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Abstract— This paper propose an observer-based stabiliza-
tion method for stochastic Hamiltonian systems. First, for
stochastic Hamiltonian systems without parameter uncertainty,
we construct a state observer and design an observer-based
stabilization controller such that the closed loop system is
asymptotically stable. Then, we put forward an adaptive observ-
er and a stabilization controller for stochastic nonlinear Hamil-
tonian systems with parameter uncertainty. The asymptotical
convergence of the observers is shown without constructing
the estimation error system and the Lyapunov functions are
constructed by the Hamiltonian function. The internal structure
of the system is fully utilized during the observer design and
stability analysis. A numerical example is given to illustrate the
effectiveness of the proposed method.

I. INTRODUCTION

Observer design is of great importance for many dy-
namical systems because the full state measurements of
the systems are generally not available and thus the full
state feedback method are not applicable to these systems
[1]- [6]. Recently, the observer design and observer-based
control of stochastic nonlinear system gained more and
more attention because the stochastic model can describe
more accurately the dynamics of the practical engineering
systems subjected to stochastic noises and disturbances [7].
In [8], Barbata et al addressed the robust observer design
of nonlinear stochastic systems with unstructured and norm-
bounded parameter uncertainties to guarantee the estimation
error almost surely exponential stability. They also investi-
gated the robust reduced order observer design of stochas-
tic nonlinear [9]. Observer-based stabilization of stochastic
nonlinear systems was addressed in [10] and [11]. For the
uncertain stochastic nonlinear systems with time-delay and
actuator nonlinearities, Yin et al [12] proposed an observed-
based H∞ controller. [13] concerned the observer based
stochastic trajectory tracking control of mechanical systems
under the assumption that only the position measurements
can be available.
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It is well-known that for the observer-based control of
nonlinear systems, it is generally difficult to find a suitable
Lyapunov function to verify the asymptotical convergence
of the observer error systems and the asymptotical stability
of the closed loop systems. In this paper, we propose an
observer-based stabilization method for stochastic Hamilto-
nian systems where the Hamiltonian function and internal
structure are utilized to construct the Lyapunov functions
and to complete the stability analysis of the closed system.
It should be pointed out that stochastic Hamiltonian systems
are of great importance because many physical systems, such
as power systems, mechanical systems, possess an internal
energy transformation, energy dissipation property and can
be re-formulated as Hamiltonian systems [14]- [16]. The
observer-based control for two kinds of stochastic Hamiltoni-
an systems is addressed, i.e., the systems without parameter
uncertainty and the systems in presence of parameter un-
certainty. First, for stochastic Hamiltonian systems without
parameter uncertainty, we construct a state observer and de-
sign a feedback controller such that the closed loop system is
asymptotically stable and the states of the estimation system
asymptotically converges to those of the considered stochas-
tic Hamiltonian systems. Then, for stochastic Hamiltonian
systems in presence of parameter uncertainty, we put forward
an adaptive observer and a stabilization controller based on
the estimated state. The asymptotically convergence of the
observer state is shown without constructing an estimation
error system and the Lyapunov function is constructed by
the Hamiltonian function of the system. Numerical Example
demonstrates the effectiveness of the proposed method.

The rest of the paper is organized as follows. The observer-
based stabilization of stochastic Hamiltonian systems with-
out parameter uncertainty is considered in Section 2. In
Section 3, the adaptive observer-based design problem is
addressed. In Section 4, we give an example to demonstrate
the effectiveness of the proposed method. Finally, Section 5
summarizes the paper and draws the conclusion.

II. OBSERVER-BASED STABILIZATION OF STOCHASTIC
HAMILTONIAN SYSTEMS

Consider the following stochastic Hamiltonian systems
[17] [18]

Σ :


dx =

[(
J(x)−R(x)

)∂H(x)

∂x
+ g(x)u

]
dt

+gw(x)dw,

y = gT (x)
∂H(x)

∂x
,

(1)

where x(t) ∈ Rn, u(t), y(t) ∈ Rm are the state, the
control input and the output of the system respectively.

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 5940



w(t) ∈ Rr is the standard Wiener process defined on a
probability space(Ω,F ,P) with Ω being a sample space, F
being the sigma algebra of the observable random events
and P being probability measure on Ω. J(x) ∈ Rn×n is
skew-symmetric and R(x) ∈ Rn×n is positive semi-definite.
H(x) is generally regarded as the Hamiltonian function of
the system and achieves minimum at x0. Without loss of
generality, we suppose x0 is an equilibrium point of the
system.

Assumption 2.1: The Hamiltonian function H(x) > 0 for
all x 6= 0 and the stochastic Hamiltonian system (1) is
dissipative with the supply rate yTu, that is, the following
inequality holds

−∂
TH(x)

∂x
R(x)

∂H(x)

∂x

+
1

2
Tr
{
g̃(x)T

∂2H(x)

∂x
g̃(x)

}
≤ 0.

(2)

Moreover, there exist a matrix D(x) ≤ 0, such that

−∂
TH(x)

∂x
R(x)

∂H(x)

∂x

+
1

2
Tr
{
g̃(x)T

∂2H(x)

∂x
g̃(x)

}
= −∂

TH(x)

∂x
D(x)

∂H(x)

∂x
.

(3)

Assumption 2.2:
∂H(x)

∂x
6= 0(x 6= 0) and the system is

zero state detectable with respect to the virtual output yv =

D
1
2
∂H(x)

∂x
and input variable u.

Assumption 2.3: There exist non-zero matrices K(x),
K1(x), and semi-positive definite matrices W (x) and W1(x)
with

W (x) = R(x) + [g(x)K(x) +KT (x)gT (x)] ≥ 0, (4)

−∂
TH(x)

∂x
W (x)

∂H(x)

∂x

+
1

2
Tr
{
g̃(x)T

∂2H(x)

∂x
g̃(x)

}
= −∂

TH(x)

∂x
W1(x)

∂H(x)

∂x
≤ 0,

(5)

K(x) = K1(x)W1(x), (6)

and the system

dx = [J(x)−W (x)]
∂H(x)

∂x
dt (7)

is zero state detectable with respect to yw = W
1
2
1 (x)

∂H(x)

∂x
.

For the stochastic Hamiltonian system (1), consider the
following state observer

Σ̂ : dx̂ =
[
J(x̂)−R(x̂)

]∂H(x̂)

∂x̂
dt+ g(x̂)udt

+gw(x̂)dw +KT (x̂)
[
y − gT (x̂)

∂H(x̂)

∂x

]
dt.

(8)
Rewrite system (1) and (8) in a compact form

dX =
[
J̄(X)− R̄(X)

]∂H̄
∂X

dt+ ḡ(X)udt+ ḡw(X)dw (9)

where X = [xT , x̂T ]T , H̄(X) = H(x) +H(x̂),

∂Ĥ(X)

∂X
=

 ∂H(x)

∂x
∂H(x̂)

∂x̂

,

J̄(X) =

[
J(x) 0

0 J(x̂)

]
,

R̄(X) =

[
R(x) 0

−KT (x̂)gT (x) R(x̂) +KT (x̂)gT (x̂)

]
,

ḡ(X) =

[
g(x)
ḡ(x̂)

]
, ḡw(X) =

[
gw(x)
ḡw(x̂)

]
.

Noticing that K(x̂) 6= 0, g(x) 6= 0, R̄(X) is not sym-
metric, so we need to construct a feedback controller to
make the system a standard stochastic Hamiltonian system
formulation. Choosing the feedback controller as follows

u = −K(x̂)
∂H(x̂)

∂x̂
+ v, (10)

where v is a virtual input.
The closed loop system can be written as

dX =
[
J̃(X)−R̃(X)

]∂H̄
∂X

dt+ ḡ(X)vdt+ ḡw(X)dw, (11)

where

J̃(X) =

[
J(x) −g(x)K(x̂)

KT (x̂)gT (x) J(x̂)

]
,

R̃(X) =

[
R(x) 0

0 R(x̂) + g(x̂)K(x̂) +KT (x̂)gT (x̂)

]
.

Theorem 2.1: Suppose Assumptions 2.1 - 2.3 hold. The
stochastic Hamiltonian system (1) can be stabilized by the
observer-based feedback controller (10) and (8) is an observ-
er of the system.
Proof: Along the trajectories of the system (9) in absence of
the control input v, we have

LH̄(X) = −∂
TH(x)

∂x
R(x)

∂H(x)

∂x

+
1

2
Tr
{
gw(x)T

∂2H(x)

∂x
gw(x)

}
−∂

TH(x̂)

∂x̂
W (x̂)

∂H(x̂)

∂x̂

+
1

2
Tr
{
gw(x̂)T

∂2H(x̂)

∂x̂
gw(x̂)

}
≤ −∂

TH(x̂)

∂x̂
D(x)

∂H(x̂)

∂x̂

−∂
TH(x̂)

∂x̂
W1(x)

∂H(x̂)

∂x̂
≤ 0

(12)

So the closed loop system in absence of the control input v,
i.e., v = 0 is stable in probability. Moreover, the trajectories
of the system (11) converge to the following largest invariant
set

S =
{
X|LH̄(X) = 0

}
=

{
X|D 1

2 (x)
∂H(x)

∂x
= 0,

W
1
2
1 (x̂)

∂H(x̂)

∂x̂
= 0

}
.

(13)
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Taking into consideration of the Assumption 2.1 and As-

sumption 2.3, W
1
2
1 (x̂)

∂H(x̂)

∂x̂
= 0 indicates K(x̂)

∂H(x̂)

∂x̂
=

0. So when v = 0 and W
1
2
1 (x̂)

∂H(x̂)

∂x̂
= 0, (11) can be

equivalently re-written as
dx =

[(
J(x)−R(x)

)∂H(x)

∂x

]
dt+ gw(x)dw,

dx̂ =
[
J(x̂)−W (x̂)

]∂H(x̂)

∂x̂
dt+ gw(x̂)dw

+KT (x̂)yT (x)
∂H(x)

∂x

]
dt

(14)

Further noticing that system (1) is dissipative and zero
state detectable with respect to y1(x), we can see that first
subsystem of (14) is asymptotically stable in probability.
Moreover, from y1(x) → 0 and thus x → x0, we have
∂H(x)

∂x
→ 0. So the second subsystem of (14) can be written

as

dx̂ =
[
J(x̂)−W (x̂)

]∂H(x̂)

∂x̂
dt+ gw(x̂)dw (15)

It is obvious that the system is a dissipative Hamil-
tonian system and the infinitesimal operator LĤ(x̂) =

−∂
TH(x̂)

∂x̂
W1(x)

∂H(x̂)

∂x̂
≤ 0. From the zero state de-

tectablility with respect to y2, we get x̂ → 0, t → ∞
in probability from y2 = W

1
2
1 (x̂)

∂H(x̂)

∂x̂
= 0. So the

system (11) has only one point (xT0 , x
T
0 )T in the largest

invariant set S. From the LaSalle’s invariant principle of
stochastic nonlinear systems, we can see that the closed
loop system is asymptotically stable in probability and
||x − x̂|| ≤ ||x|| + ||x̂|| → 0 in probability as t → ∞.
2

Remark 2.1: The feedback stabilization controller (10) is
constructed from the state x̂ and is realizable. The configu-
ration of the observer system is shown in Fig. 1.

H xk x
x

u y

x

Fig. 1: Configuration of the observer-based stabilization
controller

III. ADAPTIVE OBSERVER-BASED STABILIZATION OF
STOCHASTIC HAMILTONIAN SYSTEMS

In this section, we consider the observer design of the
following stochastic Hamiltonian systems subjected to pa-

rameter perturbations

Σp :


dx =

[(
J(x, p)−R(x, p)

)∂H(x, p)

∂x

]
dt

+g(x)udt+ gw(x)dw,

y = gT (x)
∂H(x, 0)

∂x
,

(16)

where p is the bounded uncertain parameter perturbation.
The objective of this section is to seek an adaptive observer

in the form of {
dx̂ = α(x̂, θ̂, y, u),
˙̂
θ = β(x̂, θ̂, y, u),

(17)

such that ||x− x̂|| → (t→∞) in probability, where θ̂ is the
estimator of θ and θ is the unknown vector related with p
and an observer-based stabilization controller such that the
closed loop system is asymptotically stable in probability.

Assumption 3.1: The Hamiltonian function H(x, 0) > 0
for all x 6= 0 and the stochastic system (16) is strict
dissipative with respect to H(x, p), that is, the following
inequality holds

−∂
TH(x, p)

∂x
R(x, p)

∂H(x, p)

∂x

+
1

2
Tr
{
g̃(x)T

∂2H(x, p)

∂x
g̃(x)

}
≤ 0.

(18)

Moreover, there exist a positive definite matrix D(x, p) such
that

−∂
TH(x, p)

∂x
R(x, p)

∂H(x, p)

∂x

+
1

2
Tr
{
g̃(x)T

∂2H(x, p)

∂x
g̃(x)

}
= −∂

TH(x, p)

∂x
D(x, p)

∂H(x, p)

∂x
.

(19)

Assumption 3.2: There exist non-zero matrices K1(x),
K1(x) and positive definite matrices W (x) and W1(x, p)
with

W (x) = R(x, 0) + [g(x)K(x) +KT (x)gT (x)] > 0, (20)

−∂
TH(x, p)

∂x
W (x)

∂H(x, p)

∂x

+
1

2
Tr
{
g̃(x)T

∂2H(x, p)

∂x
g̃(x)

}
= −∂

TH(x, p)

∂x
W1(x, p)

∂H(x, p)

∂x
< 0.

(21)

Assumption 3.3: There exist a proper constant matrix Θ
such that

[J(x, p)−R(x, p)]4H(x, p) = g(x)ΘT θ, (22)

where 4H(x, p) =
∂H(x, p)

∂x
− ∂H(x, 0)

∂x
.

According to (22), (16) can be written as follows
dx =

[(
J(x, θ)−R(x, θ)

)∂H(x, 0)

∂x
+ g(x)ΘT θ

]
dt

+g(x)udt+ gw(x)dw,

y = gT (x)
∂H(x, 0)

∂x
,

(23)
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Suppose the structure of the system can not be duplicated.
Consider the following adaptive observer

Σ̂p :



dx̂ =

[(
J(x̂, 0)−R(x̂, 0)

)∂H(x̂, 0)

∂x̂
+ g(x̂)ΘT θ

]
dt

+KT (x̂)

[
y − gT (x̂)

∂H(x̂, 0)

∂x̂

]
g(x̂)udt

+gw(x̂)dw,
˙̂
θ = QΘy,

(24)
where Q > 0 is the adaptive gain.

Rewriting (23) and (24) in a compact form, we have

[
dx
dx̂

]
=

[
J(x, p)−R(x, p) 0
KT (x̂)gT (x) Φ(x̂)

]

×

 ∂H(x, 0)

∂x
∂H(x̂, 0

x̂

 dt+

[
g(x)ΘT θ

g(x̂)ΘT θ̂

]
dt

+

[
g(x)
g(x̂)

]
udt+

[
gw(x)
gw(x̂)

]
dw,

˙̂
θ = QΘgT (x)

∂H(x, 0)

∂x
.

(25)

where Φ(x̂) = J(x̂, 0)−R(x̂, 0)−KT (x̂)gT (x̂).
In order to make (25) a dissipative stochastic Hamiltonian

system, construct a feedback controller as follows

u = −K(x̂)
∂H(x̂, 0)

∂x̂
−ΘT θ̂ + v, (26)

where v is the reference control input.
Substitute (26) into (25), we have

[
dx
dx̂

]
=

[
J(x, p)−R(x, p) −g(x)K(x̂)
KT (x̂)gT (x) Φ(x̂)

]

×

 ∂H(x, 0)

∂x
∂H(x̂, 0

x̂

 dt
+

[
g(x)
g(x̂)

]
vdt+

[
gw(x)
gw(x̂)

]
dw,

˙̂
θ = QΘgT (x)

∂H(x, 0)

∂x
.

(27)

The above system can be equivalently written as

dX =
[
J̄(x, p)− R̄(x, p)

] ∂H(X)

∂X
dt

+ḡ(X)vdt+ ḡw(X)dw,
(28)

where X = [xT , x̂T , θ̂T ]T ,

H̄(X) = H(x, 0) +H(x̂, 0) +
1

2
(θ − θ̂)TQ−1(θ − θ̂),

J̄(X, p) =

 J(x, p) −g(x)K(x̂) −g(x)ΘTQ
KT (x̂)gT (x) J(x̂, 0) 0
QΘgT (x) 0 0

 ,
R̄(X, p) =

 R(x, p) 0 0
0 W (x̂) 0
0 0 0

 ,
H̄(X) =

[
∂H(x, 0)

∂x
,

∂H(x̂, 0)

∂x̂
,

∂H̄(X)

∂θ̂

]T
,

ḡ(X) =
[
g(x), g(x̂), 0

]T
,

ḡw(X) =
[
gw(x), gw(x̂), 0

]T
.

From Assumptions 3.1 and 3.2, we can see that (28) is a
dissipative stochastic Hamiltonian system.

Theorem 3.1: Suppose Assumptions 3.1 - 3.3 hold. The
uncertain stochastic port-controlled Hamiltonian system (16)
can be stabilized by the observer-based feedback controller
(26) and (24) is an adaptive observer of the system .

Proof: According to the relationship between the dis-
sipation and stability of stochastic nonlinear systems, we
can see that the system (28) is stable in probability. Let
X0 = [xT0 , x̂

T
0 , θ̂

T
0 ]T be the equilibrium point of the system.

It is easy to get that
∂H(x0, 0)

∂x
=

∂H(x̂0, 0)

∂x̂
= 0. From

Assumption 3.1, we have x̂0 = x0.
Calculating the differential operator of H̄(X) along the

trajectories of the system (28), we get

LH̄(X) = −∂
T H̄(X)

∂X
R̄(X, p)

∂H̄(X)

∂X

+
1

2
Tr
{
ḡw(X)T

∂2H̄(X)

∂X
ḡw(X)

}
= −∂

TH(x, 0)

∂x
R(x, p)

∂H(x, 0)

∂x

−∂
TH(x̂, 0)

∂x̂

[
R(x̂, 0) +

(
KT (x̂)gT (x̂)

+g(x̂)K(x̂))]
∂H(x̂, 0)

∂x̂

+
1

2
Tr
{
gw(x)T

∂2H(x, p)

∂x
gw(x)

}
+

1

2
Tr
{
gw(x̂)T

∂2H(x̂, p)

∂x̂
gw(x̂)

}
= −∂

TH(x, 0)

∂x
D(x, p)

∂H(x, 0)

∂x

−∂
TH(x̂, 0)

∂x
W1(x, p)

∂H(x̂, 0)

∂x
< 0

(29)
So the trajectories of the closed loop system converge in
probability to the set

S =
{
X|LH̄(X) = 0

}
=

{
X|D(x, p)

1
2
∂H(x, 0)

∂x
= 0,

W1(x, p)
1
2 (x̂)

∂H(x̂, 0)

∂x̂
= 0

}
.

(30)

From D(x, p)
1
2
∂H(x, 0)

∂x
= 0 we have

∂H(x, 0)

∂x
= 0

and x → x0, t → ∞ in probability from Assumption 3.1.
Similarly we can get that x̂ → 0, t → ∞ in probability

from W
1
2
1 (x̂)

∂H(x̂)

∂x̂
= 0. Furthermore, we have ||x− x̂|| ≤

||x− x0||+ ||x̂− x0|| → 0 in probability as t→∞.
Remark 3.1: The feedback stabilization controller (26)

depends only on x̂ and θ̂ and is realizable. The Configuration
of the adaptive stabilization controller is indicated in Fig. 2.
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p

p

u y

x

H xk x
x

T

Fig. 2: Configuration of the observer-based adaptive stabi-
lization controller

IV. NUMERICAL EXAMPLE

Consider the adaptive observer-based stabilization of the
uncertain stochastic Hamiltonian systems (16) with

J(x, p) =

 0 1 0
−1 0 0
0 0 0

 ,
R(x, p) =

 a 0 0
0 b 0
0 0 1 + p

 ,
g(x) = gw(x) =

[
0, 0, x3

]T
,

H(x, p) =
1

2
ax21 +

1

2
bx22 +

1

2
(1 + p)x23, H(x, 0) = H(x),

a > 0, b > 0, p is an unknown parameter satisfying |p| < 1

4
.

We verify that the Assumptions 3.1- 3.3 hold. First, it can
be seen that the system is dissipative and there exist a matrix

D(x, p) =


a 0 0
0 b 0

0 0
p2 + 2p+ 1

4

(c+ p)2

 > 0, (31)

such that the Assumption 3.1 holds.
Second, let K(x) = [0, 0, x3] 6= 0, we have that

W (x) = R(x, 0) +
[
g(x)K(x) +KT (x)gT (x)

]
=

 a 0 0
0 b 0
0 0 c+ 2x23

 > 0,
(32)

and that the positive matrix

W1(x, p) =


a 0 0
0 b 0

0 0
2(1 + p)x23 + p+ 1

2

c+ p

 (33)

satisfies the equation (21). Thus Assumption 3.2 holds.
Finally, direct calculation shows that

4H(x, p) = [0, 0, px3]T . (34)

Let θ = (c+ p)p, we can get

[J(x, p)−R(x, p)]4H(x, p) = g(x)ΘT θ, (35)

where Θ = 1. Thus Assumption 3.3 holds.
From Theorem 3.1, an adaptive observer for system (31)

can be constructed as

dx̂ =

 0 1 0
−1 0 0
0 0 0

−
 a 0 0

0 b 0
0 0 1

 ∂H(x̂)

∂x̂
dt

+

 0
0
x̂3

 θ̂dt+

 0
0
x̂3

udt
+

 0
0
x̂3

 (y − cx̂23)dt+

 0
0
x̂3

 dw,
˙̂
θ = QgT (x)

∂H(x)

∂x
,

(36)
where Q > 0 is a constant. The observer-based stabilization
controller can be constructed as

u = −K(x̂)
∂H(x̂)

∂x̂
−ΘT θ̂ = −cx̂23 − θ̂. (37)

Simulation results are shown in Fig. 3 ∼ Fig. 6. From
the simulation results, we can see that the observer states
can converge to the system states and the proposed adaptive
observer-based stabilization controller can asymptotically
stabilize the considered uncertain stochastic Hamiltonian
system effectively.

t

x
x

x
x

Fig. 3: the response of the system state and the observer state

t

x
x

x
x

Fig. 4: the response of the system state and observer state
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t

x
x

x
x

Fig. 5: the response of the system state and observer state

t

Fig. 6: the response of the estimated parameter

V. CONCLUSION

The paper investigate the observer-based control of the
stochastic Hamiltonian systems without parameter uncertain-
ty and the systems in presence of parameter uncertainty.
First, for stochastic Hamiltonian systems without parameter
uncertainty, we put forward a state observer and propose an
observer-based feedback controller to make the closed loop
system asymptotically stable and the states of the estima-
tion system asymptotically convergent. Then, for stochastic
Hamiltonian systems subjected to parameter uncertainty, we
put forward an adaptive observer and a stabilization con-
troller based on the estimated state by utilizing the internal
structure and dissipation property. The asymptotically con-
vergence of the observer state is shown without constructing
an estimation error system and the Lyapunov function for the
closed loop system can be constructed by the Hamiltonian
function. Numerical Example illustrates the effectiveness of
the proposed method.
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