‖‖‖∫ x

0
k(x, y)u(y, t)dy

‖‖‖‖2
,

(37)

‖Z(t)‖ ≤ ‖X (t)‖ + ‖‖‖‖‖∫
1

0
G(y)u(y, t)dy

‖‖‖‖‖
+
‖‖‖‖∫ x0

0
F(y)u(y, t)dy

‖‖‖‖ .
(38)

By Cauchy-Schwarz’s Inequality, we have

‖𝛾(x)Z(t)‖2
2 = ∫

1

0
‖𝛾(x)Z(t)‖2dx

≤ ∫
1

0
‖𝛾(x)‖2 ‖Z(t)‖2dx

= ‖𝛾‖2
2‖Z(t)‖2

and ‖‖‖‖∫ x

0
k(x, y)u(y, t)dy

‖‖‖‖
2

2

=∫
1

0

(
∫

x

0
k(x, y)u(y, t)dy

)2

dx

≤∫
1

0

(
∫

x

0
k2(x, y)dy∫

x

0
u2(y, t)dy

)
dx

≤∫
1

0 ∫
1

0
k2(x, y)dydx∫

1

0

(
∫

1

0
u2(y, t)dy

)
dx

=𝜅2‖u(t)‖2
2,

where

𝜅 ∶=
(
∫

1

0 ∫
1

0
k2(x, y)dydx

) 1
2

.

Therefore, we have

‖w(t)‖2 ≤ (1 + 𝜅)‖u(t)‖2 + ‖𝛾‖2‖Z(t)‖. (39)

From the Cauchy-Schwarz’s Inequality,

‖‖‖‖‖∫
1

0
G(y)u(y, t)dy

‖‖‖‖‖≤
(
∫

1

0
‖G(y)‖2dy∫

1

0
u2(y, t)dy

) 1
2

=𝜇‖u(t)‖2,

where

𝜇 ∶=
(
∫

1

0
‖G(y)‖2dy

) 1
2

.

Similarly, we also obtain

‖‖‖‖∫ x0

0
F(y)u(y, t)dy

‖‖‖‖ ≤
(
∫

1

0
‖F(y)‖2dy∫

1

0
u2dy

) 1
2

= 𝛼‖u(t)‖2,

where

𝛼 ∶=
(
∫

1

0
‖F(y)‖2dy

) 1
2

.
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Then,

‖Z(t)‖ ≤ ‖X (t)‖ + (𝜇 + 𝛼)‖u(t)‖2. (40)

Adopting the above similar procedure, according to (23)
and (33), we have‖X (t)‖ ≤ (1 + 𝜇𝜂 + 𝛼𝜂)‖Z(t)‖

+ (𝜄 + 1)(𝜇 + 𝛼)‖w(t)‖2,
(41)

‖u(t)‖2 ≤ (1 + 𝜄)‖w(t)‖2 + 𝜂‖Z(t)‖, (42)

where

𝜂 ∶=
(
∫

1

0
‖𝜑(y)‖2dy

) 1
2

,

𝜄 ∶=
(
∫

1

0 ∫
1

0
l2(x, y)dydx

) 1
2

.

In terms of (41) and (42), we obtain

‖X (t)‖2 + ‖u(t)‖2
2

≤((1 + 𝜇𝜂 + 𝛼𝜂)‖Z(t)‖ + (𝜄 + 1)(𝜇 + 𝛼)‖w(t)‖2

)2

+
(
(1 + 𝜄)‖w(t)‖2 + 𝜂‖Z(t)‖)2

≤2
(
𝜂2 + (1 + 𝜇𝜂 + 𝛼𝜂)2

)‖Z(t)‖2

+ 2
(
(1 + 𝜄)2((𝜇 + 𝛼)2 + 1)

)‖w(t)‖2
2

≤2
(
𝜂2 + (1 + 𝜇𝜂 + 𝛼𝜂)2

)
𝜆min(P)

Z(t)T PZ(t)

+
4
(
(1 + 𝜄)2((𝜇 + 𝛼)2 + 1)

)
a

a
2
‖w(t)‖2

2

≤𝛽 (Z(t)T PZ(t) + a
2
‖w(t)‖2

2

)
=𝛽V (t) ≤ 𝛽V (0)e−bt,

(43)

where

𝛽 ∶=max

{
2
(
𝜂2 + (1 + 𝜇𝜂 + 𝛼𝜂)2

)
𝜆min(P)

,

4
(
(1 + 𝜄)2((𝜇 + 𝛼)2 + 1)

)
a

}
.

(44)

By (39), (40), (41) and (42), there exists a constant C such
that

‖X (t)‖2 + ‖u(t)‖2
2 ≤ C

(‖X (0)‖2 + ‖u(0)‖2
2

)
e−bt.

Finally, combining with the existence of the inverse trans-
formation (23), we conclude that the closed-loop system
(1) with control law (5) has a unique weak solution
(X (t), u(⋅, t)) ∈ C([0,∞),Rn ×L2(0, 1)), which finishes the
proof of Theorem 2.

VI. SIMULATION

We give the simulation for system (1) under the
controller

U(t) = KZ(t) + ∫
1

0
k(1, y)u(y, t)dy

with special parameters and initial data. Figs 1 and 2
show the behavior of states (X (t), u(x, t)) of closed-loop
system (1) and (5) with parameters x0 = 0.5, 𝜆 = 0,
A = 1, B0 = 1 and B = 2. We see from the figures
that the closed-loop system is stable, which shows that the
controller design stabilizes the plant successfully.

Fig. 1. The response of closed-loop system state X (t) with
given parameters. [Color figure can be viewed at
wileyonlinelibrary.com]

Fig. 2. The response of closed-loop system state u(x, t) with
given parameters. [Color figure can be viewed at
wileyonlinelibrary.com]
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VII. CONCLUSION AND FURTHER WORKS

We considered the exponential stabilization for a
heat-ODE system (1) cascaded at a boundary point and
an intermediate point via a novel forward and inverse
transformation. Meanwhile, we showed that the kernel
functions in the transformations are of the class C2. In
fact, for the system (1) cascaded with multiple points, its
stabilization can also be obtained using a similar pro-
cedure as the one in this paper. However, for a general
heat-ODE system

⎧⎪⎪⎨⎪⎪⎩

Ẋ (t) = AX (t) + ∫ 1
0 B(y)u(y, t)dy,

ut(x, t) = uxx(x, t) + 𝜆u(x, t),
ux(0, t) = 0, u(1, t) = U(t),
u(x, 0) = u0(x),
X (0) = X0,

(45)

where A ∈ R
n×n, B(⋅) ∈ H−1((0, 1);Rn×1), 𝜆 is a constant.

Under the assumption B(⋅) ≠ 0, how to propose the stabi-
lizing controller design is a challenging work, because the
procedure of this paper doesn’t work any more for (45).
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VIII. APPENDIX

We will show the coherence for the controllability
assumption in Theorem 2 with the one in [7] for a special
case with 𝜆 = 0. Indeed, if 𝜆 = 0, the system (1) degener-
ates to the original system with B(x) = B0𝛿(x)+B𝛿(x−x0)
and b = 0 in [7]. Then, the kernel g(x) in [7] satisfies

{
g′′(x) = Ag(x) − B(x),
g(1) = 0, g′(0) = 0,

(46)

for which the solution is

g(x) =
(

In 0
)

eDx

(
In
0

)
E−1

×∫
1

0

(
In 0

)
eD(1−y)

(
0
In

)
B(y)dy

−
(

In 0
)
∫

x

0
eD(x−y)

(
0
In

)
B(y)dy,

where

D =
(

0 In
A 0

)
,E =

(
In 0

)
eD

(
In
0

)
. (47)
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Thus,

g′(1)

=
(

In 0
)

eD

(
0
A

)
E−1

×∫
1

0

(
In 0

)
eD(1−y)

(
0
In

)
B(y)dy

−
(

In 0
)
∫

1

0
eD(1−y)

(
In
0

)
B(y)dy

=
(

In 0
)

eD

×
⎛⎜⎜⎝

0

AE−1∫ 1
0

(
In 0

)
eD(1−y)

(
0
In

)
B(y)dy

⎞⎟⎟⎠
−
(

In 0
)
∫

1

0
eD(1−y)

(
In
0

)
B(y)dy.

We know

eD ∶=
(

I11 I12
I21 I22

)
, e−Dx0 ∶=

(
J11 J12
J21 J22

)
with block matrices

I11 = I22 =
+∞∑
n=0

An

(2n)!
, I12 =

+∞∑
n=0

An

(2n + 1)!
,

I21 =
+∞∑
n=0

An+1

(2n + 1)!
= AI12.

Similarly,

J11 = J22 =
+∞∑
n=0

(Ax2
0)

n

(2n)!
, J12 = −

+∞∑
n=0

Anx2n+1
0

(2n + 1)!
,

J21 = −
+∞∑
n=0

An+1x2n+1
0

(2n + 1)!
= AJ12.

According to (47), we have E = I11. Also, we know

∫
1

0

(
In 0

)
eD(1−y)

(
0
In

)
B(y)dy

=
(

In 0
)

eD

(
0
In

)
B0

+
(

In 0
)

eD(1−x0)
(

0
In

)
B

=
(

I11 I12

)( 0
B0

)
+
(

I11 I12

)( J12B
J22B

)
= I12B0 + (I11J12 + I12J22)B.

(48)

Finally, simplifying the expression g′(1), we obtain

g′(1)

=
(

I11 I12

)( 0
AI−1

11 (I12B0 + (I11J12 + I12J22)B)

)
−
(

I11 I12

)( B0
0

)
−
(

I11 I12

)
e−Dx0

(
B
0

)
= I12AI−1

11 (I12B0 + (I11J12 + I12J22)B)
− I11B0 − I11J11B − I12J21B.

Next, we compute G′(1). According to (11), (18), (19) and
(20), we obtain

G′(1)
=
(

In 0
)

eD

×
⎛⎜⎜⎜⎝

−
(

0 In

)
e−Dx0

(
0
B

)
− B0

AE−1
(

In 0
)

eD

(
0

B0 + F ′(0)

) ⎞⎟⎟⎟⎠
=
(

I11 I12

)
×
⎛⎜⎜⎝

−J22B − B0

AE−1
(

I11 I12

)( 0
J22B + B0

) ⎞⎟⎟⎠
= −I11J22B − I11B0 + I12AE−1(I12B0 + I12J22)B).

Therefore,

g′(1) − G′(1) = I12AE−1I11J12B − I12J21B

= I12AI−1
11 I11J12B − I12J21B

= I12AJ12B − I12J21B

= I12J21B − I12J21B

= 0,

(49)

which shows the coherence for the controllability
assumption of (A,G′(1)) in Theorem 2 and (A, g′(1)) in
[7] for a special case with 𝜆 = 0.
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