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Abstract— The time-gap regulation problem for a cascaded
system consisting of platooned automated vehicles following
a leading non-automated vehicle is investigated in this ar-
ticle. Under the assumption of uniform boundedness of the
acceleration of the leading vehicle, a control design scheme
is proposed via an extension of integral backstepping control
method, where additional terms that counter the impact due to
the speed change of the non-automated vehicle are used. Each
automated vehicle is actuated by one backstepping controller,
demonstrated by a recursive control design procedure based on
induction. As a result, both the time-gap error and the speed
error between each pair of consecutive vehicles are proven to
be ultimately bounded by some constants that can be tuned to
be arbitrarily close to zero. In particular, the regulated time-
gap guarantees enough time for the following vehicle in each
pair to react to the velocity change of its preceding vehicle.
Simulation is carried out to validate the proposed controllers.

Index Terms— Platoon, time-gap regulation, backstepping,
induction.

I. INTRODUCTION

Background. In late 1980’ and early 1990’, California
PATH demonstrated the concept of automated highway sys-
tems (AHS) [1].However, most of the vehicles driving on
the road are still driven by humans, and the same will likely
hold in the foreseeable future. With the rise of automation,
traffic will consist of mixed autonomy for years to come.
Designing controllers that considers the impact of human-
driven vehicles is thus an indispensable ingredient in the
traffic management. In this article, we propose a controller
for automated platoons considering the impact of human-
driven vehicle driving in front of the platoon.

Automated platoon is a group of automated vehicles
driving closely where vehicles among platoons are connected
via wireless communication. It can potentially improve traf-
fic mobility, fuel efficiency and driving safety. Overviews
of the vehicular platoon control can be found in [2] [3].
Gap regulation controllers are essential to guarantee enough
gap for the following vehicle in each pair of consecutive
vehicles to react to the speed change of its preceding
vehicle. A variety of gap policies are available in the existing
literature, where the constant distance-gap policy [4] and
constant time-gap policy [5] are most frequently adopted.
Note that the constant time-gap policy is a policy that
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sets separation distance equal to vehicle speed times the
desired time-gap constant, which is more reasonable than
the constant distance-gap policy for two reasons. Firstly, it
is more perceptually comfortable for human drivers because
it mimics human driving behavior. Secondly, it is safer
because long following distance allows more reaction time
at high speed. Gap regulation control can be autonomous or
cooperative. The autonomous approach relies on on-board
sensors to detect the preceding vehicle. Many related works
can be found in [6]. Cooperative approach needs a group
of automated vehicles forming a platoon and uses wireless
communication to exchange information. This article focuses
on the cooperative approach.

Vehicles in the platoon can be potentially benefited by
sharing information with each other. There are different
ways of exploiting information of automated vehicles in
the platoon. One way of controller design is sharing the
information of the first vehicle with each following vehicle in
the platoon, where control input is computed based on the
states of the first vehicle and its preceding vehicle [7] [8]
[9]. In another work, instead of using the information of the
first vehicle, the states of two preceding vehicles ahead are
used for the controller design [10]. Wu et al. [11] proposed a
platoon control using consensus control method. Zheng et al.
[12] proposed a model predictive control based approach for
platoon control. More literature review with regard to control
designs of automated vehicle platoons can be found in [13].

The integral backstepping approach allows systematic
controller design for nonlinear ordinary differential equation
(ODE) systems in strict feedback form [14]. Perry et al. [15]
used backstepping for automated highway system platoon for
reference speed tracking but not for car following controller.
Wei et al. adopted backstepping controller for designing
distance-gap regulation controller [4], but not for time-gap
regulation, which is preferred for highway driving due to
safety concern. One of the difficulties of the backstepping
approach is that the virtual input becomes more complex as
more stages are included during the design. Swaroop et al.
[16] proposed a dynamic surface controller design to reduce
the complexity of controller design.

Main Contributions. The present article considers a pla-
toon of automated vehicles driving behind a non-automated
vehicle. The main contributions of the work include the
following:

• The time-gaps between each pair of consecutive vehi-
cles are regulated by a designed controller based on the
backstepping method;

• The gap error and the speed error between each pair
of consecutive vehicles are proven to be ultimately
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bounded under the impact of preceding human-driven
vehicle;

• One challenge of backstepping derivation is ”explosion
of terms”. By induction, complexity of deriving back-
stepping based controller proposed in this article can be
relaxed.

Organization. This article is organized as follows. In
section II, the platoon model and problem formulation are
detailed. In section III, the proposed controller for automated
platooning by backstepping is described, followed by sim-
ulations to validate the proposed controller in section IV.
Section V concludes the article with our findings and outlook
for the future.

II. PROBLEM FORMULATION

We consider a platoon of N automated vehicles, indexed
from 1 to N , following a non-automated/human-driven ve-
hicle, indexed 0, see, Fig. 1. For any i ∈ {0, 1, · · · , N}, xi
and Li denote the position of the rear bumper and the length
of the vehicle i, respectively.

Fig. 1. Vehicle Platooning

Dynamics. The dynamics of each vehicle i, where i ∈
{0, 1, · · · , N} can be described by the following system of
ODEs:

ẋi(t) = vi(t), (1)
v̇i(t) = ai(t), (2)
ȧi(t) = fi(vi(t), ai(t)) + gi(vi(t))ui(t), (3)

where

fi(vi(t), ai(t)) =− 1

τi

(
ai(t) +

Af,iρCd,ivi(t)
2

2mi
+ Cr,i

)
− Af,iρCd,ivi(t)ai(t)

mi
, (4)

gi(vi(t)) =
1

miτi
. (5)

Here, vi and ai are respectively the speed and acceleration
of the vehicle i; mi is the vehicle mass; Af,i is the effective
frontal area of the vehicle i; ρ is the air density; Cd,i is
the aerodynamic drag coefficient; Cr,i is the vehicle rolling
resistance coefficient; τi is the first order response lag time of
the powertrain; and ui denotes the control input actuated on

the vehicle i. More details of vehicle longitudinal dynamics
can be found in [8].

It is assumed that for every vehicle in the platoon, the
state (relative distance from its preceding vehicle, relative
speed w.r.t. the preceding vehicle and and its acceleration)
is accessible. In practice, relative distance and relative speed
can be measured by lidar or radar; speed and acceleration
can be measured by odometer and accelerometer. These
information can be shared with the other vehicles by wireless
communication. The first vehicle in the platoon can only
have limited information of the non-automated vehicle ahead
using on-board sensors, because the non-automated vehicle
ahead is not connected. Hence, only the relative distance
and relative speed between the vehicle 1 and the vehicle 0
are used. Other states of vehicle 0, including acceleration
,are not used. Given the fact that the vehicle engine size is
limited, the acceleration of the vehicle 0, a0, is supposed to
be bounded.

Assumption 2.1:

|a0(t)| ≤ δ0. (6)
Control objective. The goal is to design the car-following

state feedback controllers ui, i ∈ {0, 1, · · · , N} so that the
controlled automated vehicles in the platoon can follow each
preceding vehicle with a constant time-gap, which is the
time difference between two consecutive vehicles passing the
same place. This kind of gap policy is similar to human’s
driving behavior that tends to have larger separation to the
preceding vehicle when the speed is higher. We define the
time-gap error ex,i between consecutive vehicle i and vehicle
i− 1 as follows:

ex,i(t) := xi−1(t)− xi(t)− Li − hvi(t), (7)

where h is the desired time-gap. It is the distance difference
between bumper to bumper distance (xi−1(t) − xi(t) − Li)
and desired time-gap distance (hvi(t)). We also define the
speed error ev,i as follows:

ev,i(t) := vi−1(t)− vi(t). (8)

The goal of the controller is to make the time-gap error and
speed error converge to zero.

III. AUTOMATED PLATOON CONTROL DESIGN

From the definition of time-gap error ex,i, speed error ev,i
in (7), (8) and the vehicle dynamics (1)-(3), we have

ėx,i(t) = ev,i(t)− hai(t), (9)
ėv,i(t) = ai−1(t)− ai(t), (10)
ȧi(t) = fi(vi(t), ai(t)) + gi(vi(t))ui(t). (11)

Our goal is to drive vehicles following behind preceding
vehicles with a constant time-gap steadily. Therefore, the
objective of the car-following controller design is to make
ex,i and ev,ibounded and eventually converging to zero.

731



A. Intermediate System

Note that the backstepping approach cannot be directly
applied to the dynamics (9)-(11) because the above dynamics
is not in the strict feedback form. Therefore, we define

zi,1(t) = ex,i(t)− hev,i(t), (12)

then the dynamics of (zi,1(t), ev,i(t), ai(t)) is as follows,
which is in the strict feedback form:

żi,1(t) = ev,i(t)− hai−1(t), (13)
ėv,i(t) = −ai(t) + ai−1(t), (14)
ȧi(t) = fi(vi(t), ai(t)) + gi(vi(t))ui(t). (15)

In the following section, the controller design for the vehicle
1 in the platoon is firstly described, by backstepping. Then,
the backstepping controller for all the other vehicles in the
platoon can be designed similarly by induction.

B. Controller design for the vehicle 1

Recall that vehicle 0 is not automated and a0(t) is
bounded. The aim is to make that the vehicle 1 follows the
vehicle 0 with a constant time-gap.

1) Stage One: From (13), we have

ż1,1(t) = ev,1(t)− ha0(t). (16)

Let

V1,1(t) =
1

2
z21,1(t), (17)

which is positive definite. Taking the derivative of V1,1(t),
substituting (16) into it and using the virtual control ēv,1 to
replace ev,1, we obtain

V̇1,1(t) = z1,1(t)(ēv,1(t)− ha0(t)). (18)

By picking ēv,1 as follows:

ēv,1(t) = −
(
k1,1 +

hδ0
2ε1,1

)
z1,1(t), (19)

where k1,1, ε1,1 and following ki,j and εi,j are all positive
design parameters. The second term in the square bracket
above is for countering the impact of a0(t). We plug (19)
into (18), then V̇1,1(t) becomes

V̇1,1(t) = −k1,1z21,1(t)− hδ0
2ε1,1

z21,1(t)− ha0(t)z1,1(t).

Using the fact that a0(t) is bounded (Assumption 2.1), we
obtain following bound on V̇1,1

V̇1,1(t) ≤ −k1,1z21,1(t)− hδ0
2ε1,1

z21,1(t) + hδ0|z1,1(t)| (20)

. By Young’s inequality, we know that

|z1,1(t)| ≤
z21,1(t)

2ε1,1
+
ε1,1
2
. (21)

We can use the results from Young’s inequality to get the
bound on V̇1,1(t) as below:

V̇1,1(t) ≤ −k1,1z21,1(t) + hδ0
ε1,1
2
. (22)

2) Stage Two: Let

z1,2(t) = ev,1(t)− ēv,1(t). (23)

Using (13), (14) and (19), we obtain

ż1,1(t) = z1,2(t) + ēv,1(t)− ha0(t), (24)
ż1,2(t) = −a1(t) + a0(t)

+

(
k1,1 +

hδ0
2ε1,1

)
(ev,1(t)− ha0(t)) . (25)

We choose the Lyapunov function as

V1,2(t) =
1

2
z21,1(t) +

1

2
z21,2(t), (26)

which is positive definite. Similarly, by investigating the
derivative of V1,2, we pick the virtual control ā1 as

ā1(t) = z1,1(t) + p1ev,1(t) + q1z1,2(t), (27)

where

p1 = k1,1 +
hδ0
2ε1,1

, (28)

q1 = k1,2 +

∣∣∣∣1− k1,1h− h2δ0
2ε1,1

∣∣∣∣ δ0
2ε1,2

, (29)

and k1,2 is a positive number. From (19) and (27), V̇1,2(t)
is bounded as follows:

V̇1,2(t) ≤− k1,1z21,1(t)− k1,2z21,2(t)

+ hδ0
ε1,1
2

+

∣∣∣∣1− k1,1h− h2δ0
2ε1,1

∣∣∣∣ δ0 ε1,22
, (30)

where Young’s inequality is used.
3) Stage Three: Let

z1,3(t) = a1(t)− ā1(t). (31)

Using (13)-(15), (19) and (27), we obtain

ż1,1(t) = z1,2(t) + ēv,1(t)− ha0(t), (32)
ż1,2(t) =− z1,3(t)− ā1(t) + a0(t)

+ p1 (ev,1(t)− ha0(t)) , (33)
ż1,3(t) = f1(v1(t), a1(t)) + g1(v1(t))u1(t)

−(1 + p1q1)ev,1(t) + (p1 + q1) a1(t)

+ (h+ p1q1 − p1 − q1) a0(t). (34)

Let the Lyapunov function be

V1,3 =

3∑
n=1

1

2
z21,n(t), (35)

which is positive definite. We pick control input u1 as
follows:

u1(t) = g1(v1(t))−1

[
− f1(v1(t), a1(t))

+ p1z1,1(t) + (2 + p1q1) ev,1(t)− (p1 + q1)a1(t)

− k1,3z1,3(t)− |h+ p1q1 − p1 − q1|
δ0

2ε1,3
z1,3(t)

]
,

(36)
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where k1,3 is a positive number, then from Young’s inequal-
ity, (19), (27) and (36), we obtain

V̇1,3(t) ≤
3∑

n=1

−k1,nz21,n(t) + Γ1, (37)

where

Γ1 = hδ0
ε1,1
2

+ |1− p1| δ0
ε1,2
2

+ |h+ p1q1 − p1 − q1| δ0
ε1,3
2
. (38)

It holds from (35) and (37) that

V̇1,3(t) ≤ −2κ1V1,3(t) + Γ1, (39)

where

κ1 = min{k1,1, k1,2, k1,3}. (40)

It can then be derived by the comparison lemma [14] that

V1,3(t) ≤
(
V1,3(0)− Γ1

2κ1

)
e−2κ1t +

Γ1

2κ1
. (41)

This implies that the norm of state errors is ultimately
bounded and the convergence rate of the error norm is
exponentially fast. By choosing parameters (k1,1, k1,2, k1,3,
ε1,1, ε1,2, ε1,3) appropriately, we can make Γ1 very small,
which makes error very close to zero.

4) Closed-loop dynamics of the vehicle 1: Let

X1(t) = [z1,1(t), z1,2(t), z1,3(t)]T ,

then by plugging the controller u1 designed in (36) into the
system (32)-(34), we obtain the following closed-loop system
dynamics for X1(t):

Ẋ1(t) = A1X1(t) +B1a0(t), (42)

where A1 =
{
a
(m,n)
1

}
3×3

, B1 =
{
b
(m)
1

}
3×1

, and

a
(1,1)
1 = −p1, a(1,2)1 = 1, a

(1,3)
1 = 0,

a
(2,1)
1 = −1, a

(2,2)
1 = −q1, a(2,3)1 = −1,

a
(3,1)
1 = 0, a

(3,2)
1 = 1,

a
(3,3)
1 = −k1,3 − |h+ p1q1h− p1 − q1|

δ0
2ε1,1

,

b
(1)
1 = −h, b(2)1 = 1− p1h, b(3)1 = h+ p1q1h− p1 − q1.

(43)

Using (31) and (27), the acceleration of vehicle 1 can be
rewritten as follows:

a1(t) = KT
1 X1(t), (44)

where

K1 =
[
1− p21, (p1 + q1), 1

]T
. (45)

C. Controller design for the vehicle i+1, based on controller
design for the vehicle i,∀ 2 ≤ i ≤ N

Suppose that the controller is applied to each of the
vehicles j = 1, · · · , i and the closed-loop dynamics of the
vehicle i with the designed backstepping controller is:

Ẋi(t) = AiXi(t) +Bia0(t), (46)

where Ai ∈ R3×3, Bi ∈ R3×1 and the acceleration ai is :

ai(t) = KT
i Xi(t) +

i−1∑
j=1

Mi,jXj(t), (47)

where Ki ∈ R3×1 and Mi,j ∈ R3×1. Given i, Mi,j is defined
as follows:

Mi,j =

{
KT
i if j = i

Mi−1,j − hMi−1,jAj if j ≤ i− 1
. (48)

The corresponding Lyapunov function and its derivative
are:

Vi,3(t) =

i∑
m=1

3∑
n=1

1

2
z2m,n(t), (49)

V̇i,3(t) ≤
i∑

m=1

3∑
n=1

−km,nz2m,n(t) + Γi. (50)

We rewrite the above inequality:

V̇i,3(t) ≤ −2κiVi,3(t) + Γi, (51)

where

κi = min{k1,1, k1,2, k1,3 · · · ki,1, ki,2, ki,3},

and Γi is a function of parameters k1,1,k1,2 · · · ki,1,ki,2,ki,3
and ε1,1,ε1,2,ε1,3, · · · , εi,2,εi,3. Similarly, by the comparison
lemma, we obtain the following bound on Vi,3:

Vi,3(t) ≤
(
Vi,3(0)− Γi

2κi

)
e−2κit +

Γi
2κi

. (52)

As a result, states until the i-th vehicle can be bounded
around the origin. In the following sections, the controller
for the i+ 1-th vehicle is designed using backstepping.

1) Stage One: Let

Vi+1,1(t) = Vi,3(t) +
1

2
z2i+1,1(t)

and pick the virtual control ēv,i+1 as

ēv,i+1(t) = hai(t)− ki+1,1zi+1,1(t), (53)

where ki+1,1 is a positive number, then we have

V̇i+1,1(t) = V̇i,3(t)− ki+1,1z
2
i+1,1(t). (54)
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2) Stage Two: We define

zi+1,2(t) = ev,i+1(t)− ēv,i+1(t),

Vi+1,2(t) = Vi,3(t) +
1

2
z2i+1,1(t) +

1

2
z2i+1,2(t),

and design the virtual input āi+1 as follows:

āi+1(t) =(1− k2i+1,1)zi+1,1(t) + (ki+1,1 + Pi+1)zi+1,2(t)

+

i∑
j=1

Mi+1,jXj , (55)

where

Pi+1 = ki+1,2 +
hδ0

2εi+1,2

∣∣∣∣∣∣
i∑

j=1

Mi,jBj

∣∣∣∣∣∣ . (56)

Using Young’s inequality, we obtain

V̇i+1,2(t) ≤ V̇i,3(t)− ki+1,1z
2
i+1,1(t)− ki+1,2z

2
i+1,2(t)

+
εi+1,2hδ0

2

∣∣∣∣∣∣
i∑

j=1

Mi,jBj

∣∣∣∣∣∣ . (57)

3) Stage Three: We define

zi+1,3(t) = ai+1(t)− āi+1(t),

Vi+1,3(t) = Vi,3(t) +
1

2
z2i+1,1(t) +

1

2
z2i+1,2(t) +

1

2
z2i+1,3(t).

and pick ui+1(t) as follows:

ui+1(t) = gi+1(vi+1(t))−1

{
−fi+1(vi+1(t), ai+1(t))

−
[
(2− k2i+1,1)ki+1,1 + Pi+1

]
zi+1,1

+
[
2− k2i+1,1 − (ki+1,1 + Pi+1)Pi+1

]
zi+1,2

− (ki+1,1 + Pi+1 +Qi+1)zi+1,3 +

i∑
j=1

Mi+1,jAjXj

}
,

(58)

where Qi+1 is defined as follows:

Qi+1 =ki+1,3 +

∣∣∣∣∣∣
i∑

j=1

Mi+1,jBj

−h(ki+1,1 + Pi+1)

i∑
j=1

Mi,jBj

∣∣∣∣∣∣ δ0
2εi+1,3

. (59)

It can then be derived that

V̇i+1,3(t) ≤
i+1∑
m=1

3∑
n=1

−km,nz2m,n(t) + Γi+1, (60)

where

Γi+1 = Γi +

∣∣∣∣∣∣h
i∑

j=1

Mi,jBj

∣∣∣∣∣∣ εi+1,2δ0
2

+

∣∣∣∣∣∣
i∑

j=1

Mi+1,jBj

−h(ki+1,1 + Pi+1)

 i∑
j=1

Mi,jBj

∣∣∣∣∣∣ εi+1,3δ0
2

.

(61)

By the comparison lemma, it can be derived that

Vi+1,3(t) ≤
(
Vi+1,3(0)− Γi+1

2κi+1

)
e−2κi+1t +

Γi+1

2κi+1
.

This implies that the norm of state errors is ultimately
bounded and the convergence rate of the error norm is
exponentially fast. By choosing parameters appropriately, we
can make Γi+1 very small, which makes error very close to
zero.

4) Closed-loop dynamics of the vehicle i + 1: Plugging
the controller (58) into the system (32)-(34), we obtain the
closed-loop dynamics as follows:

Ẋi+1(t) = Ai+1Xi+1(t) +Bi+1a0(t), (62)

where Ai+1 =
{
a
(m,n)
i+1

}
3×3

, Bi+1 =
{
b
(m)
i+1

}
3×1

, with

a
(1,1)
i+1 = −ki+1,1, a

(1,2)
i+1 = 1, a

(1,3)
i+1 = 0,

a
(2,1)
i+1 = −1, a

(2,2)
i+1 = −Pi+1, a

(2,3)
i+1 = −1,

a
(3,1)
i+1 = 0, a

(3,2)
i+1 = 1, a

(3,3)
i+1 = −Qi+1,

b
(1)
i+1 = 0, b

(2)
i+1 = −h(KT

i Bi +

i−1∑
j=1

Mi,jBj),

b
(3)
i+1 = h(ki+1,1 + Pi+1)

 i∑
j=1

Mi,jBj

− i∑
j=1

Mi+1,jBj .

(63)

And ai+1 can be written as follows using (55):

ai+1(t) =KT
i+1Xi+1(t) +

i∑
j=1

MT
i+1,jXj(t), (64)

where

KT
i+1 = [1− k2i+1,1, ki+1,1 + Pi+1, 1]. (65)

Note that the closed-loop form and the acceleration of the
i+1-th vehicle match the formula for i-th vehicle, as shown
in (46) and (47). Therefore, by induction, the controller can
be designed for every vehicle in the platoon to achieve the
time-gap regulation.

IV. SIMULATION

Two automated vehicles in the platoon, following a
human-driven vehicle, are simulated to validate the proposed
controller. A speed profile for 120 seconds of the human-
driven vehicle is shown as the blue curve in Fig. 2. For the
first 80 seconds, the human-driven vehicle accelerates to as
high as 21.0 m/s and decelerates to 13.4 m/s at different
acceleration/deceleration, simulating speed change in real
traffic. It is then followed by a period of constant speed at
20.8 m/s until the end. Two following vehicles, vehicle 1
and vehicle 2 in the platoon, are using the controllers (36)
and (58), respectively. The speed responses of vehicle 1 and
vehicle 2 are also shown in Fig. 2. Tim-gap errors and speed
errors between two consecutive vehicles are shown in Fig.
3 and Fig. 4. In Fig. 3, the blue curve represents the gap
error between human-driven vehicle and vehicle 1, and the
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red curve represents the gap error between vehicle 1 and
vehicle 2. In Fig. 4, the blue curve represents the speed error
between human-driven vehicle and vehicle 1. The red curve
represents the speed error between vehicle 1 and vehicle 2.
Results show that the time-gap errors and speed errors can be
bounded around zero, even when the human-driven vehicle
in the front of automated platoon is changing speed. Time-
gap errors and speed errors converge to the origin when the
non-automated vehicle is driving at constant speed after 80
seconds, which shows the proposed controller stabilize time-
gap car following.

Fig. 2. Speed profiles

Fig. 3. Gap errors

Fig. 4. Speed errors

V. CONCLUSION AND FUTURE WORK

Controllers for automated vehicles in a platoon, following
a human-driven vehicle, are proposed in this work. A linear
coordinate transformation is used to convert the original
error dynamics into a strict feedback form, on which the
backstepping control method is applied. Acceleration bound

of the human-driven vehicle is considered in the controller
design. Recursive form of the controller derivation is shown,
based on induction, and the performance of the proposed
controllers is validated by simulation results.

In the future, the designed controllers will be validated
on real vehicles/trucks. Moreover, output feedback controller
design based on state observer can also be possible future
research topics.
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