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Abstract— Accurate online state-of-charge (SoC) estimation
is a basic need and also a fundamental challenge for battery
applications. In order to achieve accurate SoC estimation
for the lithium-ion batteries, we employ a coupled thermal-
electrochemical model. This coupled system of an ordinary
differential equation (ODE) and a partial differential equation
(PDE) is simpler than the Doyle-Fuller-Newman (DFN) model,
and is more accurate than the single particle model (SPM)
alone. Thus, it could serve as a better fit of model for a full
state observer design and accurate SoC estimation. PDE back-
stepping approach is utilized to develop a Luenberger observer
for the electrode concentration, and estimation effectiveness of
the proposed method is verified by simulation results.

I. INTRODUCTION

Rechargeable batteries are receiving more and more ex-
tensive attention as an energy source in portable electron-
ics, electric vehicles (EV), hybrid electric vehicles (HEV)
and smart grid storage. The lithium-ion battery, a type of
rechargeable battery, is now a common choice in these
application areas because of its high energy storage density,
lack of memory effect, low self discharge, and high cycle
life. Accurate on-line estimation of the lithium-ion battery
SoC, i.e., the percentage ratio of the instantaneous battery
capacity to its nominal/maximum capacity, is expected in
order to predict power and energy available in the battery
during operation. It also serves as an important factor for
regulating charging/discharging in real time.

Electrochemical models, such as the DFN model [4] and
SPM, can provide a fundamental understanding of internal
processes in the battery and can accurately predict state
variables. DFN model is formulated by modeling the process
of ion intercalation, that is, of ions moving in and out of
interstitial site in the lattices in each electrode. However,
it is too complex for the researchers to design observer
and conduct observability analysis [5]. SPM [6], [7] is
an approximation/reduction of the full DFN model. It is
formulated by idealizing the solid phase of each electrode
as a single spherical particle and assuming the electrolyte
concentration to be uniform in both space and time. Thus,
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it is simple enough for the engineers to design an observer
and conduct rigorous observability analysis, but it could only
produce accurate SoC estimation for the low current case, i.e.
low C-rate.

The SPM [8] assumes a constant temperature. However,
electrochemical and chemical processes inside the battery
cell during charging/discharging have their impacts on the
thermal behavior [9], [10]. More importantly, temperature
could also influence the battery performance since the model
parameters are physically dependent on the battery tempera-
ture, for which we refer the readers to [11], [12]. In this pa-
per, we take the thermal behavior into account and consider a
coupled thermal and electrochemical model, which consists
of an ODE for the internal average temperature dynamics and
a diffusion-advection PDE for dynamics of the lithium-ion
concentration in each electrode.

The method of PDE backstepping can be used for stabiliz-
ing unstable PDE systems, see [13], in which backstepping
boundary controllers and observers are designed for some un-
stable parabolic, hyperbolic PDEs, etc. It can also be applied
for stabilizing some coupled PDE-ODE systems [14], [15].
This paper employs the PDE backstepping method to design
a full-state observer through boundary state measurement for
the coupled PDE-ODE system.

This paper is organized as follows. In Section II, a
temperature-compensated model (SPM-T) is presented and
the SoC estimation problem is formulated. In Section III,
a backstepping state observer is designed and the observer
error system is proved to be exponentially stable with an
arbitrarily designated decay rate. Numerical simulations are
performed in Section IV, and the results verify effectiveness
of the estimation method. Moreover, a conclusion and some
possible future works are given in Section V.

II. PROBLEM FORMULATION

A. System equations

Consider the following coupled SPM-T system of an SPM
model [8]

∂c±s
∂ t

(rs, t) =
1
r2

s

∂

∂ rs

(
D±s (T (t))r

2
s

∂c±s
∂ rs

(rs, t)
)
,

rs ∈ (0,R±s ), t > 0 (1)
∂c±s
∂ rs

(0, t) = 0, t > 0 (2)

∂c±s
∂ rs

(R±s , t) =−
1

D±s (T (t))
J±(t), t > 0 (3)

c±s (rs,0) = c±s0(rs), rs ∈ [0,R±s ] (4)
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with an internal average temperature model [10]

ρ
avgcP

dT
dt

(t) = hcell (Tamb(t)−T (t))+ I(t)V (t)

−a−s FJ−(t)∆U−(t)L−−a+s FJ+(t)∆U+(t)L+, t > 0 (5)
T (0) = Tamb(0). (6)

To better understand SPM, the readers could refer to [4] for
more details, which are omitted here due to space limitation.

B. System & problem demonstration

Standard international units are used to quantify parame-
ters, functions and states throughout this paper. The spatial
variable rs ∈ [0,R±s ], and the temporal variable t ∈ [0,∞).
The states of the PDE model (1)− (6) are c±s (rs, t) ∈ R,
which denote the solid phase lithium-ion concentration (+
for positive electrode;− for negative electrode), and the ODE
state is T (t), which denotes the internal average temperature.
The input to the entire coupled system is the applied current
density I(t), and the model output is the closed-loop voltage
V (t), which is the potential difference measured across the
current collectors at the external boundaries of the electrodes.
The objective is to estimate the bulk SoC on-line, which is
defined by:

SoC±(t) =
3

(R±s )3

∫ R±s

0
r2 c±s (r, t)

c±s,max
dr.

Diffusion coefficient functions for the PDE (1) − (4)
are considered to be of an Arrhenius-like dependency on
temperature [5]:

D±s (T (t)) = D±s (T0)e
AD±s

T (t)−T0
T (t)T0 , (7)

where AD±s are constant model parameters. J± are the pore
wall fluxes at the surface of the particles, and are related to
the current I(t):

J+(t) =− I(t)
a+s AFL+

, J−(t) =
I(t)

a−s AFL−
,

where a±s are specific interfacial surface areas, A is the cell
cross sectional area, F is the Faraday’s constant, and L±

define the electrodes’ thickness.
In the ODE (5)− (6), ρavg is the lumped density, cP is

the heat capacity, and hcell is the heat transfer coefficient.
Tamb(t) is the ambient temperature, and ∆U±(t) are defined
as

∆U±(t) =U±(c̄±s (t))−T (t)
∂U±(c̄±s (t))

∂T
,

where U± denote the reaction potentials and

c̄±s (t) =
3

(R±p )3

∫ R±p

0
r2

s c±s (rs, t)drs

denote the volume averaged solid phase concentration. Thus,
the temperature model (5)-(6) is rewritten as follows:

ρ
avgcP

dT
dt

(t) = hcell (Tamb(t)−T (t))+ I(t)V (t)

+
1
A

I(t)
[
U+(c̄+s (t))−U−(c̄−s (t))

−T (t)
∂ (U+(c̄+s (t))−U−(c̄−s (t)))

∂T

]
, t > 0 (8)

T (0) = Tamb(0). (9)

C. System output function formula derivation

Next, we are to derive the output equation for V (t). Firstly,
the overpotential equations for the ion intercalation reaction
are

η
±(t) =φ

±
s (0±, t)−φe(0±, t)
−U±(c±ss(t))−FR±f (T (t))J

±(t),

where φ±s (0±, t) and φe(0±, t) denote the electric potentials
at current collectors in solid electrodes and electrolyte re-
spectively; c±ss(t), c±s (R

±
s , t); the film resistance of the solid-

electrolyte interphases (SEI) is

R±f (T (t)) = R±f (T0)e
A±R f

T (t)−T0
T (t)T0 ,

with A±R f
being constants. Thus, the voltage is derived as

V (t) =φ
+
s (0+, t)−φ

−
s (0−, t)

=η
+(t)−η

−(t)+φe(0+, t)−φe(0−, t)

−
(

R+
f (T (t))

a+AL+
+

R−f (T (t))

a−AL−

)
I(t)

+U+(c+ss(t))−U−(c−ss(t)). (10)

Secondly, the Butler-Volmer dynamics is

J±(t) =
i±0 (t)

F

(
e

αaF
RT (t)η±(t)− e−

αcF
RT (t)η±(t)

)
,

where we assume αa = αc = α , and the exchange current
densities are given by

i±0 (t) = r±e f f (T (t))
(
ce(c±,max

s − c±s (R
±
s , t))c

±
s (R

±
s , t)

)α

with

r±e f f (T (t)) = r±e f f (T0)e
Are f f

T (t)−T0
T (t)T0 .

Here, ce denotes the constant electrolyte concentration,
c±,max

s are the maximum possible concentration of lithium
in the solid particles of electrodes, Are f f is constant. Then,

η
±(t) =

RT (t)
αF

sinh−1
(

F
2i±0 (t)

J±(t)
)
. (11)

From the assumption that the electrolyte Li concentration is
constant in space and time, it holds that

φe(0+, t) = φe(0−, t). (12)
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Thus, from (10),(11),(12), the following system output
function is derived:

V (t) =−RT (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)

a+AL+

)

+ sinh−1
(

1
2i−0 (t)

I(t)
a−AL−

)]

−
(

R+
f (T (t))

a+AL+
+

R−f (T (t))

a−AL−

)
I(t)

+U+(c+ss(t))−U−(c−ss(t))

, h1(T (t),c+ss(t),c
−
ss(t), I(t)). (13)

III. BACKSTEPPING STATE OBSERVER

Since the output function V (t), as in (13), is a nonlinear
function of the states, we would like to seek other mea-
surement variables so that observability analysis could be
proceeded and a linear PDE observer could be designed.
Boundary concentration is an excellent choice, and one idea
is to get the boundary concentration information from the
measured output V (t). Great difficulty lies in that there are
too many unknown elements in (13). In what follows, we
will derive a simplified formula for V (t), in which V (t) only
relies on c−ss(t) and input I(t), and then we will only need to
consider the anode PDE for the SoC estimation.

A. Deriving anode boundary concentration from measured
output voltage

1) Write V (t) as a function of c±ss(t), c̄±s (t) and I(t): By
substituting (13) into (8), we have

ρ
avgcP

dT
dt

(t) =hcell (Tamb(t)−T (t))

− I(t)
RT (t)
αF

[
sinh−1

(
1

2i+0 (t)
I(t)

a+AL+

)

+ sinh−1
(

1
2i−0 (t)

I(t)
a−AL−

)]

−
(

R+
f (T (t))

a+AL+
+

R−f (T (t))

a−AL−

)
I(t)2

+ I(t)
(
U+(c+ss(t))−U−(c−ss(t))

)

+
1
A

I(t)
[
U+(c̄+s (t))−U−(c̄−s (t))

−T (t)
∂ (U+(c̄+s (t))−U−(c̄−s (t)))

∂T

]
.

R±f ,r
±
e f f are functions of T (t), of which the exact forms will

be used in simulation and experiments. However, we assume
them to be constant for the analysis convenience here.

Moreover, if assuming
∂(U+(c̄+s (t))−U−(c̄−s (t)))

∂T to be a state-
invariant, possibly time-varying, function, then an analytical
solution is available. Write

ρ
avgcP

dT
dt

(t) = χ(t)T (t)+ω(t),

where

χ(t) =−hcell−
R

αF
I(t)
[

sinh−1
(

1
2i+0 (t)

I(t)
a+AL+

)

+ sinh−1
(

1
2i−0 (t)

I(t)
a−AL−

)]

− 1
A

I(t)
∂ (U+(c̄+s (t))−U+(c̄+s (t)))

∂T

ω(t) =hcellTamb(t)−
(

R+
f

a+AL+
+

R−f
a−AL−

)
I(t)2

+ I(t)
(
U+(c+ss(t))−U−(c−ss(t))

)

+
1
A

I(t)
(
U+(c̄+s (t))−U−(c̄−s (t))

)
,

then

T (t) =T0e
1

ρavgcP

∫ t
0 χ(τ)dτ

+
1

ρavgcP

∫ t

0
e

1
ρavgcP

∫ t−τ

0 χ(σ)dσ
ω(τ)dτ. (14)

Substituting (14) into (13) yields the following simplified
output function

V (t) =− R
αF

[
sinh−1

(
1

2i+0 (t)
I(t)

a+AL+

)

+ sinh−1
(

1
2i−0 (t)

I(t)
a−AL−

)]
×
(

T0e
1

ρavgcP

∫ t
0 χ(τ)dτ

+
1

ρavgcP

∫ t

0
e

1
ρavgcP

∫ t−τ

0 χ(σ)dσ
ω(τ)dτ

)

−
(

R+
f

a+AL+
+

R−f
a−AL−

)
I(t)+U+(c+ss(t))−U−(c−ss(t))

=h2(c±ss(t), c̄
±
s (t), I(t)). (15)

2) Write V (t) as a function of c−ss(t) and I(t): In order
to further simplify the output function, we are to establish
relations between c+ss(t), c̄+s (t), c̄−s (t) and c−ss(t) from an
approximate solution. Consider the following approximate
polynomial solution profiles of the electrode diffusion dy-
namics [16]

c̄±s (t) = c±ss(t)−
8R±s
35

q̄±s (t)+
R±s

35D±s (T (t))
J±(t), (16)

where the volume averaged fluxes q̄±s (t) satisfy

d
dt

q̄±s (t) =−
30D±s (T (t))

(R±s )2 q̄±s (t)−
45

2(R±s )2 J±(t),

and T (t) is from the following simplified model

ρ
avgcP

dT
dt

(t) =hcell (Tamb(t)−T (t))+ I(t)V (t). (17)

Since the total number of lithium ions is conserved in this
model, that is,

nLi =ε
+L+Ac̄+s (t)+ ε

−L−Ac̄−s (t),

then from (16), it could be obtained that

c̄+s (t) = α c̄−s (t)+β

= α

(
c−ss(t)−

8R−s
35

q̄−s (t)+
R−s

35D−s (T (t))
J−(t)

)
+β , (18)
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and

c+ss(t) =c̄+s (t)+
8R+

s

35
q̄+s (t)−

R+
s

35D+
s (T (t))

J+(t)

=α

(
c−ss(t)−

8R−s
35

q̄−s (t)+
R−s

35D−s (T (t))
J−(t)

)
+β

+
8R+

s

35
q̄+s (t)−

R+
s

35D+
s (T (t))

J+(t), (19)

where

α =−ε−L−

ε+L+
, β =

nLi

ε+L+A
.

The value of nLi could be calculated from the model initial
data.

Therefore, from (15),(16),(18),(19), we could obtain a
further simplified output function

V (t) = h3(c−ss(t), I(t)). (20)

3) Invert the simplified nonlinear output function: As long
as the function (20) is a one-to-one correspondence w.r.t.
c−ss(t), uniformly in I(t), we could invert it to derive the
anode boundary concentration as

c−ss(t) = h0(V (t), I(t)).

B. Backstepping boundary observer
1) Normalization and state transformation: We perform

normalization and state transformation to simplify the sys-
tem and thus also the observer structure. Let r = rs

R−s
for

normalization and proceed the state transformation c(r, t) =
rsc−s (rs, t), then the PDE system part (1)− (4) of the model
is transformed into

∂c
∂ t

(r, t) =
D−s (T (t))
(R−s )2

∂ 2c
∂ r2 (r, t), r ∈ (0,1), t > 0 (21)

c(0, t) = 0, t > 0 (22)
∂c
∂ r

(1, t)− c(1, t) =− R−s
D−s (T (t))

I(t)
a−AFL−

, t > 0 (23)

c(r,0) = c0(r) = R−s rc−s (R
−
s r,0), r ∈ [0,1]. (24)

2) Observer design: With inversion of the output func-
tion in Section III-A, the anode boundary concentration is
available for the observer design. In the mean time, T (t)
is calculated from the simplified equation (17), and thus,
D−s (T (t)) could be treated as known. Hence, a Luenberger-
type observer, for the normalized and transformed PDE
system (21)−(24), with boundary state error injection could
be designed:

∂ ĉ
∂ t

(r, t) =
D−s (T (t))
(R−s )2

∂ 2ĉ
∂ r2 (r, t)

+ p1(r, t)(c(1, t)− ĉ(1, t)), r ∈ (0,1), t > 0 (25)
ĉ(0, t) = 0, t > 0 (26)
∂ ĉ
∂ r

(1, t)− ĉ(1, t) =− R−s
D−s (T (t))

I(t)
a−AFL−

+ p10(t)(c(1, t)− ĉ(1, t)), t > 0 (27)
ĉ(r,0) = ĉ0(r), r ∈ [0,1], (28)

where the functions p1(r, t) and p10(t) are to be determined
to guarantee the stability of the following observer error
(c̃(r, t) = c(r, t)− ĉ(r, t)) system:

∂ c̃
∂ t

(r, t) =
D−s (T (t))
(R−s )2

∂ 2c̃
∂ r2 (r, t)

− p1(r)c̃(1, t), r ∈ (0,1), t > 0 (29)
c̃(0, t) = 0, t > 0 (30)
∂ c̃
∂ r

(1, t)− c̃(1, t) =−p10c̃(1, t), t > 0. (31)

In order to find the output injection gains, the PDE
backstepping method [13] is employed. We would like to
find an invertible transformation

c̃(r, t) = w̃(r, t)−
∫ 1

r
p(r,s, t)w̃(s, t)ds (32)

so that w̃ satisfies the following exponentially stable system

∂ w̃
∂ t

(r, t) =
D−s (T (t))
(R−s )2

∂ 2w̃
∂ r2 (r, t)+λ w̃(r, t), (33)

r ∈ (0,1), t > 0 (34)
w̃(0, t) = 0, t > 0 (35)
∂ w̃
∂ r

(1, t) =−1
2

w̃(1, t), t > 0, (36)

where λ < 1
4(R−s )

2 min
t≥0

D−s (T (t)) is a free parameter to be

chosen, which determines the observer’s convergence rate.
By calculation and analysis, we derive that the kernel

function need to satisfy the following PDE system

pt(r,s, t) =
D−s (T (t))
(R−s )2 (prr(r,s, t)− pss(r,s, t))

−λ p(r,s, t) (37)
p(0,s, t) = 0 (38)

p(r,r, t) =
(R−s )

2

2D−s (T (t))
λ r, (39)

and the output injection gains are

p1(r, t) =−
D−s (T (t))
(R−s )2

(
ps(r,1, t)+

1
2

p(r,1, t)
)
,

p10(t) =
3
2
− (R−s )

2

2D−s (T (t))
λ .

To establish the existence and regularity of the kernel
function p(r,s, t), we first transform the system (37)− (39)
into an equivalent integral equation, and then apply the
method of successive approximation.

Let ξ = r+ s, η = r− s and q(ξ ,η , t) = p(r,s, t), then we
have from (37)− (39) that

qt(ξ ,η , t) = 4
D−s (T (t))
(R−s )2 qξ η(ξ ,η , t)−λq(ξ ,η , t) (40)

q(ξ ,−ξ , t) = 0 (41)

q(ξ ,0, t) =
(R−s )

2

4D−s (T (t))
λξ . (42)
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From (40),

qξ η(ξ ,η , t) =
(R−s )

2

4D−s (T (t))
(qt(ξ ,η , t)+λq(ξ ,η , t)) . (43)

Integrating (43) with respect to η from 0 to η and using
boundary condition (42), we have

qξ (ξ ,η , t) =
(R−s )

2

4D−s (T (t))
λ +

(R−s )
2

4D−s (T (t))

×
∫

η

0
(qt(ξ ,β , t)+λq(ξ ,β , t))dβ . (44)

Integrating (44) with respect to ξ from −η to ξ and using
(41) gives

q(ξ ,η , t) =
(R−s )

2

4D−s (T (t))
λ (ξ +η)+

(R−s )
2

4D−s (T (t))

×
∫

ξ

−η

∫
η

0
(qt(α,β , t)+λq(α,β , t))dβdα. (45)

We look for a solution of (45) in the form of

q(ξ ,η , t) =
∞

∑
n=0

qn(ξ ,η , t),

where

q0(ξ ,η , t) =
(R−s )

2

4D−s (T (t))
λ (ξ +η)

=
(R−s )

2

4D−s (T (t0))e
AD−s
× 1

T (t0)
λ (ξ +η)e

AD−s
× 1

T (t) ,

and

qn+1(ξ ,η , t)

=
(R−s )

2

4D−s (T (t))

∫
ξ

−η

∫
η

0
(qn

t (α,β , t)+λqn(α,β , t))dβdα.

Assume that I(t),U± and thus V (t) are piecewise analytic.
We only consider the proof piecewisely so that both I(t) and
V (t) are analytic in each separate time interval. Then, from
(8) and the assumption that ∂U±

∂T are also analytic in each
corresponding time interval, we could prove by induction
that the n-th order derivative of T (t) is differentiable for any
nonnegative integer n, and that T (t) is analytic as well in
each time interval.

Since T (t) 6= 0 through all time intervals, then 1
T (t) is an

analytic function in t. Thus, q0(ξ ,η , t) is an analytic function
in t from the fact that the composition of analytic functions
is analytic itself. Assume the existence of a positive constant
C such that for t < t f ,

q0(ξ ,η , t)�C(1− t
t f
)−1(ξ +η)

with respect to t, uniformly for (ξ ,η), where � denotes
domination (cf. [18]). Without loss of generality we assume
that t f >

4
3 . Then

q1(ξ ,η , t)�CC0(1−
t
t f
)−2 ξ η(ξ +η)

2
,

where

C0 = max
t0≤t<t f

∣∣∣∣∣
R−s

2

4D−s (T (t))

∣∣∣∣∣ .

Since
∫

ξ

−η

∫
η

0

αnβ n(α +β )

(n+1)!
dβdα =

ξ n+1ηn+1(ξ +η)

(n+1)(n+2)!

By induction, it could be proved that for n≥ 1,

qn(ξ ,η , t)�CCn
0(1−

t
t f
)−n−1 ξ nηn(ξ +η)

(n+1)!
.

Thus, the series
∞

∑
n=0

qn(ξ ,η , t) could be proved to be ab-

solutely and uniformly convergent, and the existence of
q(ξ ,η , t) and p(r,s, t) is established. Moreover, p(r,s, t) is
piecewise smooth and has a bound

|p(r,s, t)|= |q(ξ ,η , t)|

≤C(ξ +η)(1− t
t f
)−1e

C0ξ η(1− t
t f
)−1

= 2Cr(1− t
t f
)−1e

C0(r2−s2)(1− t
t f
)−1

.

The transformation (32) could be verified to be invertible.
The existence and regularity of its inverse could be obtained
by following a similar procedure as the above proof, which
is omitted here. Then, with the existence, regularity of
kernel function for the transformation (32) and also from
the invertibility of the transformation, the main theorem of
this paper could be proved.

To conclude, in the equation derivation for V (t), some
assumptions are made:
(1). R±f ,r

±
e f f are constants,

(2).
∂(U+(c̄+s (t))−U−(c̄−s (t)))

∂T is a state-invariant, possibly time-
varying, function;
and some simplification of the SPM (a polynomial solution
profile) is used. In the observer design, a simplified tempera-
ture equation (17) is employed, and the following assumption
is made:
(3). I(t),U± and thus V (t) are piecewise analytic, and ∂U±

∂T
are also analytic in the corresponding time intervals.

The following theorem can then be proved.
Theorem 1: Under the above assumptions and simplifi-

cations, if choosing λ < 1
4(R−s )

2 min
t≥0

D−s (T (t)), then for any

initial value w̃(·,0) ∈ L2(0,1), the w̃-system (33)− (36) has
an exponential stable (mild) solution w̃(·, t)∈ L2(0,1). Thus,
the observer error c̃-system (29)− (31) is also exponentially
stable in L2 norm, which means the designed observer
(25)− (28) is exponentially convergent.

IV. SIMULATION RESULTS

Effectiveness of the thermal-compensated electrochemical
model and performance of the proposed PDE backstepping
observer for the lithium-ion battery SoC estimation are
verified by numerical simulation. The model parameters
used in this simulation example are mostly cited from the
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Fig. 1. Input current and output voltages for different models

publicly available lithium ion battery simulation package
[19], with the rest from [12], [4], [20]. The SoC-OCV
(open circuit voltage) relationship is determined by fitting
our experimental data.

The input current to the battery system is a square
wave alternating between 15min’s constant 1C discharging
and 15min’s 1C charging, see, Figure 1 (a). The ambient
temperature is -5◦C. The SPM assumes constant temper-
ature, however, the inner average temperature and battery
performance have bidirectional impacts on each other. This
is demonstrated from the SPM-T temperature evolution in
Figure 1 (b). Since the SPM-T is more realistic, it should be
able to help achieve more accurate SoC estimation.

The initial PDE observer states are set as half of the
constant initial plant state values respectively, and the initial
temperature for observer is set to be -4.9◦C. A noise with
the covariance of 10−8 is added to the measured output
voltage for both observers. Several finite difference methods
are used. In Figures 2 (a) and 3 (a), the black solid lines
are the true voltage and SoC values of the coupled thermal-
electrochemical model; the red dashed lines are simulation
results from applying the observer designed in [17] for
the SPM to this coupled model; the blue dashed lines are
the corresponding estimates of the observer designed in
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Fig. 2. Voltage true value, its estimations and estimation errors

this study. Also, Figures 2 (b) and 3 (b) demonstrate the
simulation results of the voltage and SoC errors derived from
these two different models/observers. Figures 2 and 3 show
that by merging thermal behavior into the battery model and
observer, we could achieve smaller voltage estimation error.
Furthermore, Figure 4 shows the temperature estimation
error by the observer designed in this study and tells that
this method with the SPM-T model could achieve a good
temperature estimation as well.

It is worth mentioning that for realization of the time-
varying kernel function p(r,s, t), we implement a composite
trapezoidal rule to all integrals in the equivalent integral
equation of the PDE kernel function system. By approximat-
ing the integrals with values of their integrands at equally
spaced grid points, a resulting time-varying ODE for each
point is derived. After we treat each point as an element of
a vector and stack all points, an initial-value problem of a
system of time-varying ODEs is formulated, for which we
apply an implicit Euler method.

V. CONCLUSION AND FUTURE WORK

This paper discusses the problem of SOC estimation for
the lithium-ion batteries. Compared with the SPM alone,
the model we utilize in this work also incorporates a
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Fig. 3. SOC true value, its estimations and estimation errors

temperature equation. This model is more physics-related,
and it helps to achieve a more accurate estimation of the
electrode lithium-ion concentration. Existence and regularity
of the time-varying PDE backstepping kernel functions for
the transformation between the observer error system and an
exponentially stable target system are rigorously proved, then
exponential stability of the observer error system is estab-
lished, which proves effectiveness of the designed observer.

Some simplifications are made in this paper, and their
relaxation could be directly considered as a future research
direction. One possible way is to retain the cathode concen-
tration dynamics and design its observer to work together
with the available anode concentration observer from this
paper. In this case, some other measurable outputs might
be needed. Also, observer design for estimating the battery
internal temperature itself is a valuable problem.
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