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Motivated by an engineering application of torsional vibration suppression of off-shore oil drilling,
we design an adaptive output-feedback controller for a one-dimensional wave partial differential
equation (PDE) system, where an anti-damping term with an unknown coefficient and a general
harmonic disturbance with unknown amplitudes exist in the bit, which is modeled as a second-
order-in-time boundary. The control input anti-collocated with this boundary subject to uncertainty, is
designed by using the adaptive control method and infinite-dimensional backstepping technique. The
asymptotic convergence to zero of the uncontrolled boundary states, i.e., the oscillations of the angular
displacement and velocity at the bit, and the boundedness of all states in the closed-loop system, are
proved via Lyapunov analysis. The effectiveness of the proposed adaptive controller is verified via
numerical simulation. The results also can be applied to other applications, such as vibration control

Oil drilling

of cable elevators with uncertain cage-guide friction and cage disturbances.
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1. Introduction
1.1. Vibrations in oil drilling system

Qil drilling systems used to drill deep boreholes for hydro-
carbon exploration and production often suffer severe vibrations,
which would cause premature failure of drilling string compo-
nents, damage to the borehole wall, and problems to precise
control (Jansen, 1993). Besides, the vibrations also cause signifi-
cant wastage of drilling energy (Dunayevsky, Abbassian, & Judzis,
1993). Suppression of vibrations in the oil drilling system is thus
required considering the economic interest and improvement
of drilling performance (Saldivar, Mondis, Niculescu, Mounier, &
Boussaada, 2016).

There are three main types of vibrations in oil drilling sys-
tems (Saldivar, Boussaada, Mounier, & Mondie, 2014): vertical
vibration, also called the bit-bouncing phenomenon, lateral vibra-
tion due to the out-of-balance of the drill string, which is called
whirl motion, and torsional vibration which appears due to the
friction between the bit and the rock. This nonlinear torsional
interaction between the drill bit and the rock would cause the
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bit to slow down and even stall while the rotary table is still in
motion. Once enough energy has been accumulated, the bit would
be suddenly released and starts rotating at very high speed before
slowing down again (Bresch-Pietri & Krstic, 2014a), settling into
a limit cycling motion. This is called the stick-slip phenomenon.
The stick-slip oscillations would lead to the instability from the
lower end traveling up to the drill string and the rotatory table,
which results in distributed instabilities and primarily provokes
fatigue to drill collar connections and damages the drill bit (Sal-
divar et al., 2014). Therefore, suppressing torsional vibrations
(stick-slip oscillations) in the oil drilling system is important and
is the focus of this article. In addition to the stick-slip instability,
wave at the sea surface, causing heaving motion of the drilling
rig (Aamo, 2013) in an off-shore rotary oil drilling system would
introduce an external disturbance at the bit. The control task in
this article is to deal with the stick-slip instability and external
disturbances at the same time to asymptotically stabilize the
oscillations of the vibrational angular displacement and velocity
at the drill bit.

1.2. Qil drilling vibration models

One category of existing drilling models used for the control
design is a lumped parameter model, where the drill string is
approximated as a mass-spring-damper system described by an
ordinary differential equation (ODE). Based on this model, the
traditional ODE control strategies are used to suppress vibrations
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in Germay, Van De Wouw, Nijmeijer, and Sepulchre (2005) and
Richarda, Germayb, and Detournay (2007). Another category is
a neutral-type time-delay model (Abolinia & Myshkis, 1960),
where a pair of delay differential equations is derived to describe
an equivalent input-output model, and then several stabiliz-
ing control laws are designed based on the attractive ellipsoid
method (Saldivar & Mondi$, 2013) and Lyapunov theory (Sal-
divar, Mondis, Loiseau, & Rasvan, 2013). Even though the use of
the lumped parameter model and the neutral-type time-delay
model simplifies the control system design, they neglected the
distributed nature of the system (Saldivar et al., 2016), which may
cause the spillover instability (Zhang, He, & Ge, 2012).

An infinite dimensional model describing the torsional vibra-
tions in the drilling string is a wave PDE model (Bresch-Pietri &
Krstic, 2014a, 2014b; Sagert, Di Meglio, Krstic, & Rouchon, 2013),
where the model spillover phenomenon is avoided (Zhang et al.,
2012). In this article, we use the one-dimensional wave PDE to
describe the torsional vibration dynamics of the drilling string.

1.3. Models for stick-slip phenomenon and external disturbances

Several physical laws of bit-rock friction (Saldivar et al., 2016)
are used to roughly describe the stick-slip behavior in the re-
duced finite dimensional model of the oil drilling system, such
as the velocity weakening law (Challamel, 2000), stiction plus
Coulomb friction model (Serrarens, van de Molengraft, Kok, &
van den Steeen, 1998), a class of Karnopp model (Detournay &
Defourny, 1992; Karnopp, 1985; Navarro-Lépez & Cortés, 2007).
In the infinite dimensional model of the oil drilling system, the
stick-slip behavior between the bit and rock is usually simplified
as a linear anti-damped term, such as Bresch-Pietri and Krstic
(2014a, 2014b, 2014c) and Sagert et al. (2013). The coefficient
of the anti-damped term depends on some other factors about
the nature of the rock and is difficult to be known in advance.
In this paper, the stick-slip instability in the wave PDE modeling
the drilling string dynamics is described as an anti-damped term
with a coefficient being unknown in the second-order-in-time
boundary describing the bit dynamics.

The external disturbance at the bit resulted from wave-induced
heaving motion of the drilling rig (Aamo, 2013) is usually de-
scribed by a harmonic form with known frequencies and un-
known amplitudes (Landet, Pavlov, & Aamo, 2013), because the
amplitudes of the disturbance caused by heave motion may be
affected by winds or ocean currents, and are difficult to be defined
in advance, while the dominating frequency components of the
heave motion of a specific sea area are usually accessible. In this
paper, the disturbance at the bit is modeled as the harmonic
function with known frequencies and unknown amplitudes.

1.4. Control of wave PDE with anti-collocated instability or distur-
bances

In the off-shore rotary oil drilling system, a one-dimensional
wave PDE describes the torsional vibrations of the drilling string
and a second-order-in-time boundary opposite to the control
input represents the bit torsional vibration dynamics, including
an anti-damping term with an unknown coefficient and a gen-
eral harmonic function with unknown amplitudes denoting the
stick-slip instability and the disturbance at the bit respectively.
The control task is thus boundary stabilization of a wave PDE
with both high uncertainty and instability at the anti-collocated
boundary.

In Krstic, Guo, Balogh, and Smyshlyaev (2008), the bound-
ary stabilization problem of a one-dimensional wave PDE which
contains the instability at its free end and the control input
on the opposite end was dealt with by using the backstepping

method (Krstic & Smyshlyaev, 2008a). In Bekiaris-Liberis and
Krstic (2014), the first global stabilization result was achieved for
a wave PDE-nonlinear ODE system where the actuator is anti-
collocated with the source of the instability. Moreover, for the
uncertain anti-collocated instability, adaptive control laws (Krstic,
2009b; Krstic & Smyshlyaev, 2008b) were developed for a one-
dimensional wave PDE which had an actuator on one boundary
and an anti-damping instability with an unknown coefficient on
the other boundary in Bresch-Pietri and Krstic (2014a, 2014b,
2014c). For the anti-collocated disturbance attenuation problem
in wave PDEs, output reference tracking of a wave equation
with an anti-collocated harmonic disturbance at a stable damping
boundary was presented in Guo and Guo (2016). The output
regulation problem for a wave equation with a harmonic anti-
collocated disturbance at a free boundary was dealt with in Guo,
Shao, and Krstic (2017). In Wang, Tang, Pi and Krstic (2018), an
output-feedback controller was designed to attenuate an anti-
collocated disturbance and exponentially regulate the uncon-
trolled boundary state of a wave PDE on a time-varying domain
based on the backstepping and the active disturbance rejection
control (ADRC) approach. However, the boundary control prob-
lem of a wave PDE with both instability and disturbance which
include unknown coefficients in the boundary anti-collocated
with the control, motivated by the application in the oil drilling,
is more challenging. Because high uncertainty and instability
simultaneously exist in the boundary anti-collocated with the
control input, traditional ADRC (Tang, Guo, & Krstic, 2014) cannot
be used directly.

1.5. Contributions of the paper

e To the author’s best knowledge, it is the first control result
of a PDE-modeled oil drilling system considering both the
uncertain stick-slip instability and an uncertain harmonic
disturbance at the bit.

o Compared with Krstic (2009c) and Sagert et al. (2013) which
design boundary control to stabilize a wave PDE coupled
with an unstable ODE at the boundary opposite to the con-
trol input via backstepping, the main contribution of this
paper is in considering the coefficient of the source of insta-
bility in the ODE as unknown and in handling an uncertain
external disturbance at the ODE, anti-collocated with the
control input.

e The novelty of this paper is that an instability term with
an unknown coefficient and an uncertain harmonic distur-
bance at the uncontrolled boundary need to be dealt with
simultaneously in a wave PDE, compared with Bresch-Pietri
and Krstic (2014a, 2014b) stabilizing a wave PDE including
an unknown-coefficient anti-damping term at the boundary
anti-collocated with the control input, or Guo et al. (2017)
and Wang, Tang et al. (2018) dealing with an anti-collocated
uncertain disturbance in a wave PDE.

1.6. Organization

The rest of the paper is organized as follows. We present
the torsional vibration dynamics of oil drilling with stick-slip
instability and a disturbance at the bit in Section 2. The adap-
tive update laws for the unknown coefficients are presented in
Section 3. The design of the output-feedback controller via the
backstepping method is proposed in Section 4. The stability proof
of the resulted closed-loop control system is proved in Section 5.
Simulation results are provided in Section 6. The conclusion and
future work are presented in Section 7.
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2. Problem formulation
2.1. A wave PDE model

The off-shore oil drilling system rotates around its vertical
axis, penetrating through the rock on the sea floor (see Fig. 1). It
consists of the assembly of a drill pipe, a drill collar, and a rock-
cutting tool referred to as drill bit. At the top of the drill string,
the rotary table provides the necessary torque to push the system
into a rotary motion (Sagert et al., 2013). The torsional vibration
dynamic model of the rotary off-shore oil drill string system can
be written as:

Ug(x, t) = qux(X, ), (1)
u(L, t) = U(t), (2)
Ipuee(0, t) = cue(0, t) — kuy(0, t) — d(t), (3)

where the state u(x, t) denotes the distributed elastic angular
displacement of the drill pipe; x € [0, L] with L being the length of
the drill pipe; t € [0, co) representing the time. The coefficients
q = GJ /I, k = GJ, with G, ], I; being the shear modulus of the drill
pipe, drill pipe second moment of area and drill pipe moment of
inertia per unit of length, respectively; I, is the moment of inertia
of the bottom hole assembly (BHA). U(t) is the scalar input and
kU(t) represents the control torque in practice. cu,(0, t) describes
the stick-slip instability between the bit and the rock at the
bottom. Moreover, d(t) denotes the pressure oscillations on the
drill bit caused by wave-induced heaving motion of the drilling
rig.

Two assumptions are made for the unknown coefficient ¢ and
the uncertain disturbance d(t):

Assumption 1. The anti-damping coefficient c¢ in (3) is unknown
but bounded by a known and arbitrary constant c, i.e., ¢ € [0, c].

Assumption 2. The disturbance d(t) is of the general harmonic
form as
N
d(t) = laj cos(6jt) + by sin(6;t)], (4)
j=1
where the integer N is an arbitrary integer. The frequencies 6;
are known and arbitrary constants. The amplitudes a;, b; are un-
known constants bounded by the known and arbitrary constants
(_Ij, bj, ie, a; € [0, aj], bj e [0, bj]

Remark 1. The frequency information requirement is reason-
able in the wave-introduced disturbance considered in this paper
because the dominant frequency of the ocean waves is usually
slowly varying and mostly known for the particular area of the
ocean (Fossen, 2011). Actually, even if the frequency information
is unavailable in some other application cases, (4) also can model
most periodic disturbance signals since N is arbitrary and can be
chosen sufficiently large.

The available boundary measurements are:

e The torsional vibration acceleration u(0, t) measured by
the acceleration sensor placed at the bit

e The torsional vibration velocity u.(L, t) which can be ob-
tained easily from the feedback signal in the servo actuator.

Note that we obtain the torsional vibration displacement and
velocity at the bit u(0, t), u.(0, t) by twice integrating the mea-
surement i (0, t) with known initial conditions u(0, 0), u.(0, 0),
because the installation of the acceleration sensor is more eco-
nomic and convenient.

With the coefficient ¢ of the anti-damping term being un-
known and the amplitudes g;, b; of the harmonic disturbance d(t)
being unknown at the uncontrolled boundary x = 0, the control
objective in this paper is to design a control input U(t) using
available boundary measurements to guarantee the asymptotic
convergence to the origin of the torsional vibrational angular
displacement u(0, t) and velocity u.(0, t) of the drill bit at the
downhole boundary. The uniform boundedness of all states in the
closed-loop system should be ensured as well.

2.2. A wave PDE-ODE model

In addition to the challenges from the unknown coefficient in
the anti-damping term and the uncertain external disturbance at
the uncontrolled boundary, the second order boundary condition
(3) which is also anti-collocated with the control input poses
difficulties to the control problem as well. To solve this, we define

X(t) = [U(O, t)! u[(07 t)]T! (5)

and then the system (1)-(3) can be written as a PDE-ODE cou-
pled (Tang & Xie, 2011; Zhou & Tang, 2012) system:

X(t) = AX(t) 4 Buy(0, t) + %Bd(t), (6)
u(0, t) = CX(t), (7)
Ure(X, t) = quu(X, £), (8)
u(L, t) = U(t), 9)
where
A:[g %],B:I’Z[_Ol],czn,ol (10)

Note that the second order boundary (3) becomes the first order
one now and A is an uncertain matrix including the unknown
anti-damping coefficient c. The control objective is thus to ensure
the asymptotic convergence of X(t).

2.3. A 2 x 2 transport PDEs-ODE model

In order to reduce the time derivative order of the plant
(6)-(9), we use the following Riemann coordinates:

z(x, t) = ue(x, t) — /qux(x, t), (11)
w(x, £) = ue(x, ) + /qux(x, t) (12)
to reversibly rewrite the system (6)-(9) as

X(t) = (A — «}ﬁBCl) X(t) + %Bw(o, t)+ %Bd(t), (13)
z(0, t) = 2C1X(t) — w(0, t), (14)
Z(x. t) = — /G2 (x. 1), (15)
welX, ) = /qua(x, t), (16)
w(L, t) = 2/qU(t) + z(L, t), (17)

Note that g > 0 according to the definition in Section 2.1, and the
state matrix in ODE (13) can be rewritten as

A— %BQ = A +Ac — %Bcl (18)
where

¢y =1[0,1], (19)
by defining

Ar = [8 (1)} , (20)
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Rotary table

T~ Drill pipe

. Drill collar

Fig. 1. A drill string used in offshore oil drilling. u(x, t) denotes the distributed
elastic angular displacement of the drill string. The drill bit is subjected to the
uncertain stick-slip instability and disturbance, which are anti-collocated with
the torque U(t) at the rotary table.

AC:A—AE:[g 2] (21)

Ip
which will be used in the following control design.

In what follows we design the adaptive controller U(t) based
on the plant (13)-(18) with the condition that Ay — —=BC; is
controllable. This condition is satisfied in the oil drilling model
according to (10), (19) and (20).

3. Adaptive update laws for unknown coefficients

The objective in this section is to build adaptive update laws
to estimate the unknown coefficients ¢ and g;, b;, respectively,
where normalization and projection operators are used to guar-
antee boundedness, as typical in adaptive control designs.

Define adaptive update laws for the unknown coefficient c in
the matrix A (10) and the unknown coefficients g;, b; in d(t) in (4)
as:

&(t) = yeProjig g (2(6), (1)) (22)
ai(t) = yqProjjo 4, (Tij(t). ai(1)) (23)
by(t) = yProipo 5 (7ai(0). Bi(0)) (24)

where the positive update gains y, 4, v are tuning parameters
to be determined. For any m < M and any r, p, Proj, » is the
standard projection operator (Krstic, 2009a) given by

0, ifp=mandr <0,
Proj, v (r,p) =10, ifp=Mandr > 0,
r, else.

The role of the projection operator is to keep the parameter
estimates bounded. The bounds ¢ and g;, b; are defined in
Assumptions 1 and 2 respectively. T, tyj, 1o in (22)-(24) are
defined as

_ 1 T t X
T(t) = sz(t) (X PAm — A.av/(; € ,B(X, t)
x (;z + [0, ﬁ;(t)]) eﬁ(’*ﬂ(”’*m’ﬁ“‘)XAmdx>X(t), (25)

_ 1 T . F
t‘l_](t) = m <X PBCOS(OJt) — )\.a\/o € ﬂ(X, t)

ot 1 s 1
8 (I2 n I:O7 \/al:()]) eﬁ(AE+Ac(f) \/EBQ)XB COS(Gjt)dX>’ (26)

_ 1 T B i : X
sz(t) = m (X PB Sln(QJt) — AQA € ﬁ(X, t)

c(t (At A () L
5 (E +[0, @De LA+t ﬁgcmBsmwjt)dx), 27)

Note that the choices of z(t), 7yj(t), T;(t) will be clear from
Lyapunov analysis which will be shown Section 5. The definitions
of the parameters and states used in (25)-(27) are shown as
follows, i.e., (28)-(39).

Am:[g ﬂ (28)
A 0 O
A=y ). (29)

1 L 1 L
Q)= fka/ e B(x, t)YPdx + ,)\b/ e ¥a(x, t)dx
2" Jo 2 Jo

+ %X(t)TPX(t). (30)

Note that normalization £2(t) is introduced in the denominator in
(25) (27) to limit the rates of changes of the parameter estimates

ie., c( ) and a,( ), b( ). The normalization constants A, > 0, A, >
0 are tuning parameters to be determined.

The matrix P = PT > 0, where the superscript T means
transposition, is the unique solution to the following Lyapunov
equation
PA+ATP=—-Q (31)

— 0T A — _ 1 1 pri
forsome Q = Q' > 0and A = Ag ﬁBQ + ﬁBK is made
sure to be Hurwitz by appropriately choosing control parameters
i = [kq, k2] later. a(x, t), B(x, t) are defined as
a(x, t) =z(x,t)

- %[c‘u(r), bi(t), ...,

Bx. t) =w(x, t) + 7[01

an(0). bu(O)le W'Z(),  (32)

-l

. Az
1(t), ..., an(t), bu(t)leva Z(t)
]) L g +Ac(t)- IBC‘)XX(r)

1 2 1
)D o i AE A= JEBC )

((y, + a0, by(e), ... an(t), bu(0)]

k
xefy t))dy, (33)
where
Azzdiag[<901 _g1>, ’(9(11 _g”)} (34)
and

Z(t) = [cos(6:t), sin(B1t), . . ., cos(Oyt), sin(Oyt)]" (35)

will be used in constructing the transformation in Section 4.1.
Note that «(x, t), B(x, t) (32)-(33) are derived from transforma-
tions (40)-(41) and (60)-(61) which will be shown later. It will
be seen clearly in Section 4.

Note that z(x, t), w(x, t) in (32) and (33) can be calculated by
the available boundary states through transport PDEs (13)-(17):

wx, t)=w(,t — %(L — X)), (36)
z(x, t) = 2C1X(t — %x) —w(0,t — %x)
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1
=20 X(t — —x) —w(l, t — — — — 37
X(t ﬁx) w(L,t — [ [ (37)

Applying (5), (12), (19) then w(x, t), z(x, t) can be written as

w(x, t) = u; (L, t— %(L - x))

1
+ /qu (L, t— —(L —X)) , (38)
f X ﬁ
2x.1) 2<0t 1) <“ L 1)
Xt)=2u (0, t — —x ) —u (Lt — —— —x
f va) NCERNG
qu (Lt L 1 ) (39)
T va VA
Note that ue(L, t — % ﬁ x), u(L, t — }(L — X)) are the
measurement u(L, t) at previous time moments, and recalling
(2), ug(L, t - ﬁ - ﬁ x) and uy(L, t] ﬁ( - x)).can be replaced
by U(t — T ﬁx) and U(t — ﬁ(L — x)) which are the con-

trol input in the previous time moments as known quantities.
Therefore, according to (32)-(35), (38)-(39) and (5), we then have
a(x, t), B(x, t)and X(t) can be obtained by the available boundary
measurements proposed in Section 2.1. Therefore, the adaptive
update laws can be determined by the available boundary states
proposed in Section 2.1.

4. Output feedback control design

In this section, we would like to design an output feedback
controller to compensate the uncertain stick-slip instability and
external disturbance at the ODE which is anti-collocated with
the controller based on the adaptive laws presented in Section 3,
by using the measurements mentioned in Section 2.1. To this
end, we first propose a transformation to make the unmatched
external disturbance collocated with the controller, and then the
disturbance can be more easily canceled via control design.

4.1. Transformation to make control and the unmatched disturbance
collocated

We now transform the system (13)-(17) into an intermediate
system so that the control input at x = L and the anti-collocated
disturbance at the ODE are set to be collocated (Wang, Tang et al.,
2018).

We introduce the invertible transformations (w, z) — (v, s):
u(x, t) = w(x, t) + I'(x, £)Z(t), (40)
s(x, t) = z(x, t) + I'(x, £)Z(t), (41)

where I'(x, t), I'|(x, t) are to be determined.
Through (40)-(41), we would like to convert the system (13)-
(17) into the following system:

X(t) = (A - Jch1> X(t) + %BU(O, t)+ %B&(t), (42)
s(0, t) + v(0, t) = 2C1X(t), (43)
se(x, t) = —/qsu(x, £) + Te(x, £)Z(t), (44)
ve(x, t) = /qux(x, t) + T(x, £)Z(1), (45)
v(L, t) = 2/qU(t) + s(L, t) + (I'(L, t) — (L, £))Z(¢), (46)
where d(t) is defined as
N
dey=>" [aj(r)cos(ejt) + Bj(t)sin(ejt)] : (47)

j=1

with d(t), bi(t),j =1, ..., N defined as

a;(t) = aj — a(t), (48)
bi(t) = b; — bj(t). (49)
Recalling (34)-(35), we immediately have

Z(t) = AZ(t). (50)

Taking the time and spatial derivatives of (40) and substituting
the result into (45), we get

ve(x, £) — /quex, t) — Te(x, )Z(t)
= we(x, t) — ﬁwx(x t)+ Ii(x, )Z(t) + I'(x, t)AZ(t)
— VaL(x, OZ(t) = Ii(x, t)Z(t)
= (I'(x,t)A;, — fl“x(x t)) =0. (51)
For (51) to hold, we have the sufficient condition
— J/qx(x, t) = 0. (52)

By mapping (13) and (42) through the transformation (40), we
have the condition

q R A N ~
r.t = %[am, bi(e). ... a(e). bu(t)]. (53)
Considering (52)-(53), we obtain the solution

q . ~ R ~ Az
I(x t)= %[m(t), ba(t), ... an(t), bu(t)1eva", (54)

Az x .
where ev4" can be written as
[ : (4
o = diag|: COS(?X)’ B Sm(j"x) N
sm(ﬁx), cos(—’qx)

cos(f—}x), —sm(g—qu) } (55)

sin( 2L x) cos( Q—’qu)

according to (34).
Similarly, mapping (14)-(15) and (43)-(44) through (40)-(41),
we obtain

q . ~ R ~ _ Az
Mix, t) = —%{al(t), by(t), ..., an(t), bu(t)le” V", (56)
Note that |I"(x, t)| and |I'i(x, t)| are bounded as
V2Nq

r I < 7
xe[o,{??éfo.o@{' (x, O [Mx, 0} < K max {@, by} (57)

where || is Euclidean norm, recalling (55) being a rotation matrix
and the adaptive estimates @;(t), b;(t) are bounded by [0, g;] and
[0, b] via using the projection operator in Section 3.

Thus, through the transformation (40)-(41) with (54)-(56),
we complete the conversion from the plant (13)-(17) to the
intermediate system (42)-(46) where the control input and the
unmatched disturbance information are collocated.

4.2. Backstepping control design

4.2.1. Backstepping transformation and the target system

In addition to canceling the disturbance term Z(t) at (46)
straightforward, the objective in this section is to compensate
the uncertain anti-damped term cu,(0, t) included in (42) by
designing the control input U(t) at (46).

The PDE backstepping method (Krstic, 2009¢) is used to deign
the controller. Recalling (42) and (18), through backstepping

transformation, we would like to match the poles of Ap— %BQ to
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form a Hurwitz matrix, and compensate the anti-damping term
X(t) by Ac(t)X(t). Recalling (21) and (29), we have

Ac(t) = Ac = Ac(t) = [3 I?)] (58)
b

where ¢(t) is the estimation error of c:

c(t) = ¢ —&(t). (59)

The backstepping transformation is defined as:

a(x, t) = s(x, t), (60)

,8(X7 t) = U(X, t) - / d)(X» Y, t)U(y, t)dy - )’(X’ t)X(t)a (61)
0

where the time-varying kernel functions ¢(x, y, t),
be determined later.

From the spatial causal structure, the inverse transformation
of (60)-(61) can be written as

s(x, t) = a(x, t), (62)

U(X7 t) = ﬂ(x’ t) - / Iﬁ(X, Y, t)ﬁ(ya t)dy - X(X» t)X(t)v (63)
0

y(x, t) are to

where ¥(x,y,t) and x(x,t) are kernel functions to be deter-
mined.

Remark 2. The fact that the kernel functions are time-varying in
the backstepping transformation (61) is due to adaptive estima-
tion ¢(t) included. Because ¢(t) and ¢(t) are bounded according
to the designed update laws, ¢(t) is continuous and sufficiently
regular.

Through the backstepping transformation (60)-(61) and (62)-
(63), we would like to convert the intermediate system (42)-(46)
into the following target system:

X(t) = AX(t) 4+ A()X(t) + %Bﬁ(o, t)+ %B&(t), (64)
Bulx, ) = VaB(x, ) + Ty, 2(0) — / " px,y, DL, OdvZ(0)
(1 O+ y(x, O /fmxy, v, )y
+ / gy, 0 / Y, 0, O, Dddy

1 .
/ By, DX, Xy — y (5 OLBAD), (69)

ar(x, t) = —/qo(x, t) + Te(x, £)Z(8), (66)

B0, t) = —a(O, £) 4+ (y(0, £) + 2C)X(¢), (67)

B(L, t)=0, (68)

where

A—fe——pe 4L k [0 P } (69)
Va f Tl [k (1)

is Hurwitz by choosing the control parameters k1, k5 to satisfy
k(1 —ky)?
B> 1, 0<ity < Ak (70)
4./4qly
4.2.2. Calculating the kernel functions
Taking the time and spatial derivatives of (61) gives

Brlx. £) = velx, £) — / o(x.y, Duely, t)dy
0

- / Be(x.y. OV, Oy — y(x OK(D)
0

) (71)
B, ) = ux(x. £) — / b,y Duly. )y
0

—o(x,x, th(x, t) —
According to (42)-(46

ﬂtXt «[ﬂxxr

+/ P(x, y, Oy, OAYZ(E) + (ve(x, £) + ¥ (x, DALD))X(L)
0

Yalx, OX(). (72)
), the following equality holds
Ii(x, t)Z(t)

X ] -
+ / 8%, . DR, )y + (. OB
0

_\/a/ ¢(X, y’ t)vx(y, t)dy + \/6/0 ¢X(x7 y’ t)v(yv t)dy
£) + V/qwx, DX(t)

1 -
v(x, £) + y(x, DA(OX(1) + p(x, ), Bd(t)

—y(xt

+ /qo(x, x, t)u(

= (ﬁq&(x, 0,t)— %y(x, t)B)v(O, t)
+ /(; <\/EI¢X(X5 y? t)+ \/a¢y(xs y7 t))U(y, t)dy

+ (ﬁyx(x, t)—y(x,t) (AE +Ac(t) - \;aBCl»X(t)- (73)

) holds by applying (63),
) via (61), we have the

For (73) to be zero, which ensures (65
together with mapping (64) with (42
following kernel conditions:

q¢(x,0,t) = y(x, t)B, (74)
Pu(x, ¥, 1) + dy(x,y,t) = 0, (75)
1
B (0, t) Upe — A (t) (77)
—v(0,t) = —=Bic —Ac(t).
Va Va ‘
We thus obtain the unique kernel solutions as
2 (ApAc(t)— L
y(x.£) = ( + [ f =~ ]) e AT, (78)
d(x,y,t)
_ 7( +[ VAl f)]) Jithe A0~ Jype ) (79)
q

where Ac(t) = —%B[O, ¢(t)] is used. Note that the adaptive
estimation ¢(t) which is continuous and included in the kernel
functions (78)-(79) ensures y(x, t) and ¢(x, y, t) are continuous.

Remark 3. The kernels (x,y, t), x(x, t) of the inverse trans-
formation (62)-(63) also exist and are continuous. Rewrite (61)
as

U(X! t) - f ¢(X! y7 t)U(y, t)dy = :B(Xv t) + )’(x» t)X(t)
0

Because ¢(x, y, t) is continuous, recalling Remark 2, it can be
concluded that a unique continuous 7(x, y, t) exists on {(x, y)|0 <
y < x < L} such that

=B(x, t) + y(x, )X(t)

+ / 1%, 3. £) (B, £) + Y3, OX(0)) dy
0

v(x, t)
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B0 t) + / 1(x.y. DB, D)y
0

+ ( /0 n(x,y,t)y(y,t)dyw(x,t))xa),

according to Su, Wang, and Krstic (2018). The kernels in the
inverse transformation (62)-(63) are

Y(x,y,t) =
X t) = — / 1%, v, Oy, )y — y(x. €)
0

_ﬂ(x, Y, t)7

which are also continuous recalling the continuity of y(x, t) and
nx, y, t).

Note that the two transformations (40)-(41) and (60)-(61)
with the kernels (54)-(56) and (78)-(79) determined in
Section 4.1 and this section respectively are used to obtain (32)
and (33).

4.2.3. Control law
According to the boundary condition (68), (46) and the trans-
formation (61), we can derive the controller as

1
U = —— (—s(L, £)— ('L, ©) = [y(L O)Z(0)
NG
Ve
+ f o(L. v, W00y, Oy + (L, r)xm). (80)
0

Using (40)-(41) and (11)-(12), (80) can be rewritten as

u(e) = % (—ut(L, £)+ Jaus(L. £) — (L. )Z(2)
L
+ f o(L.y. DI (y. OdYZ(t) + v (L. OX(D)
/¢>(Ly, [ ( 1(L y))
q

+fux(Lt——L y>:| ) (81)
where
vy, t) =w (L, t — %(L —y)) + I'(y, t)Z(t) (82)

is used, which is obtained by (38), (40).
Substituting (54)-(56), (78)-(79) and (5), the controller (81)
can be written as

U(t): U[L t

1
2\[[ + /qux(L, t)
- %{alm, Bu(t). ... an(e), bu(e)]e 52 ()

¢ L 4 N 1
n %(E n [0, \/ac(f)D / o S A+ A= JBCL)
0

k

(), Ba(0)1e dyz(t)

<,; + |:0’ \/aC(t):|> eﬁ(AEJrE(t)Am—ﬁBQ)L

o (0 50))

t 2 1
« f e(AE+C(f)Am*ﬁBC1 )(H;)B
t7

+

X

[u(0, ), u (0, )" +

S

X

[ue(L, 8) + v/qux(L, 5)]d3], (83)

Measurements
u(0,1),u,(0,1),u,(L,t)

Controller
o0}

A4

Plant-u

Y

Control input in the previous time period U(1,)

&(t),a,(0),b,(r) Adapfive

Estimation

Fig. 2. The block diagram of the closed-loop system.

where ;\C(t) = ¢(t)An ensured by (28) and (29) is used. Z(t) is de-
fined as (35) and ¢(t), a;(t), b( ),j=1,...,N are calculated from
the adaptive update laws (22) and (25) ( 3) and (26), (24) and
(27) proposed in Section 3. u(0, t), u(0, t), u,(L, t) are obtained
from measurements in Section 2.1. uy(L, t) can be replaced as U(t)
by applying (2), and the refreshed control input is shown in the
following paragraph.

We choose the controller to be activated at t = f} to make

sure the second argument of w(L, t — ﬁ - ﬁ) in (37) is positive.
In other words, the system runs as open-loop and U(t) = 0 when
t € [0, Z—Lq). Substituting (2) into (83) to replace uy(L, t) as U(t),
the control input can be rewritten as

an(0). bu()le i Z(t)

[—uta, 6 — Y0, bi(t), .
1
q

L 4 R 1
t)D / o 7 AE AR~ 2B p
0

. an(t). bu(O)le W dyz(t)
«/;C i|) eﬁ (Ag-+2(0Am— J2BC1 )L
x [u(o ). u(0, 0))"

+ ey fC v LI G
q k (— L

NG

« TuelL, 8) + ﬁU(a)Jda], (= 2L (84)

\/av
where the value U(8 ) of the control input in the previous time
interval 8 e [t — f’ t) would be used. Note that U(§;) with

81 € [t — 2L, t) will also be used according to (30), (32)—(33) and
(38)- (39) in bu1ld1ng the estimation of ¢(t ) a](t) ( ). Because
U(t) in the previous time interval t € [0, f) is zero, therefore

U(8), U(3;) can be regarded as known quantities in calculating

U(t)(84)att = % By that analogy, U(t) at each time pointin t >

z—z can be calculated by the measurements u(0, t), u¢(0, t), u.(L, t)

and U(8), U(8;) in the previous steps. Therefore, the proposed
output feedback controller (84) is entirely computable with the
available boundary measurements u(0, t), u(0, t), us(L, t). The
block diagram of the closed-loop system is shown in Fig. 2.

5. Stability analysis
5.1. Stability analysis of (42)-(46)

Before proving the main result of this paper, we propose the
following lemma.
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Lemma 1. If the initial data s(-, 0), v(-, 0) both belong to L*(0, L),
then the system (42)-(46) under the control (80) is well-posed, and
it is uniformly bounded and asymptotically stable in the sense of the
norm
(IsC-. O + IvC-, O + X(0)P) (85)
Proof of Lemma 1. The well-posedness of the closed-loop
system-(s, v) can be obtained if the well-posedness of the target
system-(«, B) (64)-(68) is achieved, because the backstepping
transformation (60)-(61) is continuous and invertible. Because
the adaptive estimate laws ¢(t), G;(t), bj(t) for the unknown con-
stant coefficients c, a;, b; which are constants are determined
by some normal ODEs, it is obvious that the estimation errors
c(t), a;(t), bj(t) are well defined. The well-posedness of the target
system (64)-(68) in the non-adaptive case, i.e. ;\C( t)=0, fi( t)=
can be proved similar to Di Meglio, Bribiesca, Hu, and Krstlc
(2018). Considering Z(t) defined as (35) and A (1), d( ) defined
s (58), (47) being some well-defined injections of (64)-(68),
the well-posedness of the closed-loop system-(s, v) can then be
proved.

Define

o) = IBC, O + lla-, O + X0, (86)
where || - || denotes the L, norm. Recalling (30), we have
p10(t) < 2(t) < u20(t), (87)

with positive w1, @y as

1 . _
pa = 5 minfha, Ape L min(P)}, (88)

1 .
2 5 mln{kael, Abs Amax(P)}, (89)

where A, and An.x denote the minimum and maximum eigen-
values of the corresponding matrix.
Choose a Lyapunov function as

N
1 .
V(t)=In(1+ 2t P+ ) —bi(t)?
VJ ; 2y
1
+ —c(t ) (90)
2y

where aj(t), Ej(t), ¢(t) are defined in (48)-(49) and (59
tively.

Considering (87) and the monotone increasing function In(-),
the following inequality holds

) respec-

0<In(1+ u1O(t) + ft1

'MZ

(ae? + Bi(e?) + e

j=1

V(t) < In (14 p20(t))

N
+ iz | 2 (@(eR +Ber) + e | (o1)
=1
where
_ 1 0
n1 = >V,
2 MaXje(1...N} {J/aj, Vbj» J/c}
1
iy = ~ 0. (92)

2 minje[l.“N} {Vaj’ Vbj» )/c}
Taking the derivative of (90) and inserting (64), we have
1

_— ixTPB (0,1t)
14+ 2(t) A0,

V(t) = —X('ox
(t) ( (t)Q(t)+«/a

N
+ XTPg Z[aj(t)cos(éjt) + by(t) sin(6;t)]

j=1

L
+ XTPEOARX(D) + 1o f ¢ B(x, Dfu(x, t)dx

L
+Ab/ e a(xtocﬂ(tdx)
0

N 1 ~ 1.
-y — — —C(0E(), (93)
Vbj Ye

N

Z (t)a;(t)

1 a

j=1

where ;\(t) = C(t)An, ensured by (28) and (58) is used.
Inserting (65)-(68) into (93) and applying Cauchy-Schwarz
inequality, we obtain

v(t ! 3k
()_W[_<4 m1n

L
SN / ¢ B(x, 12X — 1 f & B(x, Dy (x, O)dxX(D)
0 0

L X
Y fo FB(x. t)( /0 de(x.y. OB, t)dy

X y
- / b, ) / (. . (e, tdady
0 0

— @y (0, 1) + 2Cy) ) IX(6)?

X 1
- / ¢t(x,y,t)x(y,t)X(f)dy>dX—Eﬁkbe_La(L t)’
0

|PB|?
q)“mm(Q

1 L
- Efkbf e *a(x, t) dx+Ab/ e Xa(x, t)M(x, t)Z(t)dx
0

1
_<f\/axa— —ﬂ)ﬂ(Ot
L
+ Aa/ e*B(x, t)I(x, t)Z(t)dx
0
L X
~ e f B(x. 1) / o(x.y. Ty, r)dyzmdx]
0 0
N /XTPB cos(6;t)
+ ;( K+ 2(0)
A [y €B(x, )y (x, )Bcos(Bit)dx 1 N
k(14 £2(t)) Ya

. /X" PBsin(gt)
! §<k(1+9(t))

Ao [y €, y(x, OBsin(G)dx 1 -
B K1+ 200) B %b"(”> a
XTPARX(t)
+ ( 1+ ()
afy @B Oy (% DARdX(H) 1 é(t)>e(t) (0
1+ 2(t) Ve ’

Step 1. Consider the third and fourth terms in the square bracket
n (94).

Because ¢(t) € [0, ], one can see that y(x, t), ¢(x,y,t) are
bounded according to (78)-(79). Here we define

y = max{|y(x, t)|;x € [0, L], t € [0, co)}, (95)
<Z> = max{|¢(x,y,t)];x € [0,L],y € [0,L], t € [0, 00)}. (96)
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Similarly, the boundedness of x(x, t), ¥(x,y, t) also can be ob-
tained, defining

x = max{|x(x, t)|;x € [0,L], t € [0, 00)}, 97)
¥ = max{|y(x,y, t);x €[0,L],y €[0,L],t € [0, c0)}. (98)

Applying Cauchy-Schwarz inequality and Young’s inequality into
the numerator of (25), we straightforwardly have the absolute
value of the numerator is less than or equal to m;(|X(t)]> +
IB(-, £)]|?) for some positive m;. Recalling £2(t) (30) in the de-
nominator of (25), we also have

1
1+ £2(t) > - min{a,, Ave ", Amin(PRIX(O1? + 1BC, OI).

It follows that

é(t)‘ - 2yemy(IX(6)1” + | BC-, £)]I?)
T min{Aq, ApeL, Amin(P)}IX(OP + 1BC, £)II2)
2y.m
_— Vel (99)
min{Aq, Ape L, Amin(P)}
via (22).
Recalling (78)-(79), we obtain the boundedness of y;(x, t) and
¢e(x, t) as
Jat) i NEOINEG
x,t)=|]0—— 0, —zAm|m
7e(x, 0) '[ ranl Rl G T g m|me
YeMeme
< , 100
= min{Aq, Ape L, Amin(P)} (1o0)
YcMcMe|B|
x.t)| < : , 101
I¢e(x, O = gmin{ig, Ape~t, Amin(P)} Hon
where the constants m., m, are
2ﬁm1 2 -2 qEZ
_ = my, 102
me = S0 o IRE (102)
A (A - L
me=  max {5 (w“ﬁ“““m ﬁw)}. (103)
¢(t)el0,c],x€[0,L]

(A e(OA— L
Note that & (e Vg AE AR = 7580 )X) in (103) stands for the largest
(A& — L
singular value of eva“E A= G5 o (¢ and x.
Applying Young’s and Cauchy-Schwarz inequalities into the
third and fourth terms in the square bracket in (94), using (97)-
(101), we have

L
ra / € B(x, Dy(x, D)dRX(t)
0

VCMO
= minGu. et dmm(P)] (1B, OI* + IX(0)7) (104)
/exﬂXf(/¢er, (y, t)dy
—/ de(x, Y, t)/ Yy, o, t)B(w, t)dwdy
f Bu(x.y. DXy, DX( dy)dx
Vch 2 3
= minGa. e L Jmm (Pl (1B, OI* + IX(0)?) (105)

where
Mo = 2Xqe"mem, max{L, 1},

- 1 -
M; = AqetL—meme|B| max{1 + Ly + 2k, 2iL}.
q

Step 2. Consider the eighth to tenth terms in the square bracket
in (94).

Applying Cauchy-Schwarz inequality and Young’s inequality
into the numerator of (26)-(27), together with 1+£2(t) > 1in the
denominator, we straightforwardly have maxj=;,__n{71;(t), T(t)}

< my (|X(r)| + ﬁ||ﬂ(~, t)||) for any t, where m, = max{4|PB|,
2etaq+/Ly|B|} > 0. Therefore, we have
max ”éj(t)

s e

<my max (y. yy) (1X(0) + VIIBC. D) (106)

regardmg (23)-(24).
According to (54)-(56), one obtains

max  {[1(x, t)l, [Te(x, 0)]}
x€[0,L],t€[0,00)

< %f Ba(0). Ba(0). ...

< 2 (. ) (I
= X mzj:n]’l.?.),(N Yajs Ybj

én(¢), bu(0)
)+ VLIBC Ol

Recalling (107), applying Young's inequality into the eighth to
tenth terms in the square bracket in (94), we have

(107)

L
kb/ e Xa(x, t)IM(x, t)Z(t)dx
0

= max {va, yyhMa (Il O + 18C, O + X(OF), (108)
A fo e Bl O, 020
[ “epen) [ dtey. DN izt

< j_r?gg:{yaj, Vbj}Ms €||ﬂ(~, Ol + 1X(0)1%) (109)

for some positive constants M, M3, where |Z(t)| = /N and (96)
are used.

Step 3. Substituting (104)-(105), (108)-(109), (22)-(24), (78) into
(94), applying again Young’s inequality, we have

. 1
V(t) <———( —hIX(O)? = ha || BC, O)|)
( )_1+Q(t)< 11X (8] 20180, Ol
— hslla(-, ©)II* — haae(L, t)* — hsB(0, f)2>’
where
3
h] :Z)me [Ab O t +2C])2
_ VCMO + ych
min{Aq, Ape~t, Amin(P)}
— max e i} (M + Ms),
1 M M
th*\/»)\a— . re 0+_Vc 1
2 min{Ag, Ape~t, Amin(P)}
~ ,max  va, Yo} (Ma + Ms),
l -
hs Zj/axbe* — max {yy, yy}Ma,
2 j=1,..,N
1
h4 _Eﬁkbe L > 0,
1 |PB|*
hs == /Ghg — ———— — /Qhp.
5 2\/> ‘ qAmin(Q) f
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2|PB|?
Q«/‘ﬂmin(Q)
sufficiently small positive constants Ay, Vg, ¥bj, Yc to make hy >
0, h, > 0 and h3 > 0, we obtain

t) 5_75
1+ 2(t)

Choosing A, > + 2)p to guarantee hs > 0, and using

V( (|X(r)|2 + 1BC, O + llee(-, )]

+ a(L, £ + B(0, t)2> (110)
with a positive & = min{hy, hy, hs, hg, hs}, and hence
V(t) < V(0), Vt> 0. (111)

Step 4. Recalling (91), one easily get that c(t), a;(t), bi(t), j =
1,...,N and ©(t) are uniformly bounded. Therefore, together
with (86), we obtain that || 8(-, t)]l, [l(-, t)|l, |X(t)| are uniformly
bounded. It follows that [[v(-, t)]|, [Is(-, t)|| are uniformly bounded
via (62)—(63). By recalling (47) and (58), we also have d(t), |A:(t)|
are uniformly bounded. According to (107), we have I;(x, t) and
I';(x, t) are bounded.
According to (64)-(68), we further have

%mmz =2xT(r)<AX(r) +A(L)X(t)

+ Biﬂ(o,t)+3%a(t)), (112)

Nz
d L
pralQ OII> =— VaB0, )’ + 2/ B(X, t)(ﬂ(x, t)Z(t)
0

/ P(x,y, Oy, t)dyZ(t)
0

— (re(x, £) + p(x, DA()X(t)

/ de(x.y. DB, t)dy
0

X y
+ / ¢[(X7 ys t)/ W(y’ , t)ﬂ(w’ t)dwdy
0 0
+ /0 d(x.y. Ox(y. OX(O)dy

- y(x, t)l!i&(t)>dx, (113)

d
7”0[('5 t)HZ = \/a(x([" t)2 + ﬁa(O, t)z

L
+ 2/ a(x, t)Me(x, 6)Z(t)dx. (114)
0
Recalling (61) and (68), we have v(L, t) is uniformly bounded.
According to (40) and the boundedness of I'(x,t), we obtain

w(L, t) is uniformly bounded. Because w(0,t) = w(L,t — ﬁ),
L

. Therefore, z(0, t) is

uniformly bounded via (14). Because z(L, t) = z(0, t — ﬁ)' z(L, t)
L

is uniformly bounded for t > N According to (40)-(41) together
with the boundedness of I'(x, t), I'i(x, t), and (60)-(61), we have
B0, t), B(L, t), a(L, t), «(0, t) are uniformly bounded.

Applying Cauchy-Schwarz inequality, we obtain

w(0, t) is uniformly bounded for t >

sl

d ~
EXOF = s (IXOP + B0, 0 +d(e))

d ~
HIBCL O = pa (IBCL O + IXOF + B0, 0 +d(e)).

d
PGS DI < Ms(lla(w OIF + 118G, O + IX(©)

+ (0, t? + a(L, t)2>,

with some positive constants s, (4, 5. Thus %|X(r)|2,
L1IBC-, t)1? and & fla(-, t)]|? are uniformly bounded recalling the
above boundedness results.

Finally, integrating (110) from 0 to oo, it follows that |X(t)|,
llee(-, ), IIB(-, t)|l are square integrable. Following Barbalat’s
Lemma that [X(t)|, ||e(-, t)|l, IB(-, t)|| tend to zero as t — oo.

Considering the invertibility and continuity of the backstep-
ping transformations (60)-(61) and (62)-(63), the proof of
Lemma 1 is completed.

5.2. Stability analysis of the closed-loop system

The closed-loop system is

Ugt (X, £) = que(x, 1), (115)
ux(L, t) = U(t), (116)
Iyue (0, t) = cue (0, t) — kuy(0, t) — d(t), (117)
N
d(t) =) g cos(tjt) + by sin(6;t)], (118)
j=1
&(t) = yeProjig ¢ {z(t). (1)}, (119)
aj(t) = ygProjg g {Ty;(t), G(1)}, (120)
bi(t) = yiiProjio ) (zai(t). bi()). (121)

where the control input U(t) is defined in (84). Note that t(t),

71j(t), T2j(t) which are defined in (25)-(27) can be represented as

the original state u by applying (32)-(35), (38)-(39) and (5).
Define H# = H%(0, L) x H'(0, L), where

HY(0, L) = {uju(-, t) € [2(0, L), uy(-, t) € L*(0, L)},

) )
H*(0,L) = {ulu(-, t) € L*(0, L), ux(-, t) € L*(0, L),
uxx('s t) € LZ(O’ L)}
and u(-, t) € L*(0, L) denotes u(-, t) is square integrable. The main
result is presented in the following theorem.

Theorem 1. For any initial values (u(-, 0), u.(-, 0)) € H, the closed-
loop system including the plant (115)-(117) and the controller
(84) with the adaptive update laws (119)-(121) has the following
properties:

(1) The closed-loop system is well-posed.
(2) The outputs u(0, t), u,(0, t) of the closed-loop system are
asymptotically convergent to the origin in the sense that

lim u(0,t) =0, lim u/(0,t)=0.
t—o00 t—o00

(3) Distributed states in the closed-loop system are ultimately
uniformly bounded in the sense of the norm

(I O + -, 1)

Proof of Theorem 1. Recalling the well-posedness of the closed-
loop system-(s, v) proved in Lemma 1 and the invertible trans-
formations (s,v <«— 2z, w) (40)-(41), (z,w <— u) (11)-
(12), considering Z(t) is well defined as (35), the property 1 of
Theorem 1 can then be proved.

According to the asymptotic stability result in Lemma 1, we
know that X(t) = [u(0, t), u;(0, t)]” is asymptotically convergent
to zero, and thus the property 2 of Theorem 1 is proved.

Recalling (40)-(41) and applying Cauchy-Schwarz inequality,
we obtain

(-, O < 2]lv(:, )I* + 2N, DI, (122)
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lz(x, )1 < 201, O + 2N, O, (123)

where Z(t)> = N is used. || I'(-, t)||?, |IT(-, t)]|*> are bounded by a
positive constant considering (57). Together with convergence to
zero and uniform boundedness of |Ju(-, t)]|? + ||s(-, t)||? proved in
Lemma 1, we obtain uniform ultimate boundedness of ||w(-, t)||?,
llz(-, £)]|%. Recalling (11) and (12), we have

u(x, t) = %(z(x, t) + w(x, t)), (124)
Uy(x, t) = Z%/EI(U)(X’ t) — z(x, t)). (125)

Applying Cauchy-Schwarz inequality, we obtain
llue (- O + llux(-, )11

L L
< 2120 O + e, O+ (e, OF + (-, 1)
q
1
< 210 O + e O,
q

The property 3 of Theorem 1 is thus proved.

Realization of the theory result: According to Theorem 1, by
applying the control torque GJU(t) to the rotary table of the
oil drilling system with the uncertain stick-slip instability and
external disturbance at the drilling bit as shown in Fig. 1, the
torsional vibration displacement u(0, t) and velocity u(0, t) of the
drilling bit would be reduced towards zero as time goes on. Note
that G,] are constant physical parameters given in Section 2.1.
U(t) in (84) includes the adaptive estimations c(t), aj(t), bj(t)
defined in Section 3, and is constructed by measuring the signals
u(0, t), us(0, t), us (L, t), which are obtained from the acceleration
sensor placed at the bit and the feedback signal of the servo
actuator at the rotary table, as mentioned in Section 2.1. All
signals in the controller are obtained from the direct measure-
ments or integrals without using derivatives, which avoids the
measurement noise amplification.

6. Simulation
6.1. Simulation model

The off-shore oil drilling system tested in the simulation is
(1)-(3), with the physical parameters shown in Table 1, which
are borrowed from Bresch-Pietri and Krstic (2014a) and Sagert
et al. (2013). The disturbance at the drill bit is given as a harmonic
form of

d(t) = 2 cos(2t) + sin(2t). (126)

Therefore, the unknown amplitudes ay, b; in the disturbance are
2,1 respectively. We only know their upper bounds a;, b; are
4,2. The unknown anti-damping coefficient c is 1 and the upper
bound is known as ¢ = 2.

According to Section 2.2-Section 2.3, we know the system (1)-
(3) can be written as (13)-(17) where X(t) = [u(0, t), u,(0, £)]".
The main simulation is conducted based on (13)-(17), and then
the responses z, w can be converted to the responses u of the
system (1)-(3) through

1 X

u(x,t) = —— w(y, t)—z(y, t))d u(0, t 127

0= 57 [ w0 -2 00 + 0.0 (127)
by recalling (11)-(12). The finite difference method is adopted
to conduct the simulation with the time step and space step
as 0.0005 and 0.05, respectively. According to the physical pa-
rameters in Table 1, the coefficients in (13)-(17) are obtained as
g = 9.971 x 107, k = 9.472 x 108 through the definitions in
Section 2. Consider the initial conditions in (1)-(3) are u(x, 0) =
0.15, u¢(x, 0) = sin(zT”x). Then the according initial condition in
(13)=(17) is w(x, 0) = z(x, 0) = sin(% x) considering (11)-(12),
(127).

Table 1
Physical parameters of the oil drilling system.

Parameters (units)
Length of the drill pipe L (m) 2000

Values

Shear modulus of the drill pipe G (N/m?) 7.96 x 10"
Drill pipe moment of inertia

per unit of length Iy (kg m) 0.095
Moment of inertia of the BHA I, (kg m?) 311
Drill pipe second moment of area J (m*) 1.19 x 107
Anti-damping parameter ¢ (N m s/rad) 1

1000

x [m] t[s]

Fig. 3. Open-loop responses of u(x, t).

x10

Time [s]
(a) u(O7 t).
x10

Ut (Oa t)
N

Time [s]

(b) ut(0,1).

Fig. 4. Open-loop responses of u(0, t), u;(0, t).

6.2. Open-loop responses

In the open-loop case, it can be seen that the plant (1)-(3) is
unstable in Figs. 3-4 because of the effect of the anti-damping at
the bit x = 0. The according diverging results of z(x, t), w(x, t)
(13)-(17) can be seen in Fig. 5. To be exact, the diverging phe-
nomenon starts at X(t) = [u(0, t), u,(0, £)]" in (13) (shown in
Fig. 4) flowing into z(0, t) via (14) and giving rise to the increase
of |z(0, t)|, what follows is the diverging response of z(x, t) via
(15) and the instability traveling up to the boundary x = L, which
is shown in Fig. 5(a). According to (17), diverging performance
then appears at w(L, t), which leads to the instability of w(x, t)
via (16) and causes the increase of |w(0, t)|, which is shown in
Fig. 5(b).
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00
() w(z,t).

Fig. 5. Open-loop responses of z(x, t), w(x, t).

6.3. Control law

We apply the control law (84) into (13)-(17), with the control
parameters chosen as ¥ = [0.1, 1.5], ¥, = 0.005, y, = 0.008
and y, = 0.006. N in (84) is 1. Note that u,; in (84) can be
represented by the states in (13)-(17) via u; = %(w + z). The
adaptive estimates ¢(t), a;(t), by(t) in (84) are calculated from
(22) and (25), (23) and (26), (24) and (27). Note that recalling
(60)-(61), (40)~(41), (36)~(37), [ e a(x, t)?dx, [ €*B(x, t)*dx in
£2(t) (30) of the adaptive estimates also can be represented by the
states in (13)-(17):

L
/ e *a(x, t)*dx
0

L
= / e Xz(x, t) + I'y(x, )Z(t))dx
0

t
L
= _/ e—ﬁ“—“l)(zc]xw]) —w(l, & — —=)
t—ﬁ Ja

(128)

2
- %{al(t), Bm)]e*z“*‘S“Z(r)) ds,

and
L
/e"ﬂ(x,t)zdx
0
L
:/ e"(w(x,t)—i—]“(x, t)Z(t)
0
X 2
—/ d(x, y, t)w(y, t) + I'(y, £)Z(t))dy — y(x, t)X(t)> dx
0
= /t . eL*ﬁ(f*‘m[w(L, 81)

~ Az _
+ Xy (e, by(eye Vi Yz

e )
L q k

Q1 &

|
T =

=

(Ap+Ac(t)— L BCy)(81-82)
X e

Vi B

x (w(L, 5) + %[am 51(t)]e%“_ﬁ“_52»2(t)> ds,

B (/2 . [07 Jﬁf(ﬂ]) o i A A= JBC L Va(t—51)
K

2
x X(t):| ds,. (129)

A same process is adopted to calculate fOL B(x, t)dx used in (25)-
(27).
The controller is activated at t = % = 0.4 s ensuring §; — ﬁ
with 8; € [t — ﬁ, t]in w(L, 8; — ﬁ) in (128) is non-negative.
For comparison, we compare the proposed controller with
the classic PD controller which uses the signal X(t) = [u(0, t),
u:(0, )7, given by

Upp(t) = kpu(0, t) + kque(0, t). (130)

The best regulating PD performance is achieved with k, = 0.13
and kg = 1.2 in (13)-(17).

The proposed controller activated at t = 0.4 s and the PD
controller activated at t = 0 s are shown in Fig. 6.

6.4. Closed-loop responses

According to Fig. 7, we know that the responses of z(x, t),
w(x, t) under the proposed controller are convergent to a very
small neighborhood of zero. From Fig. 8, even though the tran-
sient performance of u(0, t), u.(0, t), i.e., X(t), under the proposed
controller is worse than that under the PD controller before
about t = 5.5 s (the reasons of this phenomenon are shown in
Remark 4), the responses of u(0, t), u:(0, t) under the proposed
controller are convergent to a smaller neighborhood of zero than
those under the PD controller as time goes on. It physically
means the proposed controller has the better suppression per-
formance of the torsional vibration displacement and velocity at
the bit. Recalling (127) and the closed-loop responses of z(x, t),
w(x, t), u(0, t), the response of u(x, t) under the proposed con-
troller is obtained and shown in Fig. 9, which indicates the tor-
sional vibrations of the oil drilling pipe have been suppressed.

The norm ([lus(-, £)]I* + llux(-, t)||2)% obtained from (124)-(125)
denotes torsional vibration energy consisting of kinetic energy

and potential energy. The responses of (||u(-, £)||? + |Jux(-, t)||2)%
under the proposed controller and the PD controller are shown in
Fig. 10. We can see that even though the PD controller has a better
transient performance before about t = 5.5 s (the reasons of this
phenomenon are shown in Remark 4), the proposed controller
can reduce the vibration energy to a smaller range around zero
as time goes on, which verifies the proposed adaptive controller
has the better performance on vibration suppression of the oil
drilling pipe in the off-shore oil drilling system.

6.5. Adaptive parameter estimates

The adaptive estimation action is activated at t = 0.4 s.
From Fig. 11 which shows the adaptive estimation errors of
constants c, ar, by in the abpve regulation process, we know that
the estimations ¢(t), a;(t), b1(t) converge to the values which are
very close to the actual ones c, a;, by, as time goes on. Note that
even though the estimations do not exactly arrive at their actual
values, the state convergence is achieved, which often happens in
adaptive control.
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—Proposed controller
---PD controller |

0 2 4 6 8 10
Time [s]

Fig. 6. The proposed control input and the PD control input.

x [m] ¢l 8]

(@) z(z,t).

x [m] t[s]
(b) w(zx,t).

Fig. 7. Closed-loop responses of z(x, t), w(x, t).

0.15 - ’ 01 "
—Proposed controller 20 .
..—.._ |=--PD controller o
0.1t e
—~~ S
-~
< 8 9 10
S 005 ;
3
ob \ /O O\ mm——e— e -
—O.G_:o s .
Time [s]
(@) u(0, ).
time=0.2s time=5.5s

0.1F1

—Proposed controller | {
i |--- PD controller

— O ]\ ) N
= /
S S5 -
0 — =
_02 : ——
E’O‘Oﬁ 8 9 10
'0"0 time=0.6s 2 4 6 8 10

Time [s]

(b) u(0,1).

Fig. 8. Closed-loop responses of X(t) = [u(0, t), u,(0, t)]” under the proposed
adaptive controller and the PD controller, which physically means the torsional
vibration angular displacement and velocity at the bit (the reasons of the
phenomenon that the PD controller has a better transient performance before
about t = 5.5 s are illustrated in Remark 4).

1000

x [m] t[s]

Fig. 9. Closed-loop response of u(x, t), which physically means the torsional
vibrations of the oil drilling pipe under the proposed controller.

—Proposed controller
---PD controller

1

Time[s]

Fig. 10. Closed-loop response of the norm (||u(-, ) + [lux(- £)12)? in
Theorem 1 under the proposed adaptive controller and the PD controller,
which physically means torsional vibration energy including kinetic energy and
potential energy of the oil drilling pipe (the reasons of the phenomenon that
the PD controller has a better transient performance before about t = 5.5 s are
illustrated in Remark 4).

Tos
0,
0 2 4 6 8 10
Timel[s]
(a) &(t).
iy
&
0
0 2 10
Timel[s]
(b) ay ().
1
< o
{Es)
_‘Io
Timel[s]
(c) by (t).

Fig. 11. Adaptive estimation errors of the anti-damping coefficient ¢ and the
disturbance amplitudes ay, b;.

Remark 4. There are two reasons of the phenomenon that the
PD controller has a better transient performance than the pro-
posed adaptive controller before t = 5.5 s. First, the proposed
adaptive controller is activated later than the PD controller with
a 0.4 s delay. The proposed adaptive controller is activated at
t = 0.4 s and the regulation action would reach the ODE at
x = 0O until t = 0.6 s because the propagation time from
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x = Ltox = 0is = 0.2 s in (13)-(17), while the PD
controller is activated at t = 0 s and regulation action would
reach the ODE at t = 0.2 s, which can be seen obviously in
Fig. 8(b), where the PD controller starts regulating the ODE states
towards to zero after t = 0.2 s and the response under the
proposed adaptive controller continues to deteriorate until about
t = 0.6 s because of no regulation action to stabilize the anti-
stable ODE with the anti-damping term. Second, the PD controller
is running under very best parameters which are chosen over
many simulation tests (which is equivalent to knowing the model
parameters), while the proposed adaptive controller is operating
with a poor knowledge of the anti-damping parameter and of
the wave amplitude and phase parameters, where the adaptive
estimations of the parameters would introduce adaptive learning
transient until about t = 5.5 s, which can be seen in Fig. 11.

r—r}l“

7. Conclusion and future work

In this paper, we present adaptive backstepping control design
for a wave PDE system where an anti-damping term with an
unknown coefficient and a harmonic disturbance with unknown
amplitudes are at the second-order-in-time boundary which is
anti-collocated with the control input. The asymptotic conver-
gence of the ODE state, i.e., the uncontrolled boundary states of
the wave PDE, and boundedness of all states in the closed-loop
system are proved by using Lyapunov analysis. The simulation
results verify the effectiveness of the adaptive controller which
is used in torsional vibration suppression for an oil drilling sys-
tem with uncertain stick-slip instability and disturbances at the
drilling bit.

The proposed output feedback adaptive controller also can
be applied in vibration control of a cable elevator (Wang, Koga,
Pi and Krstic, 2018) where the cage is subject to an uncer-
tain cage-guide friction force and an uncertain harmonic airflow
disturbance. In the future work, the control design would be
extended to the Saint-Venant model (Diagne, Diagne, Tang and
Krstic, 2017; Diagne, Tang, Diagne and Krstic, 2017), the repre-
sentation of which in Riemann coordinates is coupled first-order
hyperbolic PDEs including some unstable source terms in the PDE
domain (Di Meglio et al., 2018; Di Meglio, Vazquez, & Krstic, 2013;
Wang, Krstic and Pi, 2018; Wang, Pi and Krstic, 2018).
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