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ABSTRACT
We consider the problem of output feedback (exponentially)

stabilizing the 1-D bilayer Saint-Venant model, which is a cou-
pled system of two rightward and two leftward convecting trans-
port partial differential equations (PDEs). The PDE backstep-
ping control method is employed. Our designed output feedback
controller is based on the observer built in this paper and the
state feedback controller designed in [1], where the backstepping
control design idea can also be referred to [2] and can be treated
as a generalization of the result for the system with constant sys-
tem coefficients [2] to the one with time-varying coefficients. Nu-
merical simulations of the bilayer Saint-Venant problem are also
provided to verify the result.

INTRODUCTION
The dynamics of open-channel hydraulic systems, e.g., es-

tuaries, rivers and irrigation canals, can be modeled by Saint-
Venant equations. During the past decades, several efforts have
been made by engineers and researchers towards the design
of control methodologies for the real-time monitoring of open-

∗Corresponding author.

channel hydraulic systems. In the mean time, many researchers
have contributed on the control problem of the Saint-Venant
equations, e.g., [3].

We consider a 1D bilayer Saint-Venant model in this paper,
which consists of the superposition of two immiscible fluids with
different constant densities. This numerical bilayer model can be
derived from the depth-averaged incompressible Navier-Stokes
or Euler equations. More details on the derivation of the model
could be referred to [4], [5] and [6]. In particular, [6] develops a
stable well-balanced time-splitting scheme for a type of bilayer
Saint-Venant model which satisfies a fully discrete entropy in-
equality. One can also find some results on mathematical anal-
ysis of the related problem in [7] and [8]. Indeed, a numerical
solution of the bilayer shallow water equations in two space di-
mensions is recently presented in [9], based on the Galerkin finite
element method. Moreover, Castro, etc. make use of the hydro-
dynamical flow system in [10] for the computation of maximal
and tidally induced bilayer exchange flows through the Strait of
Gibraltar which connects the Atlantic Ocean and the Mediter-
ranean Sea. Nevertheless, to the best of the authors’ knowledge,
there are yet no existing literatures dealing with the relevant out-
put feedback control related problem for this application.
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This paper is a continuation of the work [1], in which the full
state feedback (exponential) stabilization of a linear version of
the 1D bilayer Saint-Venant model is achieved by the PDE back-
stepping control method. PDE backstepping control approach
has been successfully employed for the feedback stabilization of
various classes of PDEs, e.g., [11, 12], and the objective of this
paper is to study the output feedback (exponential) stabilization
problem of this model, also by employing the PDE backstepping
method. The resulting output feedback controller can unlock
the limitation of requiring a full state estimation in [1]. More
precisely, we build an exponentially convergent Luenberger ob-
server, which reconstructs the full system state over the domain
by employing sensors located only at the upstream. Based on this
observer and the full state feedback controller designed in [1],
a backstepping output feedback controller is constructed, with
which (exponential) stabilization of this system is achieved. Sim-
ilarly as [1], our backstepping control design idea can also be
referred to [2], in which the stabilization problem for a general
coupled heterodirectional system of hyperbolic PDEs is solved.
This work can be treated as a generalization of the result obtained
in [2], from the system with constant system coefficients to the
one with time-varying coefficients.

The outline of this paper is as follows. In Section 1, the
output feedback control problem is stated. The 1D bilayer Saint-
Venant model, which consists of two rightward and two leftward
convecting transport PDEs, is first formulated based on its phys-
ical description, and then a linearized version around a steady
state is presented. Section 2 considers a more general system,
which consists of m rightward and n leftward transport PDEs
with spatially varying coefficients. Subsection 2.1 recalls the
state feedback backstepping controller design result in [1], in
which the system of the n+m PDEs is exponentially stabilized
by m boundary input backstepping controllers. Subection 2.2 de-
signs an observer for this system with only m boundary estimates.
Based on the results from these two subsections, Subsection 2.3
constructs a output feedback controller, with which exponential
stability is achieved for the closed-loop control system. This gen-
eral result could serve as a theoretical result by itself, and it can
be immediately utilized for the linearized bilayer Saint-Venant
model, where we achieve (output) feedback exponential stabi-
lization with two boundary input controllers. Numerical simula-
tions are provided in Section 3. Finally in Section 4, a conclu-
sion is presented and some possible future work directions are
discussed.

1 Problem Statement
1.1 The 1D nonlinear bilayer Saint-Venant model

We consider the (output) feedback stabilization problem of
the following 1D bilayer Saint-Venant model, which governs the
dynamic of two superposed immiscible layers of shallow water

fluids:



∂H1

∂ t
+

∂ (H1U1)

∂x
= 0,

∂U1

∂ t
+U1

∂U1

∂x
+g

∂H1

∂x
+g

∂H2

∂x
+g

∂B
∂x

= S f
1 ,

∂H2

∂ t
+

∂ (H2U2)

∂x
= 0,

∂U2

∂ t
+U2

∂U2

∂x
+g

∂H2

∂x
+g

ρ1

ρ2

∂H1

∂x
+g

∂B
∂x

= S f
2 .

(1)

The index 1 refers to the upper layer and the index 2 to the lower
one, as depicted in Figure 1. The unknown state variables Hi,
Ui and B represent respectively the thickness of the i-th layer,
the velocity and the height of the sediment layer. Each layer is
assumed to have a constant density ρi, i = 1,2 (ρ1 < ρ2). The
system contains the source terms due to the bottom topography
and the friction term. The quantities S f

1 and S f
2 stand as the fric-

tion between the two layers, and they are given by

S f
1 =−C f |U1−U2|(U1−U2) (2)

and

S f
2 = rC f |U1−U2|(U1−U2). (3)

Define a vector W =
[
H1, U1, H2, U2

]T , a ratio r =
ρ1

ρ2
and a

map

F(W ) =


H1U1

U2
1

2
+g(H1 +H2)

H2U2
U2

2
2

+g(H2 + rH1)

 , (4)

then we could recast equation (1) under the form of

∂W
∂ t

+
∂F(W )

∂x
= S(x,W ), (5)

where

S(x,W ) =

(
0 S f

1 −g
∂B
∂x

0 S f
2 −g

∂B
∂x

)T

. (6)
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FIGURE 1. Bilayer shallow water flows with variable topography.

By considering the following Jacobian matrix associated with
(5):

A(W ) =


U1 H1 0 0
g U1 g 0
0 0 U2 H2
rg 0 g U2

 , (7)

we could rewrite the equation (5) into a quasilinear form as

∂W
∂ t

+++AAA(((WWW )))
∂W
∂x

=== SSS(((xxx,,,WWW ))). (8)

For the case of r ≈ 1 and U1 ≈U2, a first order approximation of
the eigenvalues is given in [13,14]. In this work, we consider the
case where r� 1, namely, when the bottom fluid is much thicker
than the upper fluid.

1.2 Linearization of the 1D bilayer Saint-Venant model
We denote the steady-state associated to the system (8) by

W ∗ = (H∗1 ,U
∗
1 ,H

∗
2 ,U

∗
2 ), which satisfies the following equation

of a compact form:

AAA(((WWW ∗)))∂∂∂ xxxWWW ∗ === SSS(((xxx,,,WWW ∗))). (9)

In order to obtain a constant steady-state, we work in the sequel
with a flat bathymetry (∂xB = 0). A constant steady-state of the
bilayer Saint-Venant equations can be then characterized by:



H∗1U∗1 = constant,
H∗2U∗2 = constant,
U∗21

2
+g(H∗1 +H∗2 ) =−C f |U∗1 −U∗2 |(U∗1 −U∗2 ),

U∗22
2

+g(H∗2 + rH∗1 ) = rC f |U∗1 −U∗2 |(U∗1 −U∗2 ).

(10)

In order to linearize the governing equations, we define the devi-
ation (h1,u1,h2,u2) of the state (H1,U1,H2,U2) with respect to
the steady-state (H∗1 ,U

∗
1 ,H

∗
2 ,U

∗
2 ) by:

{
h1 = H1−H∗1 , u1 =U1−U∗1 ,
h2 = H2−H∗2 , u2 =U2−U∗2 .

(11)

Then, the linearized version of (8) can be written in a matrix form
as

∂tU+A∗∂xU = Sl(U), (12)

where

U = (h1,u1,h2,u2)
T , (13)

A∗ = A(W ∗), (14)

and

Sl(U) = [0 −α
f

s (u1−u2) 0 rα
f

s (u1−u2)]
T

with

α
f

s = 2C f |U∗1 −U∗2 |.

Remark 1. We consider a constant steady state here for the
sake of readability and simplicity in the presentation of the linear
model. ◦

1.3 Linearized 1D bilayer Saint-Venant model in Rie-
mann coordinates

We are to explore the system eigenstructure of the linear
form (12) in this subsection. The characteristic equation derived
from the matrix A∗ is(

(λ −U∗1 )
2−gH∗1

)(
(λ −U∗2 )

2−gH∗2
)
= rg2H∗1 H∗2 . (15)

For the case of r = 0, straightforward calculations lead to the
following real eigenvalues for A∗:

λ1 =U∗1 −
√

gH∗1 , λ2 =U∗1 +
√

gH∗1 ,
λ3 =U∗2 −

√
gH∗2 , λ4 =U∗2 +

√
gH∗2 .

(16)

We notice that in this case, each eigenvalue corresponds to one
specific layer respectively. Following the results in [15], the
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eigenvalues for the system (8) in the case of r� 1 i.e., ρ1� ρ2
approach to those given in (16). From (16), the internal and ex-
ternal characteristics travel at different speeds, and indeed, the
lower layer characteristics moves much slower than the upper
ones in the case of r� 1.

Let us now recast the equation (12) into a diagonal form.
For a given eigenvalue λk (k = 1,2,3,4) of the matrix A∗, the
associated right eigenvector is expressed by

Vk =



1
λk−U∗1

H∗1
(λk−U∗1 )

2−gH∗1
gH∗1

(λk−U∗2 )((λk−U∗1 )
2−gH∗1 )

gH∗1 H∗2


. (17)

Some computations lead to the associated left eigenvector Lk,
which is given by:

Lk =−
1

(λi−λk)(λ j−λk)(λl−λk)

[
lk,1 lk,2 lk,3 lk,4

]T

(18)

for i 6= j 6= l 6= k ∈ {1,2,3,4}, where

lk,1 =U∗31 − (trA∗−λk)(U∗21 +gH∗1 )+ fk +3gH∗1 −
detA∗

λk
,

(19)

lk,2 = 3H∗1U∗21 −2H∗1U∗1 (trA∗−λk)+H∗1 ( fk +gH∗1 ), (20)
lk,3 = gH∗1 (7U∗1 −λk), lk,4 = gH∗1 H∗2 . (21)

The quantities fk are defined by:

f1 = (λ3 +λ2)λ4 +λ2λ3, f2 = (λ3 +λ1)λ4 +λ1λ3, (22)
f3 = (λ2 +λ1)λ4 +λ1λ2, f4 = (λ1 +λ2)λ3 +λ1λ2. (23)

We are to express the linear version (12) of the governing
equations in term of the characteristic coordinates or Riemann
Invariants. Multiplying the equation (12) by the left eigenvectors
Lk (each for a given eigenvalue λk) of the matrix A∗, we get that
the characteristic coordinates (Riemann Invariants) ξk are:

ξk = Ltr
k U =− 1

(λi−λk)(λ j−λk)(λl−λk)

×
[
lk,1h1 + lk,2u1 + lk,3h2 + lk,4u2

]
, (24)

for i 6= j 6= l 6= k ∈ {1,2,3,4}. Therefore, we can express the
variables h1, u1, h2 and u2 in term of the Riemann coordinates:


h1 = ξ1 +ξ2 +ξ3 +ξ4,
u1 = γ1ξ1 + γ2ξ2 + γ3ξ3 + γ4ξ4,
h2 = β1ξ1 +β2ξ2 +β3ξ3 +β4ξ4,
u2 = α1ξ1 +α2ξ2 +α3ξ3 +α4ξ4,

(25)

where

γk =
λk−1

H∗1
, (26)

βk =
1

gH∗1

(
U∗21 +2(λk−1)U∗1 −λ

2
k +gH∗1

)
, (27)

and

αk =
1

gH∗1 H∗2

(
(gH∗1 βk−2λ

2
k )U

∗
2 +3U∗31

+7(λk−1)U∗21 +2(gH∗1 −2λ
2
k )U

∗
1

+λ
2
k (trA∗−λk)+gH∗1 (λk +2)

)
. (28)

Introduce the following more compact notations:

ξξξ =
(
ξ1 ξ2 ξ3 ξ4

)tr
, ΛΛΛ = diag{λ1,λ2,λ3,λ4}, (29)

then, by using the characteristic coordinates, we recast the equa-
tion (12) into the following form:

∂∂∂ tttξξξ +++ΛΛΛ∂∂∂ xxxξξξ === MMMξξξ ,,, (30)

where

M(W ∗) =
(
0 α

f
s 0 −rα

f
s
)tr

×
(
α1− γ1 α2− γ2 α3− γ3 α4− γ4

)
. (31)

We consider the case where both layers have a subcritical
flow regime. Define the state vectors

u(t,x) = (ξ2,ξ4), v(t,x) = (ξ1,ξ3),

and introduce the transport speed matrices

ΛΛΛ
r = diag{λ2,λ4}, −ΛΛΛ

l = diag{λ1,λ3}.
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Then, the system (30) can be rewritten as

∂tu(t,x)+Λ
r
∂xu(t,x) = Sru(t,x)+Slv(t,x), (32)

∂tv(t,x)−Λ
l
∂xv(t,x) = 0, (33)

where

Sr =

[
α

f
s (α1− γ1) α

f
s (α2− γ2)

rα
f

s (γ1−α1) rα
f

s (γ2−α2)

]
, (34)

Sl =

[
α

f
s (α3− γ3) α

f
s (α4− γ4)

rα
f

s (γ3−α3) rα
f

s (γ4−α4)

]
. (35)

To close the writing of the system (32)-(33), we enclose to it the
following boundary and initial conditions:

u(t,0) = Q0v(t,0) (36)
v(t,1) = R1u(t,1)+U(t) (37)
u(0,x) = u0(x) (38)
v(0,x) = v0(x), (39)

where Q0, R1 ∈M2,2(R), and U(t) = (u1(t),u2(t)) consists of
the boundary controllers we need to design.

2 Controller design of a general system
In this section, we consider the output feedback controller

design of the following more general system discussed in [1]:

∂tu(t,x)+Λ
r(x)∂xu(t,x) = Sr(x)u(t,x)+Sl(x)v(t,x), (40)

∂tv(t,x)−Λ
l(x)∂xv(t,x) = So(x)u(t,x), (41)

u(t,0) = Q0v(t,0), (42)
v(t,1) = R1u(t,1)+U(t), (43)
u(0,x) = u0(x), (44)
v(0,x) = v0(x), (45)

where

u(x, t) =
[
u1(x, t), u2(x, t), . . . , un(x, t)

]
, (46)

v(x, t) =
[
v1(x, t), v2(x, t), . . . , vm(x, t)

]
(47)

are the system states. The matrices

ΛΛΛ
r(x) = diag

[
λ

r
1(x) , λ

r
2(x) , · · · , λ

r
n(x)

]
, (48)

ΛΛΛ
l(x) = diag

[
λ

l
1(x) , λ

l
2(x) , · · · , λ

l
m(x)

]
, (49)

where

0 < λ
r
1(x)< λ

r
2(x)< · · ·< λ

r
n(x), (50)

−λ
l
m(x)<−λ

l
2(x) · · ·<−λ

l
1(x)< 0, (51)

and the in-domain parameters are given as

Sr(x) = {Sr
i j(x)}1≤i≤n,1≤ j≤n, (52)

Sl(x) = {Sl
i j(x)}1≤i≤n,1≤ j≤m, (53)

So(x) = {So
i j(x)}1≤i≤n,1≤ j≤m. (54)

The boundary parameters Q0, R1 ∈Mm,n(R) are given as

R1 = {ri j}1≤i≤m,1≤ j≤n, Q0 = {qi j(x)}1≤i≤n,1≤ j≤m, (55)

and the boundary controllers are given as

U(t) =
[
u1(t) u2(t) . . . un(t)

]T
. (56)

The system (40) – (45) could includes the Saint-Venant
model as a special case. While solving our problem with the
Saint-Venant model, the result derived in this section could also
be treated as a full theoretical result by itself.

2.1 State feedback control design result
The PDE backstepping method is employed. We recall from

[1] that a backstepping transformation is constructed:(
ε(t,x)
β (t,x)

)
=

(
u(t,x)
v(t,x)

)
−
∫ x

0

(
0 0

G21(x,ξ ) G22(x,ξ )

)(
u(t,ξ )
v(t,ξ )

)
dξ , (57)

where the kernels G21 and G22 are defined on the domain T ={
(x,ξ ) ∈ R2| 0 ≤ ξ ≤ x ≤ 1

}
and satisfy the following system

of equations:

∂ξ G21(x,ξ )ΛΛΛr(ξ )−ΛΛΛ
l(x)∂xG21(x,ξ )

=−G21(x,ξ )
dΛΛΛ

r(ξ )

dξ
−G21(x,ξ )Sr(ξ )−G22(x,ξ )So(ξ ) (58)

∂ξ G22(x,ξ )ΛΛΛr(ξ )+ΛΛΛ
l(x)∂xG22(x,ξ )

=−G22(x,ξ )
dΛΛΛ

r(ξ )

dξ
+G21(x,ξ )Sl(ξ ), (59)

G21(x,x)ΛΛΛr(x)+ΛΛΛ
l(x)G21(x,x) =−So(x), (60)

G22(x,x)ΛΛΛl(x)−ΛΛΛ
l(x)G22(x,x) = 0, (61)

G21(x,0)ΛΛΛr(0)Q0−G22(x,0)ΛΛΛl(0) =−∆(x). (62)
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Here,

∆(x) =


0 · · · · · · 0

δ2,1(x)
. . . . . .

...
...

. . . . . .
...

δm,1(x) · · · δm,m−1(x) 0

 , (63)

where δi, j(x), i = 2, m, j = 1, m−1 are obtained from the in-
verse transformation of (57).

The transformation (57) maps the closed-loop control sys-
tem (40) – (45), with a full state feedback backstepping controller

U(t) =−R1u(t,1)+
∫ 1

0
[G21(1,ξ )u(t,ξ )+G22(1,ξ )v(t,ξ )]dξ ,

(64)

into an exponential stable target system

∂tε(t,x)+Λ
r(x)∂xε(t,x) = Sr(x)ε(t,x)+Sl(x)β (t,x)

+
∫ x

0
Cr(x,ξ )ε(ξ )dξ +

∫ x

0
Cl(x,ξ )β (ξ )dξ (65)

∂tβ (t,x)−Λ
l(x)∂xβ (t,x) = ∆(x)β (0, t) (66)

ε(t,0) = Q0β (t,0) (67)
β (t,1) = 0. (68)

With the exponential stability of the target system, and with
existence, regularity and invertibility of the backstepping tran-
formation, the stability of the closed-loop control system is then
derived. We also recall the following main theorem in [1].

Theorem 1. For any given initial data (u0, v0)T =

(u(0, ·), v(0, ·))T ∈
(
L 2([0,1])

)n+m
and under the assumption

that Cr, Cl ∈ C (T), the equilibrium (u, v)T = (0, 0, 0, 0)T of
the closed-loop system (40) – (45) with the designed controller
(64) is exponentially stable in the sense of L 2-norm:

‖(u(t, ·),v(t, ·))‖2
L 2 :=

∫ 1

0
uT (t,x)u(t,x)+ vT (t,x)v(t,x)dx.

(69)

2.2 Backstepping observer design
The backstepping controller (64) requires a full state mea-

surement across the spatial domain. In this section we design
a boundary state observer for estimating the distributed states
of the system (40)–(45) over the whole spatial domain using
the measured output y(t) = v(t,0), which could help avoid the

full state measurement in a to-be-designed output feedback con-
troller.

Consider the following state observer, which consists of a
copy of the plant (40)–(45) plus output injection terms:

∂t û+Λ
r(x)∂xû = Sr(x)û+Sl(x)v̂−P1(x)[y(t)− v̂(t,0)], (70)

∂t v̂−Λ
l(x)∂xv̂ = So(x)û−P2(x)[y(t)− v̂(t,0)], (71)

û(t,0) = Q0y(t), (72)
v̂(t,1) = R1û(t,1)+U(t). (73)

Here, (û, v̂)T is the estimated state vector, and the output injec-
tion coefficients P1(x) and P2(x) are to be determined so that the
estimated state vector (û, v̂) converges to the real state vector
(u,v).

Let
(

ũ ṽ
)T

=
(

u− û v− v̂
)T , then we obtain the following

observer error system:

∂t ũ+Λ
r(x)∂xũ = Sr(x)ũ+Sl(x)ṽ+P1(x)ṽ(t,0), (74)

∂t ṽ−Λ
l(x)∂xṽ = So(x)ũ+P2(x)ṽ(t,0), (75)

ũ(t,0) = 0, (76)
ṽ(t,1) = R1ũ(t,1). (77)

2.2.1 Backstepping transformation and the target
system

We use the following invertible backstepping transformation

ũ(t,x) = ε̃(t,x)+
∫ x

0
M(x,ξ )β̃ (t,ξ )dξ , (78)

ṽ(t,x) = β̃ (t,x)+
∫ x

0
N(x,ξ )β̃ (t,ξ )dξ , (79)

where the kernels M and N are defined on the triangular domain
T to map the error system (74)–(77) into the following exponen-
tially stable target system

∂t ε̃ +Λ
r(x)∂xε̃ = Sr(x)ε̃ +

∫ x

0
Dr(x,ξ )ε̃(t,ξ )dξ , (80)

∂t β̃ −Λ
l(x)∂xβ̃ = So(x)ε̃ +

∫ x

0
Dl(x,ξ )ε̃(t,ξ )dξ , (81)

ε̃(t,0) = 0, (82)

β̃ (t,1) = R1ε̃(t,1)−
∫ 1

0
∆̃(ξ )β̃ (t,ξ )dξ . (83)

Here, the functions Dr(x,ξ ),Dl(x,ξ ) and ∆̃(ξ ) are to be deter-
mined later.
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Through some lengthy calculations and integrations by
parts, the following PDEs are derived for the transformation ker-
nels M(x,ξ ) and N(x,ξ ) :

− [Mξ (x,ξ )Λ
l(ξ )+M(x,ξ )(Λl)′(ξ )]+Λ

r(x)Mx(x,ξ )

= Sr(x)M(x,ξ )+Sl(x)N(x,ξ ), (84)

− [Nξ (x,ξ )Λ
l(ξ )+N(x,ξ )(Λl)′(ξ )]−Λ

l(x)Nx(x,ξ )

= So(x)M(x,ξ ), (85)

M(x,x)Λl(x)+Λ
r(x)M(x,x) = Sl(x), (86)

N(x,x)Λl(x)−Λ
l(x)N(x,x) = 0. (87)

In the mean time, we derive that the observer gains can be defined
by

P1(x) =−M(x,0)Λl(0), P2(x) =−N(x,0)Λl(0), (88)

and the functions Dr(x,ξ ),Dl(x,ξ ) and ∆̃(ξ ) are defined by the
following equations:

Dr(x,ξ )+M(x,ξ )So(ξ )+
∫ x

ξ

M(x,η)Dl(η ,ξ )dη = 0, (89)

Dl(x,ξ )+N(x,ξ )So(ξ )+
∫ x

ξ

N(x,η)Dl(η ,ξ )dη = 0, (90)

∆̃(ξ ) = N(1,ξ )−R1M(1,ξ ). (91)

2.2.2 Inverse Transformation
The regularity of the transformation (78)–(79) can be dis-

cussed by following [2], and then the continuity of the kernels
guarantees the existence of a unique inverse transformation. We
write the inverse transformation as

ε̃(t,x) = ũ(t,x)+
∫ x

0
M (x,ξ )ṽ(t,ξ )dξ , (92)

β̃ (t,x) = ṽ(t,x)+
∫ x

0
N (x,ξ )ṽ(t,ξ )dξ , (93)

with which we then immediately have from (78)–(79) that

ε̃(t,x) = ε̃(t,x)+
∫ x

0
M(x,ξ )β̃ (t,ξ )dξ

+
∫ x

0
M (x,ξ )[β̃ (t,ξ )+

∫
ξ

0
N(ξ ,η)β̃ (t,η)dη ]dξ , (94)

β̃ (t,x) = β̃ (t,x)+
∫ x

0
N(x,ξ )β̃ (t,ξ )dξ

+
∫ x

0
N (x,ξ )[β̃ (t,ξ )+

∫
ξ

0
N(ξ ,η)β̃ (t,η)dη ]dξ . (95)

Thus, the kernels M (x,ξ ),N (x,ξ ) need to satisfy

0 = M(x,ξ )+M (x,ξ )+
∫ x

ξ

M (x,η)N(η ,ξ )dη

0 = N(x,ξ )+N (x,ξ )+
∫ x

ξ

N (x,η)N(η ,ξ )dη . (96)

For solving the above system of equations, we could use the
method of successive approximations [12, Section 4.4].

2.2.3 Stability of the target system and conver-
gence of the designed observer

We could prove exponential stability of the target system
(80)–(83), by following the idea in [1] and employing a Lya-
punov function in which the parameters need to be successively
determined.

Lemma 1. For any given data ((ε̃0)T ,(β̃ 0)T )T

∈ (L 2([0,1]))n+m, the system (80) – (83), with (84)–(87),
(89)–(91), is exponentially stable in the L 2 sense:

‖(ε̃(t, ·), β̃ (t, ·))‖2
L 2 :=

∫ 1

0
ε̃

T (t,x)ε̃(t,x)+ β̃
T (t,x)β̃ (t,x)dx.

(97)

Furthermore, for any given data ((u0)T , (v0)T , (û0)T , (v̂0)T )T

∈ (L 2([0,1]))2(n+m), the observer (70)–(73) exponentially con-
verges to the system (40)–(45) in the L 2 sense:

‖(u− û,v− v̂)‖2
L 2 :=

∫ 1

0
(u− û)T (u− û)+(v− v̂)T (v− v̂)dx.

(98)

The proof is omitted here.

2.3 Output feedback controller design
Based on the backstepping controller designed in [1], which

requires a full state measurement, and the observer (73), which
reconstructs the state over the whole spatial domain through the
boundary measurement v(t,0), we could design an observer-
based output feedback controller.

Theorem 2. For any given initial data
((u0)T , (v0)T , (û0)T , (v̂0)T )T ∈ (L 2([0,1]))2(n+m), the
closed-loop (uT

, vT , ûT , v̂T )T -system (40)–(45), (70)–(73),
where the observer is defined by (84)–(88) and the control law
shown in (43)–(73) is

U(t) =−R1û(t,1)

+
∫ 1

0

[
G21(1,ξ )û(t,ξ )+G22(1,ξ )v̂(t,ξ )

]
dξ (99)
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with the kernels G21 and G22 defined by (58)–(63), is exponen-
tially stable in the sense of the L 2-norm:

‖(u(t, ·),v(t, ·), û(t, ·), v̂(t, ·))‖2
L 2 :=

∫ 1

0

[
uT (t,x)u(t,x)

+ vT (t,x)v(t,x)+ ûT (t,x)û(t,x)+ v̂T (t,x)v̂(t,x)
]
dx.

(100)

The proof is omitted here, for which the the Lyapunov func-
tion can be constructed in a similar fashion as in [1] .

3 Simulation results
The goal of the following numerical simulations is to illus-

trate the efficiency of the designed U(t), namely (64), to stabilize
the linear system (30) around the zero equilibrium. The follow-
ing data are considered as initial conditions for the layer 1 and 2
through the physical variables:

H2(0,x) = 2+0.5exp
(
− (x−0.5)2

0.003

)
, H1(0,x) = 6−H1(x)

and

U1(0,x) =
10

H1(0,x)
+3sin(2πx),

U2(0,x) =−
10

H2(0,x)
−3sin(2πx).

The initial data of the characteristic variables ξk, (k = 1, 2, 3, 4)
(for system (30)) are computed as function of the physical vari-
ables Hi(0,x) and Ui(0,x) for i = 1, 2, thanks to the relation (18).
For the sake of simplicity, we consider the following uniform
steady state:

H∗1 = 3, U∗1 = 1, H∗2 = 1,U∗2 = 0.95.

With this choice of steady state (set point), the characteristic
speeds are given by:

λ1 = 6.42, λ2 = 4.08, λ3 =−4.42 and λ4 =−2.18.

Elsewhere, in the reported numerical experiments, the ratio r be-
tween the densities is set to 0.01 and the friction coefficient C f

to 0.05. We compute the solution up to time T = 10. Regarding
to the boundary conditions (45), the following matrix are consid-
ered:

Q0 =

[
−1.5 0.01
0.01 1.5

]
, R1 =

[
0.5 0.1

0.15 −0.5

]
(101)

Our implementation is based on an accurate finite volume
method for the evolution equation (30). More precisely, we use a
modified Roe’s scheme (see, [16]). Since the computation of the
designed control U(t) requires the knowledge of the kernels G21
and G22, we solve the kernels numerically according to (58)–(63)
using the finite element setup. As an illustration, the numerical
solution of the second component of the kernel G21 is given in
Figure 2.

FIGURE 2. The second component of kernel G21 (G21(1,2)).

In Figure 3, the behavior in time of each component of the
input control U(t) are depicted. Clearly, despite the initial ampli-
tudes, the second component of the control input u2(t) decreases
in time and vanishes after t ≥ 4s, and the first component of the
control input u1(t) shows a similar trend, with its amplitude de-
creasing in time and tending to zero after t ≥ 7s.

8 Copyright c© 2016 by ASME



Time [sec]
0 2 4 6 8 10

C
on

tr
ol

 In
pu

t U
(t)

-20

-15

-10

-5

0

5

10

U1(t)

U2(t)

FIGURE 3. Evolution of the component of the control input U(t).

Figure 4 depicts the evolution in time of the L 2-norm of the
characteristics. As expected from the theoretical part we observe
clearly that the norm of all characteristics decreases in time and
converges to zero. As a result, this shows that the system (30)
subjected to the feedback control U(t) converges to the zero equi-
librium. Thereby, the bilayer Saint-Venant model (1) is stabilized
around the steady state (H∗1 , U∗1 , H∗2 , U∗2 ).
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FIGURE 4. Evolution of the norm of the characteristic solutions.

4 Conclusion and Future Works
In this paper, a general system with spatially varying co-

efficients, consisting of m rightward and n leftward convecting
transport PDEs, is exponentially stabilized by m output feedback
backstepping boundary controllers, with the help of an observer
through m boundary estimates. Our control design idea can be

referred to an existing result for a special case (with constant co-
efficients) [2] of this system, and this result can be considered as
a generalization of the one for the special case. Then, it is imme-
diately applied to exponentially stabilize a 1D linearized bilayer
Saint-Venant model, which is a coupled system of two rightward
and two leftward convecting transport PDEs.

It is worth noting that such systems are subjected to several
types of perturbations and model uncertainties. Thus, an effec-
tive control action must take into account of these factors. One of
our next steps is to consider the stabilization problem of the 1D
linearized bilayer Saint-Venant model with matched disturbance
at the boundary input, and the control methods we are going to
utilize are the sliding mode control method [17, 18] and the ac-
tive disturbance rejection control method [19]. Another one of
our future works is to consider robustness issues for this applica-
tion.
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