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Well-posedness of networked scalar semilinear balance laws
subject to nonlinear boundary control operators

Shu-Xia Tang, Alexander Keimer and Alexandre M. Bayen

Abstract— Networked scalar semilinear balance laws are used
as simplified macroscopic vehicular traffic models. The related
initial boundary value problem is investigated, on a finite
interval. The upstream boundary datum is determined by a
nonlinear feedback control operator, representing the fact that
traffic routing might be influenced in real time by the traffic
information on the entire network. The main contribution of
the present work lies in the appropriate design of nonlinear
boundary control operators which meanwhile guarantee the
well-posedness of the resultant systems. In detail, two different
types of specific nonlinear boundary control operators are
instantiated, one being Lipschitz continuous and taking into
account traffic information from initial time up to present time,
one using only delayed traffic information. This contribution
thus presents simplified road traffic network dynamics where
routing at intersections is dependent of the status of the entire
network, incorporating also different classes of traffic flow.

Index Terms— Semilinear balance law; boundary control;
delay; routing; traffic flow

I. INTRODUCTION

At the macroscopic scale, vehicular traffic flow systems
can be modeled by networked scalar balance laws, for
which the mathematical representation consists of a coupled
system of nonlinear first-order partial differential equations.
A precise analysis for the corresponding linearized version
of these equations posed on the spatial interval R has been
carried out in [1], [2].

Routing choices serve as essential ingredients in regu-
lating (networked) traffic flow systems. From the control
perspective, off-line routing choices are generally considered
as open loop control, while most on-line routing choices
can be treated as feedback control. Instead, say that we
provide mathematical framework to describe the system.
Networked traffic systems would ideally decide the routing
policies based on the traffic density throughout the entire
network. In this work, for simplicity, we consider only one
intersection, although the entire theory could be generalized
to more general networked traffic systems without further
restrictions such as the ones where the routing at a specific
intersection can also depend on traffic density on the network
links not adjacent to the intersection.

We consider the system of semilinear balance laws posed
on a finite spatial strip, with the conjunction being the
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upstream endpoint. For our analysis, we use several methods
and notation in [3], [4], [5]. It is also worth mentioning that
our approach of defining a broad class of routing operators
and studying its well-posedness has been inspired by [6]
for link dynamics based on an ordinary delay differential
equation [7]. For more realistic macroscopic traffic flow
models we refer to [8], [9], [10].

II. THE SEMILINEAR IBVP CONSIDERED

We consider the following class of scalar semi-linear
balance laws:

Definition 2.1 (The IBVP considered): Let T € R~ and
n € N>q. Then, we call the system

pi(t,x) + (AL, 2)p(t, x))e = f(t,2,p(t, 7)), (t,2) € Qr
A(t,0)p(t,0) = u(t) te(0,T)
p(0,) :Po(x) z € (0,1)

son)T 1 Qr — R™ denotes the
solution, w : (0,7") — RZ, the Lh.s. boundary datum, p,, :
(0,1) — RZ, the initial datum, A := diag{\1, A2, -+, A\p}
the velocity matrix with \; : Q7 — Ry, i € {1,2,--- ,n},
and f : Qp x Ryg — R” the semi-linearity of the system
the initial boundary value problem (IBVP) posed on Qp =
(0,T7) x (0,1).

We are interested in the well-posedness of the IBVP in
Definition 2.1. In the following section, we only present the
study of the well-posedness of the corresponding scalar case,
keeping in mind that the well-posedness study for the system
case as in Definition 2.1 is, can be obtained from the diagonal
structure of the velocity in almost similar manner.

Definition 2.2 (The scalar IBVP considered): Consider
the following IBVP on Qp:

where P = (p17p27"'

pe(t,x) + (At 2)p(t,2))a = f(t,2,p(t, 7)) (t,7) € O
A(t,0)p(¢,0) = u(t) te(0,T)
p(O,x) = Po(x) MAS (07 1)

with p : Qp — R the solution, v : (0,T7) — Ryq the
Lh.s. boundary datum, pg : (0,1) — R the initial datum,
A Qp — Ry the velocity and f : Qp x Ryg — R the
semi-linearity.

We make the following assumptions on the input datum
of the IBVP in Definition 2.2.

Assumption 2.1 (Velocity, initial/boundary datum, etc.):
Let T € Ry and assume for the scalar IBVP in
Definition 2.2 that

® po € L=((0,1);R>o),
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[ KNS L°°((0, T), Rzo),

ofc C(QT X R) : dL € R>0,V(t,.’£) € Qr,
Vz,y eR: ‘f(t7z7z) - f(t’xvy” < L|Z - y‘z

e A€ C ([0, T WH((0,1); Rsy))

Remark 2.1: The assumption of the system nonlinearity f
to be global Lipschitz will be essential for the well-posedness
of the IBVP.

In order to consider solutions that are not necessarily dif-
ferentiable, we present the usual definition of weak solutions
as follows.

Definition 2.3 (Weak solution): Given Assumption 2.1,
we call a function p € C ([0,T]; L'(0,1)) a weak solution
to the the IBVP in Definition 2.2 iff for any 7 € [0,7],
Vo € C1([0,T] x [0,1]) with ¢(7,-) = 0 and ¢(-,1) = 0,
the following integral equality holds:

/ / plt, ) (60(t,) + A(t 2)6 (1, 7)) dt dz

(IL1)

1 T
+/0 po(x)¢(0,x)dx+/0 u(t)é(t, 0) dt

+ // ft,z, p(t,x))p(t,x) dtdz = 0.

We first shovf/l that this IBVP is well-posed and then present
its unique solution in terms of a fixed-point equation and
the method of chracteristics. It is worth noting that this
fixed-point argument is commonly used in mathematical
derivations, it is not circular and instead provides a classical
tool to the existence proof of solutions.

Theorem 2.1 (Existence and uniqueness): Given
Assumption 2.1, the IBVP in Definition 2.2 possesses
a unique weak solution p in the sense of Definition 2.3.
More precisely, the solution can be posed as the unique
solution to the following fixed-point equation in p for
(t,x) € Qr almost everywhere:

f}'

(7, &[t, 2)(7)) 028 [t, 2] (7) dr
€lt.al=(0)
u(€ft.a) (0

el " O) gt (6, 2] (0))
for x < £[0,0](¢),
£lt, 2)(7)0ot[t, 2] (r) dr

2](0))9:[t, ](0)
for x > £[0,0](¢),

p(t,z) = .
Of}-[P](T

+p0 (f[t7

(IL2)

where the characteristics £[t, z](-) are defined at any time-
space point (t,z) € Qr by the following integral equality:
for any 7 € [0, 7],

ltaln) =o+ [ Asgralnas @
€t a]71(0) = 7= €t 2)(r) =0, @ < £00,0(0),
and the function F is defined as
Flpl(-s%) := f(; %, p(-, %)) on Qr. (IL4)

In addition, the solution is nonnegative if f is nonnegative.

Proof: Given p € C([0,T]; L'(0,1)), define a mapping
G : C([0,T];L'(0,1)) — C([0,T); L*(0,1)) for (¢t,z) €
QT by

Jett.a11 o) FlA) (T €1, 2)(7) Do [t ] (7) dr
for x < £[0,0](t),

Jo Flol(r, &lt, 2)(7)dat, 2] (7) dr
for x > &[0, 0](t).

Glol(t, ) =

Clearly, G is a self-mapping due to Assumption 2.1 on A
and f. So it remains to show that G is also a contraction in
the Banach space C([0,7]; L*(0,1)). To this end, compute
for pt, p? € C([0,T); L*((0,1))) and t € [0, T

IG[p"(t, ) = Gl (¢t )l a0,y

/5[0 ,01(t) ‘ /
&lt,@]~ 1(0)

— Fl)r. €l 2](7))) - Batlt.2](7) |
+ /E - (7. £[t. (7))
— FR)(r €t 2](r)) - Bt [t 2)(7)

(7, €1t 2] (7))

dT‘ dx.

From Eq. (Il.1) and Eq. (IL.4), we can continue the estimate
and obtain for ¢ € [0, T,

|Glp N, ) - Gl - HLl(O 1)

[0,0](¢)
<L/ / o€t 2](7)
&lt,x] = 1(0)

|pT§tm()) (T§[t$ ‘de:v
ot /g[o,om) /o oatlh 2l(m)

‘pl 7, &[t, 2] (1)) — 2(7'75[75,95](7'))‘ drdx

[0,0)(t)

< L 82 t X

/ /5[701 (t) £l ()

oM, €[t 2)(r) = PP (7 [t 2)(r)| dwdr
+L/ /g[oo(t)agft x](1)

o (7, E[t, z)(1)) — p* (7, [t 2](7))| dedr,  (L5)

where we have used the positivity of 0;¢ detailed in Re-
mark 2.2. Finishing our estimate in Eq. (IL.5), we perform
an integration per substitution and obtain

IG[p"](t, ) = Glp](¢

gLO/W(r ) -

< Lt||p*

s Lo,y

A(r, ')||L1((o,1)) dr

- p2||0([0,t];L1((0,1))) ’

Define another self-mapping J : C ([0,T]; L*((0,1))) for
(t,x) € Qr by
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Jpl(t, ) = Glp](t, )
A(E[t, 2] 71(0),0)71 - u (&[t, 2] 71(0))

+q 0:8[t. 2] (€[t 2] 71(0))  for & < £[0,0](t),
po(€lt, #](0))0x¢[t, x](0)  for z > £[0,0](¢).

Again, it is clear that J is a self-mapping. Using our previous
established estimate, we obtain for any ¢ € [0, 7] that

10" (t, ) = Jp*1(t, )l Lr (0,1
<G, ) = Glp*I(t, )l 0,1y
1 2
< Lt[lo" = Pl oo oy -

By choosing t* € (0, 5 ), we obtain

1 2 1 2
1710"] = T1ellleqoenzr 09 < 3 110" = 2l oossiz 0.1y

so that J is a contraction. From Banach’s fixed-point theorem
there exists a unique p* € C ([0,¢*]; L'(0,1)), i.e

J(p*) = p* in C((0,+°]; L((0,1))).

In order to prove that Eq. (IL.6) is indeed a weak solution of
Definition 2.2 in the sense of Definition 2.3, the following
identity which is a direct consequence of the previously
established fixed-point solution in Eq. (IL.6) is used:

(IL6)

/ / p(1,2) (6n(t,) + A, 2)u (1,2)) dt da
[0,7]x[0,1]

£[0,0](¢)
/ / / p*1(s, €[t  2)(s)) - 92£[t, z](s)
£lt,2]~ 1(0)
(019(t, ) + A(t, )024(t, ) dsdx dt

PP el ) (0) duele )€l 2 0)
*/ (el 271(0),0)

0o 0
(019t ) + A(t, 2)D20(t, ) dx dt.

Further details are omitted to keep the presentation short.

We refer the readers to [3] for the uniqueness proof of the
case without boundary datum. The uniqueness proof here can
be derived similarly as in [5], with some adaption due to the
existence of boundary datum.

So far, the solution has only been constructed on a
sufficiently small time horizon t* € (0, 57). Clearly, using
the semi-group property, we can iterate this to obtain a
sequence of initial boundary value problems between time
horizons [0,t*), [t*,2t*),... and can exhaust every finite
time horizon 7' € R+ . [ ]

Remark 2.2 (Computing 0-£): Recalling the definition of
the characteristics in Eq. (I.3), we compute the spatial
derivative of the entire equation and end up for (¢,z,7) €
Qr x [O,T} with

Lt ) (1) =1+ T@g)\(s, &[t,

t

x](7))02&[t, x](7) ds. (AL7)

As 0o\ is still essentially bounded and the integral equation
is linear, we can directly write down the solution as

Oatlt,2](r) = exp ( | o w,x](s))ds) ,

from which the positivity of d2¢ then follows.
Remark 2.3 (Well-posedness of the involved mappings):

o Due to the positivity of A, the characteristics £[t,x] at
the time-space point (t,z) € Qp are invertible. The
characteristics trace back the solution at (¢,z) € Qr to
either boundary or initial datum. The dependency of the
solution w.r.t. initial and boundary datum is thus changed
along the zero characteristics £[0, 0](¢). However, due to
the semi-linearity, there is still a coupling (yet not explicit).

« For the region which is dependent on the initial datum, the
mapping [t, z](0) gives the spatial coordinate where the
characteristics emanated from at ¢ = 0 and is thus defined
for 2 > &[0, 0](¢), and the mapping £[t, 2] 1 (0) gives back
the time where the characteristics emanated from at z = 0
and is thus defined for x < &[0, 0](¢).

o The mapping 0-& comes from the velocity function varying
in space, compressing or dispersing the solution in space
time to satisfy the conservation/balancing of mass.

« Since the velocity function A is strictly positive, we obtain
also the regularity of the solution C ([0, 1]; L*((0,7"))). In
addition, as we will point out in Corollary 3.1 in a more
general setup, the solution is uniformly bounded on Q7.

III. IBVP WITH BOUNDARY FEEDBACK CONTROL

In this section, we consider the well-posedness of the
system of balance laws subject to a class of boundary
controls. By replacing the boundary datum in the model
considered in Definition 2.2 by

A(t,0)p(t,0) = Rlp](t) © u(?)

where the feedback boundary control operator R is to be
specified, and the operator ® is defined as component-
wise multiplication of two vectors, resulting into a new
vector, i.e., for any two elements y,z € R", y® z =
(1121 iz ynzn)T, we then obtain the following
coupled IBVP.

Definition 3.1 (The control problem considered): Let As-
sumption 3.1 hold, the control problem is then stated as

€0,7], (L)

pu(t,2) +(A(t,2)p(t,2)), = F(t,a,plt, ) (t2) €
A(t,0)p(t,0) = R[p)(t) 0 u(t) € (0,T)
p(0,2) = pyl(a) € (0,1).

We propose the following assumptions.

Assumption 3.1 (Velocity, etc. — vectorial): Let T € Ry
and assume for the vectorial IBVP in Definition 3.1

e p, € L™ ((O7 1);R7§0) ,

euc L™ ((O,T); ’ZLO) ,

o fc C(QT X R”;R”) : dL € R>O7V(t,$) € Qr,

Vz,y e R": |[f(t,2,2) - f(t,z,y)l| < L]z -y,
e AcC([0,T);Wh>((0,1); RZ5™)) is diagonal.
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Since the operator R is a function of the solution p itself,
the existence and uniqueness of solutions is not straightfor-
ward and has to be proven. This problem is investigated
for two different settings, in Section III-A for Lipschitz-
continuous (w.r.t. the traffic information p) operators and
in Section III-B for delayed (w.r.t. p) operators. Please note
that the bold notation represents the fact that we now deal
with a system of equations and not a single balance law and
that we allow the operator R to be dependent on all those
solutions simultaneously. The generality of this dependency
is specified in the following section and its reasonability
explained in Section IV-A.

A. Lipschitz continuous control operator

We first study well-posedness of the problem in Defini-
tion 3.1 subject to Lipschitz-continuous routing operators.

Definition 3.2 (Lipschitz-continuous boundary operator):
The boundary operator R : C([0,T]; L*(((0,1);R™))) —
L*>((0,T);[0,1]™) in Eq. (IIL1) representing the control
impact on the boundary datum in Definition 3.1 is called
Lipschitz-continuous iff either one of the following holds:

« Vp',p? € O([0,T); L1 ((0,1);R™)) with [|p' ||z (o) <
Co 1P| L) < C, C € Rug, ILR(C) € Ry, p €
(1, 00] such that

1 2
[R[p'] ~Rlp ]HLP((O,t);]R")
< Lr(O)lp" = PPllc(o.4:01 (0,1)mm)) VE € [0,T],

oVt € (0,T), Vp',p?> € C([0,1]; L((0,t); R™)) with
||p1||L°°(QT) < CaszHLw(QT) < C, C € IR>07
dLR(C) € Rsy, p € (1,00] such that

[RIp"] — R[pQ]HLP((O,t);]R")

< Lr(O)p" = P2 llcqogL (0.7
Remark 3.1 (Lipschitz-continuous operator): The
Lipschitz condition in Definition 3.2 satisfies:

o Ata given time ¢ € [0, 7], the control operator can depend
on the solution between [0, ¢]. This is ensured by the time
dependency in the Lipschitz-estimate.

« Due to the general structure of a Lipschitz-estimate in LP,
the control operator is allowed to be as general as possible.

o The case p = 1 is excluded since the proof of existence
requires a contraction argument which could not (easily)
be obtained for p = 1. This is because the corresponding
Lipschitz constant cannot be made small for small time
t € (0,T], which makes the main idea of proving the
well-posedness in the following Theorem 3.1 fail.

1) Well-posedness in the Lipschitz case: The previous
assumptions enable us to prove the well-posedness of the
resulting IBVP with boundary control.

Theorem 3.1 (Boundary control, Lipschitz): Given
Assumption 3.1 the boundary control problem in
Definition 3.1 subject to Definition 3.2 admits a unique
weak solution p € C ([0, T]; L*((0,1);R%,)) in the sense
of Definition 2.3 yet in the vectorial setting. In addition, the

solution is also the unique solution of the following fixed-
point problem in C ([0,7]; L*((0,1); R™)) for (t,x) € Qr
a.e.: For i € {1,2,...,n}, p; satisfies

pi(ta Z‘)

t
[ Filpl(r,&lt, 2] (7)) 02i[t, 2](7) dr+
&ilt,z]=1(0)
wi(&ilt,z] 1 (0))Ri[p] (&it,z] 1 (0))da&i[t,z] (€it,z] *(0))
)\1(51 [t7x]—1(0),0)
= for x < &;[0,0](¢)

Oftﬂ D). &1, ) (7)) Dot ) () dr

pio(&ilt, 2](0))0&[t, ](0)  for x > &[0, 0](¢)
(I11.2)

where the characteristics &; and the semi-linearity JF; are de-
fined similarly as in Theorem 2.1, again in the corresponding
vectorial setting.

Proof: This theorem follows for Lipschitz-continuous
routing operators in the C([0,#]; L1((0,1); R™)) topology in
a similar way as Theorem 2.1. The difference comes from
the coupling through routing operator and semi-linearity.
However, since we postulated vectorial Lipschitz continuity
for both the routing and the semi-linearity, the estimates are
very similar. We do not go into detail but only mention that
Eq. (II.2) is a straightforward generalization of Eq. (IL.2).
Also, for routings in the C ([0, 1]; L'((0,¢); R™)) topology,
the result follows analogously. [ ]

Furthermore, we provide here a proper estimate of the
L°-norm of the solution with an upper bound, which will
be useful in the following analysis.

Corollary 3.1 (Uniform L°° estimate of p): Let Assump-
tion 3.1 hold, the weak solution of Definition 3.1 satisfies for
every i € {1,...,n} and for all ¢ € [0, 7]

ot = (0,1 < CO) - Cu (U £ %, 0) | s

el Lo (0,7);87) LCyT
e b

ming ¢ zye{1,...,n} x2p |Ni(£:2)]

+ ool 0,1 )

with C1 = exp(T'||02A|| L= (srn)) and C(n) € R>q being
a constant dependent only on n.

Proof: The proof uses the fixed-point solution in
Eq. (IIL.2), Assumption 3.1 and Gronwall’s lemma. |

B. Delayed control operator

From the engineering point of view, controls in general
are subject to different extents of inevitable delays. In almost
every realistic application, a delay in time should be consid-
ered to make already existent models precise (for instance,
compare [11], [12] for delay in hyperbolic conservation
laws). We investigate the well-posedness of the problem in
Definition 3.1 subject to a class of delayed control operators
specified in Definition 3.3, where “delayed” means that R
at time ¢t € [0, 7] depends only on p at previous times.

Definition 3.3 (Delayed boundary control operator): Let
a delay d € C(]0,T];R>0) be given and assume that there
exists a positive constant ¢ € (0,7") such that for t € (0,7,
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for any ¢ € {1,...,n},

d(t) =t for t € [0, €]
0<d(t) <tforte(eT],

(
we call R : C (([0, T]; L*((0,1); R™)) — L>=((0,T);R") a
routing operator delayed by d(t) € [0, T) iff the following
holds Vt € [0, T|Vp € C([0,T]; L*((0,1); R™))

Ripl(t) = R [plio.—atwy] (-

Remark 3.2 (Regularity in the delayed case): Due to the
delay in Definition 3.3, there is no need of any higher
regularity on the operator for the system in Definition 3.1 to
obtain well-posedness. The introduction of d(t) serves as the
prescription of a time-varying delay. The condition d(0) = 0
assures that at ¢ = 0 the control operator remains well-posed
(otherwise, one might need to evaluate p at negative times
when p is not defined). Note that Eq. (II1.3) prevents a real-
time coupling of the control operator w.r.t. the solution.

Theorem 3.2 (Boundary control, delayed): If Assumption
3.1 and Definition 3.3 hold, the control problem in Defi-
nition 3.1 admits a unique weak solution in the sense of
Definition 2.3 in its vectorial counterpart.

Proof: Define 6 = min{d(t);t € [e,T]} > 0, the
existence and positiveness of J comes directly from the
continuity and positiveness assumption on d.

Step One. From the assumption that d(t) satisfies, the
left boundary control operator on the time interval [0, ¢]
is A(t,0)p(t,0) = R[py](t), which can be considered as
pre-defined at time ¢ = O and thus does not rely on any
solution history of the IBVP in Definition 3.1. The solution
of the IBVP in Definition 3.1 can then be derived following
the proof of Theorem 2.1 yet in the vectorial case. That
is, for t € [0,¢€], the solution is also the unique solution
in C([0,€]; (L'((0,1); R™)) for (t,) € Qr ae. of the
fixed-point problem Eq. (II.2) yet in the vectorial case,
with w (&[t,z]~1(0)) replaced by R[p,] (£[t,2]71(0)) ®
u (&[t.2]7(0).

Step Two. For t > ¢, the induction method can be applied
for the derivation of the solution. For ¢ € [, e + 6] with § as
given before, from which ¢ —d(t) € [0,e+d —d(t)] C [0, €],
the solution of the IBVP in Definition 3.1 can be derived as
follows: for any 7 € {1,...,n},

f Flp

(7, &ilt, 2](7))Da&it, ] (7) d7
&t 1 (0)

Uq f’t[t a:] (0) _
JFWR [plj0,] (&ilt, 2]7(0))
for x < &0,

82£z[t a](&ilt, x]~1(0))
f]—" (1, &[t, ] (7)) 0&[t, ] (7) dT
+,01,0(§Z [t,2](0))02&;t, 2](0) for x > &;[0,0](¢).

Assume that the solution on the time interval [0, e+nd],n €
Ns¢ is known, then, on the time interval [e + nd, e + (n +
1)0], we have t — d(t) € [0, € + nd] and the solution can be
obtained similarly. By induction, the solution on the whole
time interval of interest [0, 7] can be obtained.

(IIL.3)

pi(t, x) = 0](t),

By following the proof of Theorem 2.1, the function con-
structed as above is indeed a weak solution to Definition 3.1
subject to Definition 2.3 and Definition 3.3. [ ]

IV. INSTANTIATIONS

The routing choices describe how the flows are allocated
from one link to another at a given junction within the
networked traffic system (see Fig. 1). We propose a time-
dependent in-coming flow u(t¢) and then, a routing operator,
also named as boundary controller, will decide the distribu-
tion of this inflow onto each of the out-going links. Clearly,
for effective traffic management, one would like to choose
routing based on the traffic density p;,i € {1,--- ,n} of all
the out-going links or in the network case even based on the
density on all possible routes in the network.

Fig. 1. Tllustration of the archetype of a traffic network.

For simplicity, we consider in this work only one inter-
section, keeping in mind that the entire theory also holds for
networked systems where the routing at a specific intersec-
tion can also depend on traffic density on the network links
not adjacent to the intersection.

A. Lipschitz continuous control operator

We propose the following Lipschitz routing operators.
Example 4.1 (Routing inspired by the Logit-routing):
Inspired by [13], define for ¢ € {1,...,n} that

Rilp|(t) = -=22 ¢ e 0,7,

> e—ri(t,0)
i=1

which comes from an intuitive requirement of the routing.
Indeed, it is reasonable to assign more inflow to the link with
less traffic density, and visa versa.

Next, we study whether R : C([0,7];(L'(0,1))") —
L>((0,T"); RZ,) satisfies Definition 3.2. To this end, let ¢ €
{1,2,...,n} and take p',p? € C([0,T];L*((0,1);R™)),
then for any ¢ € [0, T:

|Rilp'] - Ri[pz]H;(o,t)

2
0PI (T.0)
f: e PF(r.0)

(7,0)

t
e_p} b}
< —_
< m -
0 Z e_f’i (7—70)
/t o= PL(m0) Z o= P2 (7,0) _ =03 (7,0) Z e PL(m0)
=1

<i§10—ni<r,0>) (Z o P20 0>>

Due to the nonnegativity of the density, we can estimate for
any 7 € [0,t] that

dr.

n n
efpl1 (T,O) Z efp?(TvO) —_ efp?(TvO) Z efp}, (T,O)
i=1 i=1
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= ‘e_pg(TaO) Z:’]’Lfl ( —p?(T,O) — eip;(T’O))

+ (et — i) 3 e (r0)
j=1

< (L+n) X0y 167 (7, 0) — pi (7,0)],

where the intermediate value theorem is applied. From Corol-
lary 3.1 and Holder’s inequality we obtain for ¢ € {1,...,n}

2
[Rilp'] — Rilp?] ||L2(O,t)

j (14+7) 3 103(7,0)=p} (7,0)]
S =1

dr
N =Pl (T,0) N —p2(7,0)
e el
0 i=1 i=1

t n 2 1 2
(1+n) 'Zl lp; (7'70)_/)1, (7,0)]
< i=
— e*HP},(T»')HLOO(OJ)e*Hp%(T,«)HLOC(o,l) dr
0

<Y [0 - o) ar
=1

= (1+n)*C?[lp* (-, 0) = p*(-, 0) 12 (0,01,
< Lille' = P18 0,121 (0,0)m7))) (IV.1)
with C = exp ([|p'[| L= (@r) + [|P°] L~(0r)) and L1 =
(1+n)C. From the above estimate, it can be further derived
that R satisfies Definition 3.2 as a Lipschitz-continuous

routing operator.

B. Delayed control operator

Example 4.2 (Minimal-density routing with delay): Let
€ € Ry and for s, € Ry,

t tel0,¢,

d(t) = esat () := e

(IV.2)

Define

1
Slp|(t) = arg min/ pi(t,z)dx, t >0
ie{l,...,n} JO

and let | - | denote the cardinality of a set. Define an operator

R = (Rla”' 7Rn)T
: C([0,T]; L1((0,1);R™)) — L((0,7); [0, 1]"),

where for any ¢ € [0, 7],

Ripl) [T o e

with d as in Eq. (IV.2). This delayed routing operator satisfies
Definition 3.3. Following Theorem 3.2, the IBVP as defined
in Definition 3.1 subject to this boundary routing operator
‘R admits a unique weak solution.

Note that this routing operator is generally not even con-
tinuous with respect to the density, however, when applying a
delay as done in this instantiation, the system is well-posed.

V. FUTURE WORKS

As we are more interested in the routing, we have kept
the link dynamics as simple as possible and focus on
the properties the routing has to satisfy to obtain a well-
posed system. For example, the link dynamics considered in
this work are rather trivial in that the spill-back or shock
behaviors which are classical and natural for traffic flow
models are not incorporated. Consideration of these behav-
iors in our model will need to be taken into account in the
future. Another future work worth considering is the stability
analysis of the IBVPs w.r.t. input parameter. Even though
this might be straightforward for the Lipschitz-continuous
routing operators, it needs to be studied carefully in the
case of delayed routing operators in the proper topology.
Moreover, as we have exploited the necessary assumptions
on the involved routing operators, these can be generalized
to more sophisticated PDE models in traffic flow as the LWR
model [14], [15].
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